VECTOR DOMINANCE MODEL COMPARISON OF π^{+}PHOTOPRODUCTION WITH ρ° PRODUCTION BY PIONS

R. Diebold
Stanford Linear Accelerator Center, Stanford, California*
J. A. Poirier
Department of Physics, University of Notre Dame, Notre Dame, Indiana \dagger

Abstract

A comparison of the reactions $\gamma \mathrm{p} \rightarrow \pi^{+} \mathrm{n}$ and $\pi^{-} \mathrm{p} \rightarrow \rho^{\circ} \mathrm{n}$ at 4 and 8 $\mathrm{GeV} / \mathrm{c}$ has been made using the vector dominance model. Although the ρ^{0} data are insufficient to show the very narrow forward peak observed in the photoproduction data, agreement is obtained to within errors for $|\mathrm{t}| \lesssim 0.1(\mathrm{GeV} / \mathrm{c})^{2}$. Taking interference effects into account, this agreement can be extended to $|t| \approx 1.5(\mathrm{GeV} / \mathrm{c})^{2}$ at $4 \mathrm{GeV} / \mathrm{c}$, but only to 0.3 $(\mathrm{GeV} / \mathrm{c})^{2}$ at $8 \mathrm{GeV} / \mathrm{c}$.

(Submitted to Phys. Rev. Letters)

[^0]The reactions

$$
\begin{align*}
& \gamma \mathrm{p} \rightarrow \pi^{+} \mathrm{n} \tag{1}\\
& \pi^{-} \mathrm{p} \rightarrow \mathrm{~V}^{\mathrm{o}} \mathrm{n} \tag{2}
\end{align*}
$$

(where V^{o} is a mixture of ρ^{0}, ω and ϕ)can be directly related to one another in the vector dominance model ${ }^{1}$ by time reversal and isospin invariance as shown schematically in Fig. 1. The γ-ray-vector meson couplings γ_{v} can in principle be obtained from the leptonic decays $\mathrm{V}^{\circ} \rightarrow l^{+} l^{-}$; up to now only the decays $\rho^{\mathrm{o}} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$and $\rho^{\mathrm{o}} \rightarrow \mu^{+} \mu^{-}$have been well measured, giving ${ }^{2}$

$$
\begin{equation*}
\frac{\gamma_{\rho}^{2}}{4 \pi} \approx 0.45 \tag{3}
\end{equation*}
$$

with perhaps a 20% uncertainty. ${ }^{3}$ The couplings γ_{ω} and γ_{ϕ} can be estimated using SU3 with the usual $\omega \phi$ mixing angle $(\cos \theta=\sqrt{2 / 3})^{4}$

$$
\begin{equation*}
\frac{1}{\gamma_{\rho}^{2}}: \frac{1}{\gamma_{\omega}^{2}}: \frac{1}{\gamma_{\phi}^{2}}=9: 1: 2 \tag{4}
\end{equation*}
$$

Various modifications to the ratios have been proposed ${ }^{5}$ but the $V^{\circ}=\rho^{\circ}$ amplitude of Fig. 1a is expected to be dominant, in which case the relation between processes 1 and 2 becomes ${ }^{1,6}$

$$
\begin{equation*}
\frac{\mathrm{d} \sigma}{\mathrm{dt}}\left(\gamma \mathrm{p} \rightarrow \pi^{+} \mathrm{n}\right) \approx \frac{\pi \alpha}{y_{\rho}^{2}} \rho_{11}^{\mathrm{hel}}(\mathrm{t}) \frac{\mathrm{d} \sigma}{\mathrm{dt}} \quad\left(\pi^{-} \mathrm{p} \rightarrow \rho^{o} \mathrm{n}\right) \tag{5}
\end{equation*}
$$

where we will take $\pi \alpha / \gamma_{\rho}^{2}=1 / 250$ and $\rho_{11}^{\text {hel }}(\mathrm{t})$ is the helicity density matrix ${ }^{7}$ giving the fraction of ρ mesons with helicity +1 at momentum transfer t.

