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ABSTRACT 

Since exact calculations of the three-nucleon low energy parameters 

using separable models assume nuclear forces which do not reproduce experi- 

mental two-nucleon data, and variational calculations with "realistic" 

forces have not converged, comparison of either type of calculation with 

experiment is premature. However, the exact calculations can be used for 

parameter studies, and these studies shed some light on which features of 

the two-nucleon interaction must be known in order to make reliable cal- 

culations from first principles. After a review of the mathematical and 

physical structure of the non-relativistic quantum mechanical three-body 

problem to clarify what physical input is needed, and a review of whether 

and if so to what accuracy this information is available from two-nucleon 

experiments, existing calculations of the binding energy of the triton et, 

and of the n-d doublet and quartet scattering lengths, a2 and a4, are re- 

viewed from this point of view. So far as two-nucleon input goes, new 
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experimental information has removed a serious source of difficulty by 

confirming the theoretical prediction from charge-independence that the 

n-p 'So effective range rs = 2.73 If: 0.03 F, but a comparable sensitivity 

to the percentage D state in the deuteron (where the evidence is now at 

least as good for 4-$-7& as for-the conventional value of 7%) pointed out 

by Phillips will require extensive further investigation. Existing cal- 

culations of E t and a2 do not discriminate clearly between effects due 

to differences in the models arising from differences in their fit to 

nucleon-nucleon S phases up to 300 MeV, differences due to different 

behavior of the phases at infinite momentum, differences (which are quite 

large between local and separable potentials) near but off the energy 

shell, and differences in asymptotic behavior far from the energy shell. 

However, they do show clearly that such differences either separately 

or in conjunction can lead to differences in the calculated value of et 

of l-4 MeV, and of a2 of l-2 F. Both uncertainties are one to two orders 

of magnitude larger than the experimental error in either quantity, and 

also larger than estimated effects due to three-body forces arising from 

meson exchange. They also make it likely that, unless further work is 

done on electromagnetic properties of the two-nucleon system with an eye 

on extracting off-shell (wave function) information, a discrepancy of a 

few MeV in et between equally realistic models for the nuclear force will 

continue to exist even after variational and Faddeev calculations have 

converged to the same unique (mathematically speaking) answers for these 

models. 



-3- 

1. INTRODUCTION 

Theoretical nuclear physics has developed an impressive body of 

phenomenology over the past three decades without knowing much about 

the nuclear force other than that it is strong, short-range and approxi- 

mately charge-independent, aided by generous empirical input about speci- 

fic systems. Yet one would like to believe that, given a knowledge of- 

the nuclear force, one should be able to calculate all of these pheno- 

menological models from first principles, just as one believes that all 

of atomic and molecular physics are in principle calculable knowing the 

charge and mass of the.electron, Planck's constant, the velocity of light, 

and the nuclear masses (and for subtle effects their spins). Yet this 

confidence in the case of atomic systems came about because of quanti- 

tative success in calculating the three as well as the two particle 

systems; in particular, the success in understanding Helium gave con- 

fidence in the exclusion principle on which all of chemistry rests. Such 

a basis is still missing in nuclear physics. 

Two places exist where quantitative tests of our understanding of 

the nuclear forces may be attempted with some hope of success during the 

next decade. One of these, surprisingly enough, is the calculation of 

the binding energy and density of infinite nuclear matter. But this as- 

sumes at the outset that all coulomb effects and surface effects have 

been exactly represented by the semi-empirical mass formula for finite 

nuclei, and that once these are turned off there is exact charge-inde- 

pendence of the nuclear force. Calculation of the three-nucleon system 

from first principles is harder, but has the advantage that there are 
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more parameters to be compared with experiment, and that quite subtle 

effects can be tested experimentally if there is theoretical reason to 

think them interesting 192 . Familiarity with the partial conservation 

law of charge-independence has tended to breed acceptance, and even imi- 

tation in the proliferating-models for elementary particles. But it is 

a very peculiar thing to have a symmetry which is not directly tied to 

a symmetry of the system of description (in which case it would be exact) 

and hence must represent some feature of the interaction which clashes 

with other aspects. It is obviously useful to glean any information we 

can about how this works out in more complicated systems. It is also 

clearly important for nuclear physics to know at what point the three- 

nucleon problem ceases to be a three-body problem and begins to bring in 

measurable meson effects; until this is known, the limits of where nuclear 

physics can safely be treated as a non-relativistic problem (or even if 

there is ever such a situation), and where it becomes necessarily a part 

of elementary particle physics, cannot be set. 

Unfortunately, the three-body problem is so complicated that until 

now attempts to answer these questions have led only to ambiguous answers. 

Fortunately by now, however, utterly different calculational and mathe- 

matical techniques (variational and Faddeev) have led to identical nu- 

merical answers for the simplest three-body models. Hence these models 

can be used with confidence, on the numerical side, to estimate the 

sensitivity of the problem to various uncertainties. These results are 

rather disturbing, at least if one is concerned with the physics of the 

three-nucleon problem and not just with solving a mathematical puzzle. 

We will therefore try to keep our focus on the physics of the situation, 
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and leave to other speakers the discussion of more technical mathematical 

aspects of the problem, and whether one or another approach will prove 

more practical. For our own part, we will hesitate to believe any com- 

plicated three-nucleon calculation until at least two independent cal- 

culations using different mathematical and numerical techniques have 

reproduced the same numerical answer for the same model; but that is 

only a prelude to the physics. 

II. MATHEMATICAL AND PHYSICAL STRUCTURE 

OF THE THREE-PARTICLE SCHROEDINGER EQUATION 

We consider three distinguishable, spinless particles of masses 

ml7 m2’ m3 interacting only through forces between each pair. Initially 

we consider forces with depend only on the magnitude of the distances 

=R Pi -j - gk between particle j at R. and particle k at zk, and which can 
-J 

be derived from the three local potentials Vi(oi), but the generalization 

to non-local and/or velocity-dependent interactions becomes trivial at a 

later stage. If the total energy eigenvalue of the time-independent 

Schroedinger equation for this system is Z, and K is the usual kinetic 

energy operator, the equation we wish to solve is 

(K -I- Vl + V2 + V3)y = Zy (11.1) 

For three free particles in the final state, the general stationary state 

scattering wave function given by Goldberger and Watson 3 becomes 

y(~l&1~3) = XI(~&‘R3) + + 
Pd 

/ d3Pl I d3P, / d3P3"3@-$-$-~3) 

e 
i(.Pl._Rl+ I&.%+ P3*R3) 

- < ~l~~3~T(Z)JI > 

Z + ie - (P:/2ml+ P",/2m2+ P;/2m3) 

(11.2) 
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where I is any initial state and the limit E --+O + is implied. For a 

normal laboratory experiment, we have to start with a bound state of two 

of the particles, so in that case x I will correspond to that bound state 

wave function, a plane wave for the motion of the center of mass of that 

state, and a plane wave for the third particle. In other words, it will 

be a stationary state solution of the simpler equation (K + Vl)xI = ZxI 

if we choose the bound state to be of particles 2 and 3. Then, in addi- 

tion to the term given in (11.2), we must include an outgoing wave cor- 

responding to elastic scattering from this bound state, and if there are 

any other bound 

these must also 

assuming that T 

states between this or any other pair in the system, 

be included. Formally, this can be accomplished by 

contains additional terms with the appropriate 6-functions 

needed to insure the right kinematic relations for these states. We 

assume Z to be zero at three-particle breakup threshold, so if Z is nega- 

tive, only these two-particle bound state plus single free particle terms 

will survive, and if Z is so negative that none of these are allowed, we 

look for bounded solutions of the homogeneous equation corresponding to 

three-particle bound states. 