The factor $\rho_{11}^{\text {hel }}$ (t) is necessary since the incoming γ-ray, and thus the virtual $\mathrm{V}^{\mathrm{O}}=\rho^{\mathrm{o}}$ in Fig. 1a, can only have helicity ± 1.

Previous comparisons using Eq. (5) have been made. ${ }^{8}$ In this letter we compare in detail the experimental data on reactions $1^{9,10}$ and $2^{11,12}$ near 4 - and $8-\mathrm{GeV} / \mathrm{c}$ incident momentum.

The evaluation of the right-hand side of Eq. (5) is made difficult by the background process $\pi^{-} \mathrm{p} \rightarrow \pi^{+} \pi^{-} \mathrm{n}$, where the $\pi^{+} \pi^{-}$do not form a ρ°, i.e., do not have $J^{P}=1^{-}$. Using data at all values of t, a fit to the $\pi^{+} \pi^{-}$mass distribution was made using three-body phase space plus two Breit Wigner curves, one for the ρ° and one for the f . The fraction of $4 \mathrm{GeV} / \mathrm{c}$ events fitted as ρ° events fluctuated by $\pm 6 \%$ depending on the exact form taken for the BreitWigner resonance shape; the shape giving the best fit indicated that 40% of all $\pi^{+} \pi^{-} \mathrm{n}$ events were $\rho^{\circ} \mathrm{n}$. ${ }^{11}$ The $\pi^{+} \pi^{-}$mass distribution was examined for each t interval of interest; the fraction of events in the interval $700 \leq M_{\pi \pi} \leq 850$ MeV attributable to ρ^{0} production (80 to 85%) was found to be independent of t (to within statistics), and we have calculated $d \sigma / d t$ for ρ° production from the number of events with $\mathrm{M}_{\pi \pi}$ in this region (normalized to the total ρ° cross section).

Previously published values ${ }^{12,13}$ of the ρ^{0} density matrices were evaluated with polar direction along the incident beam (Jackson direction) instead of along the ρ^{o} direction of motion (helicity direction). One is tempted to argue that since we are primarily interested in the low t region, the difference between the two frames cannot be large. However, numerical evaluation of the angle between the two frames shows a large effect, the angle increasing rapidly from 0 at $t=t_{\min }$ to about 45° at $|\mathrm{t}|=0.1(\mathrm{GeV} / \mathrm{c})^{2}$ (independent of energy above 2 GeV) and then less rapidly to 90° at $|\mathrm{t}| \approx 0.5(\mathrm{GeV} / \mathrm{c})^{2}$. In principle,
the density matrix in the Jackson frame could be rotated by the angle between the two frames to obtain $\rho^{\text {hel }}$ (t) ; we have found that due to substantial offdiagonal error matrix elements, the direct fit to the angular distribution in the helicity frame gives values which are slightly different from the results obtained from a rotation assuming uncorrelated errors. In what follows, we have used the values of $\rho_{11}^{\mathrm{hel}}(\mathrm{t})$ obtained from direct fits to the data. The $8 \mathrm{GeV} / \mathrm{c}$ results for $\rho_{11}^{\text {hel }}(\mathrm{t})$ are shown in Fig. 2; the $4 \mathrm{GeV} / \mathrm{c}$ results will be published elsewhere. ${ }^{11}$

In order to minimize the non- ρ background, only events with $700 \leq \mathrm{M}_{\pi \pi} \leq 850$ MeV were used to evaluate $\rho_{11}^{\text {hel }}(\mathrm{t})$; in this region 15 to 20% of the events are non- ρ. At $4 \mathrm{GeV} / \mathrm{c}$ there were sufficient data to check that $\rho_{11}^{\text {hel }}(\mathrm{t})$ was not being distorted by the non- ρ events in the ρ mass region. For this purpose $\rho_{11}^{\text {hel }}(t)$ was evaluated for events with $\mathrm{M}_{\pi \pi}$ from 575 to 675 and 875 to 975 MeV ; the resulting values for $\rho_{11}^{\text {hel }}$ (t) agreed with those for the ρ region to within statistics (typically 20 or 30% at individual t values) with no systematic differences observed. For this reason we do not believe that the background of non- ρ events presents a serious difficulty to the analysis.