This complicated set of boundary conditions on (11.1) is not the 

easiest thing in the world to apply. If we insert (11.2) into (11.1) and 

go over to momentum space, thus obtaining the Lippmsnn-Schwinger equaticn 

for T, we find that the mathematical problem so posed is ambiguous. This 

difficult problem was solved by Faddeev 475 , who found that the separaticn 

of the T matrix into channels in which one of the particles was asympto- 

tically free, while the other two could continue to interact, after a 

sufficient number of iterations led to integral equations of the Fredholm 
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type. In configuration space, this amounts to replacing (11.1) by the 

three equations 

(K + Vl- z)Y, = - vl(y2 + y3) 

(K f V2- z)Y2 = - v2(y3 + yl) (11.3) 

(K + V3- Z)Y3 = - V3(Yl + Y2) 

with Y = Yl I- Y2 + Y3 and the boundary,condition that the Yi approach 

stationary solutions of the three separate equations obtained by setting 

the right hand sides of (11.3) equal to zero. Clearly this will work 

only if the right hand sides vanish asymptotically, which we now prove 

for short-range forces. 

These equations in 9 variables can be reduced to two continuous 

variables and a set of discrete quantum numbers as follows. First take 

out the center of mass coordinate (ml$ + m2F& + m3g3)/M with conjugate 
2 

momentum p, and the corresponding energy by defining z = Z - P /2M. The 

remaining six coordinates can be represented by the yector between any 

two particles p, and the vector r from the center of mass of that pair to 

the third particle, in three different ways; these vectors, and their 

conjugate momenta are 

2-i = R+ - (mjgj + %gk)/(mj+ %); Pi = C(mj+ mk)~i - mi(gj+ s)I/M 

=R -1 p' -j - ok; 9i = (Tgj - mjEk)/ cmj+ mk) 

p:/2Mi -t q:/2pi Mi = 
cmj' mk)mi mjmk 

2 = M cli = 
mj+ ?k 

(11.4) 

If ri and Q make angles OiOi and eicpi respectively with space-fixed we 

can immediately reduce the left hand side of (11.3) to two radial variables 
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by introducing the orthonormal angular momentum functions Ja,, as defined YM 

by Blat-t and Weisskopf6 and the expansion 

= c 
JQ 

(@pi; ei,‘Pi) (II-5 > 

Since J and M are constants of the motion, we will omit them whenever 

possible in the following equations. The difficulty, of course, is that 

the right hand side of (11.3) is expressed in terms of the wrong variables. 

In order to calculate the projection of the right hand side onto our 

space of two continuous variables by the operator s $&dRj, we make a 

transformation of unit Jacobian to a set of four new angles. Following 

Gmnes' we pick these to be the three Euler angles CX, S, y of a body-fixed 

axis lying in the plane of the triangle defined by the three particles, 

the angle c between 5 and p, and a constant parameter 6 which gives the 

angle between this body-fixed axis and one of the vectors in the plane; 

for definiteness we take this to be the angle to Lo. It is then a simple 

exercise in rotation matrices to show that the angular momentum functions 

in these coordinates become, in the notation of Edmonds', 

(11.6) 

Since the angles a, S, y are common to all three coordinate systems, three 

of the four integrations just give an orthogonality integral, and we are 

left with a single integral over 5. Since all vectors now lie in a plane, 

a series of plane rotations are all that is needed to relate the angle 5 

in one coordinate system to that in another, and all angular and radial 
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coordinates in one system to the other. To be explicit, we consider how 

to express '2, pl, f,, and cl2 (the angle between 21 and ~2) in terms of 

rlj P19 and (1. This is 

2 22 
'2 =ar 1 + b20; - 2abrlplcos f;l 

2 2 22 
p2 = rl + c Pl + 2crlolcos 51 

r2p2cos c2 = arz - bcp: + (ac-b)rlplcos 51 

rlr2cos cl2 = a.21 - brlr2cos 5, 

a = ml/ b2+ m3) b = m3M/(m2+ ml) b3+ m2) c = m&2+ "3) 

(I-1.7) 

The corresponding expressions for r3, p3, c3 and cl2 are obtained by the cyclic 

permutation 2 -+3, 3 +l, 1 -+2 in a, b, c and by cl--+- (1. 