The 5 and 8 GeV photoproduction data ${ }^{9}$ are shown in Fig. 3, where the 5 GeV photoproduction data have been extrapolated to 4 GeV by assuming $\mathrm{d} \sigma / \mathrm{dt}$ to go as k^{-2} as indicated by a comparison of the DESY data ${ }^{14}$ at 2.7 GeV with the SLAC 5 GeV data. The data are plotted as a function of $\left|\mathrm{t}-\mathrm{t}_{\mathrm{min}}\right|^{\frac{1}{2}}$, which at small angles is proportional to the production angle. ${ }^{15}$ The photoproduction predictions obtained from the ρ° data using Eq. 5 are also shown in Fig。3. The errors shown in Fig. 3 are statistical only; when comparing the experimental data with the vector dominance prediction one must keep in mind the
12% systematic uncertainty in the photoproduction data and the 15% systematic uncertainty in $\rho_{11}^{\text {hel }}$ (d σ / dt) for ρ° production as well as the uncertainty in γ_{ρ}^{2}.

General agreement between the vector dominance prediction and the photoproduction data is obtained at both energies for $|\mathrm{t}| \leq 0.1(\mathrm{GeV} / \mathrm{c})^{2}$. At larger momentum transfers the prediction from ρ° production falls below the observed $\gamma \mathrm{p} \longrightarrow \pi^{+} \mathrm{n}$ cross section. Some of this discrepancy can be removed by considering the interference effects from the amplitude with $\mathrm{V}^{0}=\omega$. These effects can be directly estimated from the ratio of cross sections

$$
\begin{equation*}
\mathrm{R}=\frac{\frac{\mathrm{d} \sigma}{\mathrm{dt}}\left(\gamma \mathrm{~d} \rightarrow \mathrm{p}_{\mathrm{s}} \mathrm{p} \pi^{-}\right)}{\frac{\mathrm{d} \sigma}{\mathrm{dt}}\left(\gamma \mathrm{~d} \rightarrow \mathrm{n}_{\mathrm{s}} \mathrm{n} \pi^{+}\right)} \tag{6}
\end{equation*}
$$

(where subscript s indicates a spectator nucleon). Assuming that the photoproduction amplitudes A_{ρ} and A_{ω}, corresponding to Fig. 1a with $\mathrm{V}^{0}=\rho^{0}$ and $\mathrm{V}^{\mathrm{o}}=\omega$, are dominant for single pion photoproduction, ${ }^{16}$ isospin invariance gives

$$
\begin{align*}
& \frac{\mathrm{d} \sigma}{\mathrm{dt}}\left(\gamma \mathrm{p} \rightarrow \pi^{+} \mathrm{n}\right)=\left|\mathrm{A}_{\omega}+\mathrm{A}_{\rho}\right|^{2} \tag{7}\\
& \frac{\mathrm{~d} \sigma}{\mathrm{dt}}\left(\gamma \mathrm{n} \rightarrow \pi^{-} \mathrm{p}\right)=\left|\mathrm{A}_{\omega}-\mathrm{A}_{\rho}\right|^{2} \tag{8}
\end{align*}
$$