The final result is the differentio-integral equation 

d2 -- Q&l) 

drf 
2 

'1 
(11.9) 

+ Vl(Pl) &, L 3 ] d(cos il)$;$,h'(rl~l~os 51) riF1u',$rS'ps) 
= , -1 

and the corresponding equations for U 
2 3 and u. Here rs and p, are to be 

expressed in terms of rl, pl and cos 5, by means of (II.7), and the kernel 

is given by 

(k+512,0,5+~12+~2,0) (11.9) 

or the obvious generalizations. Since our purpose at this point is to 
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investigate the structure of the source term, we d-o not attempt further 

simplification. 

We see immediately from (11.8) that if Vl vanishes asymptotically 

like, 
-pi/R 

say, e that the source has the necessary compactness in this 

coordinate. This is to be contrasted with the situation which would have 

resulted if we had not made the Faddeev channel decomposition, since in 

that case the source term continues to exist along a diagonal strip in 

the p, r plane which runs to infinity; that fact frustrated earlier 

attempts to formulate three-particle boundary conditions in configuration 

space. It might be hoped that since particle 1 in this channel is asymp- 

totically free, and is outside the range of force of the interacting pair 

for rl > R, that the source would also fall off like e 
-y/R 

, but this is 

not the case. In fact, for pl < R and r1 large, we see from (11.7) that 

r -tar 2 1 and p2-+r 1 . Hence, apart from angular factors of order unity, 

the source term approaches plVl(ol)us(arl,rl)/arl, and since us is also 

of order unity asymptotically, the source only falls off like l/rl. 

This long-range character of the source in the limit we are con- 

sidering (pl less than the range of forces and rl large) has a ready 

physical interpretation which is illustrated in Figure 1. If all three 

particles were outside the range of forces, they would have to have their 

energy and momentum individually connected as they are for free particles, 

and if we are discussing the final state, no further scattering would be 

possible and the source would have to be zero (which is guaranteed by 

the vanishing of VI). However, if particles 2 and 3 are still within the 

range of force, their energy and momentum are not necessarily connected 

as they are for free particles, and if they can pick up momentum from 
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somewhere, can still scatter into the final state. This momentum can be 

supplied from the outgoing spherical wave in one of the two other channels, 

as illustrated, and since the amplitude of this wave only falls off like 

l/Q' the behavior of the source term has been explained, Were this not 

the case, we could readily write down the Green's function for the left 

hand side of (11.8), (K -i- Vl- z)-', and applying this to the equations 

obtain integral equations for us of very similar structure to those for 

two-particle scattering, 9 as has been discussed formally by Sasakawa . We 

can, of course, do this but the resulting integrals extend over such a 

large region of rl, that it looks unlikely that such an approach will 

provide a practical method for solving three-body problems even with 

short-range forces. We have presented the result in order to clarify the 

physical origin of the difficulty of solving these equations in configura- 

tion space, and also because the explicit formal structure in p and r may 

still have some advantages in clarifying asymptotic forms and phases in 

configuration space. But we agree with Faddeev that simple singularities 

in momentum space are easier to handle than l/r source terms in coordinate 

space, and now turn to that approach. 

If we specialize (11.2) by assuming that XI is a plane wave (i.e. 

solve for the scattering of three free particles to three free particles - 

from which we can construct any other case), take out the center-of-mass 

motion, and introduce momenta 2 and CJ conjugate to z and 2 respectively, 

the insertion of (11.2) into (11.1) and transformation to momentum space 

gives immediately the Lippmann-Schwinger equation 
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or, in operator form 

T(Z) = V + V GO(Z)T(Z) (11.11) 

As noted above, this as it stands does not pose a well-defined mathe- 

matical problem, but if we write T = CiTi, V = CiVi, and rearrange terms 

we see immediately that it is equivalent to the system of equations 

(1 - VIGo(d)Tl(i‘) = Vl + VlGO(z)[T2(z) + T3(d1 

(1 - V2G,,W))T2(z) = v2 + V2G0(z)[T3(z) + Tl(z)l 

(1 - V3Go(z))T3(z) = v3 + V3GO(z)[Tl(z) + T2(z)1 

(11.12) 