Neglecting $\left|A_{\omega}\right|^{2}$, we then have

$$
\begin{equation*}
\left|\mathrm{A}_{\rho}\right|^{2}=\frac{1}{2}\left(\frac{\mathrm{~d} \sigma}{\mathrm{dt}}\left(\gamma \mathrm{p} \rightarrow \pi^{+} \mathrm{n}\right)+\frac{\mathrm{d} \sigma}{\mathrm{dt}}\left(\gamma \mathrm{n} \rightarrow \pi^{-} \mathrm{p}\right)\right) \approx \frac{1+\mathrm{R}}{2} \quad \frac{\mathrm{~d} \sigma}{\mathrm{dt}}\left(\gamma \mathrm{p} \rightarrow \pi^{+} \mathrm{n}\right) \tag{9}
\end{equation*}
$$

Thus, the prediction for photoproduction shown in Fig. 3 based on ρ^{0} production should be compared with the quantity shown on the right-hand side of Eq. (9) .

The ratio R has been measured by Bar-Yam et al. ${ }^{17}$ at 3.4 GeV . They found $R=0.35$ at $|t|=0.4(\mathrm{GeV} / \mathrm{c})^{2}$, increasing to 0.5 at $|t|=1.5(\mathrm{GeV} / \mathrm{c})^{2}$; for the A_{ρ} and A_{ω} amplitudes in phase, this gives $r=\left|A_{\omega}\right| /\left|A_{\rho}\right|=0.25$ and 0.17 respectively. Although the $\mathrm{V}^{\mathrm{O}}=\omega$ amplitude squared is then only 4% of the $\mathrm{V}^{\mathrm{o}}=\rho^{\mathrm{o}}$ contribution, the interference term is nearly half as large as the ρ^{0} term by itself. Using the experimental numbers for R, the coefficient $(1+\mathrm{R}) / 2$ is typically 0.7 and the dotted curves in Fig. 3 correspond to this factor, as measured at $3.4 \mathrm{GeV} / \mathrm{c}$, times the $\gamma \mathrm{p} \rightarrow \pi^{+} \mathrm{n}$ cross section. At small t the one pion exchange term $\left(v^{0}=\rho^{0}\right)$ might be expected to dominate to the extent that R would be close to unity in this region.

The magnitude of the amplitude ratio r can be understood qualitatively on the basis of vector dominance. Experimental data on $\pi N \rightarrow \omega N$ is rather sparse, ${ }^{18}$ but the cross section appears to be roughly a factor of 3 smaller than that for ρ^{0} production with a somewhat wider t distribution than that of the ρ°. If we arbitrarily assume that $\rho_{11}^{\text {hel }}$ is roughly the same for ρ^{o} and ω production and neglect the difference in t distributions, then the ratio r becomes (using Eq. 4)

$$
\begin{equation*}
\mathrm{r}=\frac{\gamma_{\rho}}{\gamma_{\omega}}\left(\frac{\rho_{11 \omega}^{\mathrm{hel}}}{\rho_{11 \rho}^{\mathrm{hel}}} \frac{\sigma_{\omega}}{\sigma_{\rho}}\right)^{\frac{1}{2}} \approx 0.2 \tag{10}
\end{equation*}
$$

in good agreement with the values quoted above.
The backward π^{+}photoproduction data at $4.3 \mathrm{GeV} / \mathrm{c}$ of Anderson et al. ${ }^{10} \mathrm{can}$ also be compared with the $4 \mathrm{GeV} / \mathrm{c} \rho^{0}$ data. ${ }^{11}$ Both sets of data show a broad backward peak, but the ρ^{0}-helicity-one cross section is twice that predicted by

Eq. (5). In the $8 \mathrm{GeV} / \mathrm{c} \rho^{0}$ data 12 only one event is found in the backward direction with $\mathrm{M}_{\pi \pi}$ between 700 and 850 MeV , compared with the four $\rho^{\circ}{ }^{\prime} \mathrm{s}$ which might be expected (using the photoproduction data ${ }^{10}$ and Eq. 5 with $\rho_{11}^{\text {hel }}=0.25$). The vector dominance comparison in the backward direction is thus inconclusive as a result of the poor statistics and the possibility of large effects from the ω amplitude; while the ρ°-helicity-one cross section may have the appropriate order of magnitude in the backward direction, it appears to fall faster with increasing energy than expected.