We saw above in our configuration space treatment that if we knew the 

stationary state solutions of (K + Vi- z)Yi = 0, we could immediately 

construct the integral equations for the three-body wave function. This 

amounts to solving the two-particle Lippmann-Schwinger equation in the 

three-particle Hilbert space, i.e. solving 

(1 - ViGO(Z))ti(Z) = Vi (11.13) 

or 
2 

< q' ti(2 - k$) CJ, > = < 9' 'i 9 ' 
-I i I I I 

(11.14) 

+ /d3q" < d'\Vili' > ' <q"V g> 1 ii 
2 - 
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where we have factored out E3(g1- p) from both sides. This differs from 

the usual equation for two-particle elastic scattering in that (a) the 

energy is'z - p2/2Mi rather than the on-shell value q2/2pi and (b) that 

q' can differ from q in magnitude as well as in direction. This equation 

can be solved as we will discuss further below, so the operator (1 - ViGO(z)) 

has a well defined inverse. Substituting the expression for V, given in 

(11.13) into (11.12) gives immediately 

(1 - ViGo(Z) )Ti = (1 - ViGo(z))ti[l + Go(z)(Tj+ Tk) 

I 

7 ‘J (11.15) 

so that by applying the inverse (1 - ViGo) -1 to both sides we immediately 

obtain the Faddeev equations 

Ti = ti + tiGo(Tj + Tk) 

or more explicitly 

2 
- %)I3 > s'(~'-E) 

i 

(11.16) 

(II. 1-7) 

< ~"cJ" Tj(z + Tk(z+ > I ) 
Clearly we could now reduce these equations to two continuous variables 

by using the orthonormal angular momentum functions, which was in fact the 

route followed by Ahmadzadeh and Tjon 
10 . An alternative route is to first 

follow Wes7 by introducing the three discrete quantum numbers J, M, A 

corresponding to the total angular momentum and its projection on space- 
2 

and body-fixed axes, and the three energies w.= Pi/2m 
11 

1 i; Osborn and Noyes 

showed that this system can then be reduced to two variables. The final 
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result as given by Osborn is 12 

FrL) (E’, ei) = 

tf)(E-r.e., E’-r.e! , 1 1 11 z-riei) -s& k Fez p dE” 
, rsei 

(II.l!) 

tr)(E’ -r e’ i i, Et’- riei ; z -riei) 

E”-z c 
Kf&$lm,, (E’, ei ; E1’, e;) 

pm” 

where we have made the expansion 

J 

<iZt~AIITi(‘,\ZJh,=g s (2Q+l)w1 dJh,,(+~f)P~(cos 7’;) 
8=0 m=-J 

m.19) 

F’) (E’, e\) 

with e! = wi , 1 

and the kernel_ is 

K~~~,lm,, (E’, e;; El’, el) = (2Q1’+1) $$$$ Pp” . , 
cos’p(E”,e;, cosrl)) 

rnl’ 

r [ 

(11.20) 

p,,' (cos r’;) dkrnl, (Of’s) @ E” _ r elf - s s 



-15- 

where cos Ts is given by 

cos rs (ei, E”, e: )= f 
(11.21) 

where the + applies for s = j and the - for s = k, and r i= M(/mj+ mk). 

The argument of the d function 0:: must be determined in terms of 

E I I , e". This can be done by taking the ratio of sin2eis and 2 
S 

sin y,. 

sin2 8 iS = 
4zTZJ) ~s(“i+~s+usl~ (1+ m>mJ us) 

sin2ys 4mimsuius 

mS’ (E - rs usI 
= 

mi + m S’ #i 

Thus the argument to be used in dL,,(Bfi) is determined by 

sin’ 8 ys = mS’ (E” - rse’$ ) 

mi+m , sin’ c (ei, Elf, e; ) 
S w i(E” 9 e;, r,) 

(11.22) 

(11.23) 

A number of points need to be made about this system of equations. 