The agreement over the wide range of t shown in Fig. 3 is the result of $\rho_{11}^{\text {hel }}$ increasing rapidly at small t to counteract the $\left.e^{-10 \mid t}\right|_{\text {fall-off of }} d \sigma / d t$ for ρ^{0} production, the product yielding a dependence close to the $e^{-3}|t|$ observed in photoproduction. A similar result has been obtained at lower energies. ${ }^{19}$ Even after correcting for the $\mathrm{V}^{\mathrm{o}}=\omega$ interference there is a discrepancy at $8 \mathrm{GeV} / \mathrm{c}$ for large t . While some of this discrepancy seems to be the result of statistical fluctuations; the ρ°-helicity-one cross section does appear to fall somewhat faster at large t than that for single pion photoproduction. This discrepancy may indicate the need for corrections resulting from the virtual ρ in Fig. la being off the mass shell, or may simply be some background amplitude which eventually becomes important as t is increased.

We are grateful to the Purdue, SLAC-LRL, Notre Dame collaboration, which allowed us access to the $4 \mathrm{GeV} / \mathrm{c} \rho^{\circ}$ data before publication. We are pleased to acknowledge fruitful discussions with Professor B. Richter, Dr. F. Gilman, and Dr. R. Torgerson. Mr. S. Schultz provided valuable computational assistance.

REFERENCES

1. Douglas S. Beder, Phys. Rev. 149, 1203 (1966);
H. Joos, Acta Physica Austriaca, Supplementum IV (1967).
2. See, for example, the review by S.C.C. Ting, Proceedings 1967 International Symposium on Electron and Photon Interactions at High Energies (Stanford, California, 1967); p. 452.
3. Since $\gamma_{\rho}^{2} / 4 \pi$ is obtained from the partial width $\Gamma\left(\rho \rightarrow \ell^{+} \ell^{-}\right)=$branching ratio $\times \Gamma(\rho \rightarrow$ all $)$, a shift of $\Gamma(\rho \rightarrow$ all $)$ from the nominal value of 130 MeV to the Novosibirsk storage ring value of 93 MeV would change $\gamma_{\rho}^{2} / 4 \pi$ from 0.45 to 0.63 .
4. C. A. Levinson, H. J. Lipkin and S. Meshkov, Phys. Letters 7, 81 (1963).
5. See, for example, the review by H. Joos, Proceedings of the Heidelberg International Conference on Elementary Particles, H. Filthuth, Ed. (North-Holland Publishing Company, Amsterdam, 1968); p. 349.
6. We have ignored the kinematic factor giving the ratio of phase space and incident flux, $\left|\stackrel{\rightharpoonup}{\mathrm{p}}_{\pi}\right|^{2} /\left|\overrightarrow{\mathrm{p}}_{\gamma}\right|^{2}$, which is very close to unity at the energies considered here.
7. A detailed discussion of which frame to use has been given by H. Fraas and
D. Schildknecht, DESY 68/4 (1968).
8. P. Schmüser, thesis, Hamburg (1967);
G. Buschhorn, et al., Proceedings 1967 International Symposium on Electron and Photon Interactions at High Energies (Stanford, California 1967); p. 613; Margarete Krammer, DESY 68/6(1968).
9. A. M. Boyarski, et al., Phys. Rev. Letters 20, 300 (1968).
10. R. Anderson, D. Gustavson, G. Jones, J. Johnson, D. Kreinick, R. Prepost, D. Ritson and R. Weinstein, quoted in the review by B. Richter, Proceedings 1967 International Symposium on Electron and Photon Interactions at High Energies, (Stanford, California, 1967); p. 309;
D. Gustavson, private communication.
11. Purdue, SLAC-LRL, Notre Dame collaboration, to be submitted to Phys. Rev. (1968).
12. J. A. Poirier, et al., Phys. Rev. 163, 1462 (1967).
13. R. L. Eisner, et al., Phys. Rev. 164, 1699 (1967).
14. G. Buschhorn, et al., Phys. Rev. Letters 18, 571 (1967).
15. For photoproduction the momentum transfer at $0^{\circ}, t_{\min }$, is negligible, but for ρ production at 4 and $8 \mathrm{GeV} / \mathrm{c},\left|\mathrm{t}_{\min }\right|^{\frac{1}{2}}=0.08$ and $0.04 \mathrm{GeV} / \mathrm{c}$, respectively. It is ambiguous whether $t_{\text {min }}$ should be subtracted from t when plotting the data; in any case, the decision notic eably affects only the first one or two bins and we have chosen to subtract it.
16. The term with $\mathrm{V}^{\mathrm{O}}=\phi$ is expected to be negligible because of the small coupling of the ϕ to nonstrange particles.
17. Z. Bar-Yam, et al., Phys. Rev. Letters 19, 40 (1967).
18. J. F. Allard, et al., Nuovo Cimento 50A, 106 (1967);
E. Shibata and M. Wahlig, Phys. Letters 22, 354 (1966);
M. Krammer (Ref. 8) quotes the unpublished results of experiments at 3.65 and $5.1 \mathrm{GeV} / \mathrm{c}$.
19. E. Malamud and P. Schlein have fit the $2.7 \mathrm{GeV} / \mathrm{c}$ helicity $\pm 1 \rho^{\circ}$ cross section to the form $A e^{-B|t|}$ and find $B=(3.64 \pm 0.32)(\mathrm{GeV} / \mathrm{c})^{-2}$, (private communication).