The first is that the sum over & runs to infinity, so the reduction is of 

use only for interactions such that a small number of angular momentum 

states dominate the two-body interactions; fortunately this is true of 

the nuclear force at low energy. The second is that the driving term and 

the kernel of the equation require a knowledge of the off-shell two-body 

t-matrix over a range of variables inaccessible to two-body scattering 

experiments. If we have some model for the potential, or more generally 
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for the off-shell T-matrix, this is no problem, but if we have to rely 

on empirical input, this means we must know much more than the two-body 

phase shifts"*. It is easy to show 13 that in fact what we need to know 

in addition to the phase shifts is the wave function inside the range of 

forces (or, equivalently tt(p,q;p*/2p) = tt(q,p;p*/*p)) from which the 

full off-shell function tt(p,q;z) can be constructed by a quadrature (the 

Low equation). The availability of this information for the two-nucleon 

system w:ill be discussed in the next section. The third point to note is 

that, now we have introduced the explicit two-body angular momentum states, 

the generalization to non-local, and in particular separable, interactions 

is trivial. Of course, if we were to restrict ourselves to separable 

interactions from the start, a simpler derivation is possible, as was 

shown long ago by Mi.tra14; obviously, it is a useful check on the compli- 

cated algebra to follow both routes. More importantly, we see explicitly 

that the assumption of a separable interaction commits us to a specific 

assumption about the form of the wave function inside the range of nuclear 

forces. We are therefore required either to show that the results are 

insensitive to this assumption, or that it is compatible with other infor- 

mation about the two-nucleon system. Unfortunately, neither assumption is 

true. 
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III. THE NUCLF,ON-NUCLEON INTERACTION 

We now know the nucleon-nucleon phase shifts to high accuracy over 

the entire elastic scattering range 15~6 . If the three-nucleon problem 

depends crucially on what happens above pion production threshold, the 

hope of constructing any reasonable non-relativistic model for nuclear 

physics is vain, until this hope is destroyed, we will go on the assump- 

tion that we pow have complete information about the on-shell scattering 

amplitude, and that any reasonable phenomenology for the short-range 

high-momentum behavior will do. The obvious non-relativistic approach, 

given this data, is to construct a static local potential from the phase 

shifts. This problem is complicated by the nucleon spin, which requires 

us to specify 5 functions for p-p, 5 for n-n, and 12 for n-p scattering; 

even if we assume charge independence, we need to specify 10 functions 

(5 for each isospin state). But even so, it has been known for a long 

time that a simple static model wouldn't work. Thus Christian and Noyes 17 

found that simple monatonic potentials plus tensor forces did not lead 

to a charge-independent description of the n-p and p-p high energy dif- 

ferential cross section data. Jastrow13 showed that charge-independence 

could be approximately restored by introducing a hard core, but Gatmnel, 

Christian and Thaler 19 found that this type of model still was not quan- 

Hence Gatnmel and Thaler 20 titatively acceptable. found they had to go 

outside the static potential framework and include first order momentum- 
21 

dependent terms (LS), as had first been suggested by Case and Pais . 

But as soon as the first phase shift analysis became available 22 , and was 

made unique by taking the highest partial waves from one-pion-exchange 23 , 
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it became clear that even this was insufficient. It was originally noted 24 

that (for solution 2) it was impossible to reconcile the 1 S2 and +)2 

phases at 310 MeV with any simple static potential model, and that it 

would take a region of non-locality in the interaction of the order of 

9.7 F in radius in order to achieve agreement. After more extensive data 

became available, Noyes 25 showed that this was a general difficulty with 

the singlet state at all energies above 50 MeV, and an exhaustive inves- 

tigation by Reid 26 confirmed this conclusion. 

Once we have been forced to abandon the static potential assumption, 

the elastic scattering data do not in themselves allow us to determine 

what model to use. For example, the phenomenological Hamada-Johnston 27 

and Yale 28 models introduce second-order momentum dependent terms in the 

form of quadratic spin-orbit interactions in order to take care of this 
angular 

effect. Reid 26 makes his model orbital momentum dependent by fitting a I 
separate "static" model to each partial wave. Bryan and Scott 29 avoid 

the problem by not applying their model to the S-waves. Feshbach, Lomon 

and Tubis3' have a boundary condition parameter which is fitted separately 

to each state. Scotti and Wong'l found that the momentum dependence arising 

from vector meson exchange automatically produces the desired result. And 

of course any separable model has a different interaction in each orbital 

angular momentum state, so has the necessary flexibility built in. Al- 

though there are large differences in the adequacy with which these dif- 

ferent models agree with the elastic scattering data, especially if we 

concentrate attention on any particular angular momentum state, this does 

not mean that the elastic scattering data can be used to distinguish bet- 

ween them; often, all these differences reflect is the amount of care the 
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authors have devoted to that state in their fit, since usually the 

fit could be improved by adding more phenomenological parameters. If 

the three-nucleon problem depended only on the fit to the on-shell data, 

we could therefore pick any of these models which was most convenient to 

use, provided only we insured the adequacy of the fit of the model to 

the data. Even that has not been investigated in most cases, but even 

worse, we will see in the next section that the three nucleon parameters 

do depend on the off-shell characteristics of the model. Consequently, - 

we must find some way to narrow down these possibilities if we are to 

get anywhere with the three-nucleon problem. 

One way to narrow these possibjlities is to rely more extensively 

on theory. The special theory of relativity and the uncertainty prin- 

ciple require that if there are other massive particles strongly coupled 

to nucleons, they will give rise to a short-range force. The discovery 

of the pion, and determination of its spin, parity and coupling constant 

therefore determine 

this OPE prediction 

ways32' 33 . The 'So 

attractive force of 

the longest range part of the nuclear force, and 

has been quantitatively confirmed in a number of 

scattering length and effective range then show an 

intermediate range, confirmed by the 1 D2 and 'G4 de- 

partures from OPE, and shown to be spin-independent by the central force 

component of the 3P waves'. Whether this O+ boson exchange is an actual 

resonance (a meson), a virtual state (ABC effect), a correlated J=O state 

of two pions, or simply uncorrelated 271 exchange, is still debated by 

theorists; the effect on the nuclear force will be similar, and until the 

point is settled, the parameter fitting will have to remain phenomenological. 

The 'P splitting, which switches from tensor to L-S signature at 210 MeV 
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is evidence for the exchange of a heavy vector meson, as is the short- 

range repulsion evidenced by the change in sign of the ISo phase from 

attraction to repulsion near 250 MeV. The u-meson fits neatly into this 

pattern31i, and if one takes 

there in about the expected 

be important 35 , but careful 

into account n-p data, the p meson is also 

strength35. The 7 meson is not expected to 

analysis of the forward nucleon-nucleon 

dispersion relations reveals that 3n exchange does make a significant 

contribution 36 ; some models mock this up (incorrectly) by 7 exchange. 

Hence the very complicated spin, isospin, and energy dependence of the 

nucleon-nucleon phase shifts is in complete accord with what we expect 

from the exchange of the lightest known bosons, insofar as these expec- 

tations can be made quantitative. For an excellent review of these one 

boson exchange 37 models, 35 see Bryan's paper for the Gatlinburg Conference . 

Unfortunately, simply knowing that the nucleon-nucleon interaction can 

be fitted by this combination of boson exchanges in a covariant S-matrix 

description (and even this can be done in a number of ways 35), d oes not 

specify how to go from this to a non-relativistic model for the nuclear 

force. One procedure suggested by Wong 33 has been followed by Ingber 39 

and leads to a non-local velocity-dependent interaction of which he keeps 

only the p2 terms. It is perhaps significant that the resulting model is 

claimed39 to give a better fit to nuclear matter than the Reid L-dependent 

potential, using several fewer parameters; this improvement results pri- 

marily from the indirect cause that the fit to the two-nucleon data allows 

a longer range central force (lower mass 0 meson), and a higher ratio of 

central to tensor force in the triplet even states than do the "static" 

models. 
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But this approach requires a phenomenological cutoff at short dis- 

tances or high momenta, and more or less ignores inelastic processes. 