FIGURE CAPTIONS

1. Feynman diagrams showing the relationship between reactions 1 and 2 in the vector dominance model.
2. Values of $\rho_{11}^{\text {hel }}(\mathrm{t})$ obtained by fitting the $8 \mathrm{GeV} / \mathrm{c} \quad \rho^{\mathrm{o}}$-decay angular distributions in the helicity frame.
3. Comparison of the two sides of Eq. (5) at (a) $4 \mathrm{GeV} / \mathrm{c}$ (the $5-\mathrm{GeV} / \mathrm{c}$ photoproduction data have been extrapolated to $4 \mathrm{GeV} / \mathrm{c}$) and (b) $8 \mathrm{GeV} / \mathrm{c}$. As discussed in the text, interference terms between the $\mathrm{V}^{0}=\rho^{0}$ and $\mathrm{V}^{0}=\omega$ amplitudes can be eliminated by taking $\left[\frac{\mathrm{d} \sigma}{\mathrm{dt}}\left(\gamma \mathrm{p} \rightarrow \pi^{+} \mathrm{n}\right)+\frac{\mathrm{d} \sigma}{\mathrm{dt}}\left(\gamma \mathrm{n} \rightarrow \pi^{-} \mathrm{p}\right)\right] / 2 \approx \frac{(1+\mathrm{R})}{2} \frac{\mathrm{~d} \sigma}{\mathrm{dt}}\left(\gamma \mathrm{p} \rightarrow \pi^{+} \mathrm{n}\right)$, where R is the π^{-} / π^{+}ratio for photoproduction of single π mesons from deuterium. For this reason the prediction based on the ρ^{0} data should be compared with the dashed line which includes the factor $(1+R) / 2 \approx 0.7$ as measured by Bar-Yam et al. (Ref. 17) at 3.4 GeV ; this correction factor is expected to tend toward unity at small t.

(a)

(b)

Fig. 1

Fig. 2

Fig. 3

[^0]: *Work supported by the U. S. Atomic Energy Commission $\dagger_{\text {Work supported in part by }}$ the National Science Foundation