A more phencmenological approach, which stems from a suggestion of Breit 

and Bouricius 40 , expressed in current language, is to note that the large 

number of degrees of freedom corresponding to the many bosons and boson 

resonances which we now know to be strongly coupled to nucleons, will be 

excited once the two nucleons approach within about half a pion Compton 

wave length of each other. Hence essentially all knowledge of the elastic 

entrance channel will be lost inside this radius, and the wave function 

for two nucleons will fall rapidly to zero, the independence of the 

entrance channel being approximately phenomenologically by fixing the 

logarithmic derivative of the wave function to some energy-independent 

constant; if this is assumed, Hoenig and Lomon 41 have shown that the wave 

function must be zero inside this radius as a consequence of the Wigner 

causality condition on the phase shift, and this continues to be true 

even if there is a static, local interaction ("potential tail"), outside 
42 

the radius. This model was revived by Saylor, Bryan and Marshak and 

30 by Feshbach, Lomon and Tubis . In its latest version 43 , it uses OPE and 

a static two-pion-exchange potential with two phenomenological parameters 

to represent the theoretical controversies about the "derivation" of this 

term; since the boundary condition falls at 0.7 F, the vector meson ex- 

changes do not make a major contribution, but are included, again as 

static potentials. This model leads to as good a fit to the two-nucleon 

data as does the covariant calculation of Scotti and Wong, and both models 

are superior in this respect to the Hamada-Johnston and Yale pehnomeno- 

logical potentials 44 . Faced with two models 'in agreement wit 
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we must look still farther to find ways to distinguishing between them. 

We know in advance that they will give different results in the three- 

nucleon problem since the boundary condition model has a 'hole' in the 

wave function of about 0.7 F in radius, while vector meson repulsion 

(or phenomenological hard -cores) only keep the two nucleons out of a 

region of about 0.5 F in radius, which is nearly three times smaller 

in volume. 

One way in which the models differ is in electromagnetic properties. 

Non-relativistically, one expects to be able to compute the D-state 

admixture in the deuteron from the n, p, and d magnetic moments, and gets 

4s. However, if one takes a model with OPE as the longest range force, 

integrates the wave function in assuming a hard core at about 0.5 F 

(which is required to fit the scattering at higher energy) and adjusts 

the intermediate part of the wave functionto fit the binding energy, ed, 

scattering length, at, and quadrupole moment, Q, one finds about 7% D 

state. (This discrepancy is larger than has usually been "calculated" 

from meson currents, but no one has pushed this discrepancy to the 

point of a believable contradiction. Since the corresponding meson cur- 

rent effect in n -I- p -+y + d is 1% in cross section at threshold, and 

that discrepaZXy depends only on the low energy parameters and not on 

the model45, it has usually been thought that meson currents are that 

large.) However, the Feshbach-Lomon model just described can fit the 

same data with only 4 i$$ D state. Evidence for 7% D state has often been 

claimed from photodisintegration of the deuteron, coherent n 
0 production 

from deuterium by electrons, etc., but examination of these calculations 

shows that usually most of the contribution comes from the overlap between 
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the deuteron wave function and the scattering wave function in the final 

state, the comparison being made with models that did not have OPE in 

this long-range region. Since the Feshbach-Lomon model agrees with con- 

ventional models outside a fermi or so, most of this 'evidence" is likely 

to be irrelevant in the current context. However, Casper and Gross 46 

have shown that low energy e-d scattering is sensitive to the difference 

between the Feshbach-Lomon model and conventional (7% D state) models-. 

Since we will see below that the difference between 4% and 7% D state 

shifts both the calculated triton binding energy, et, and the doublet 

n-d scattering length, a2, by singificant amounts, this question obviously 

deserves much more careful study. 

A second place to look for differences in off-shell behavior is in 

nucleon-nucleon bremsstrahlung. Unfortunately, the large discrepancies 

between theory and experiment originally reported were due to a neglected 

term in the calculation, and recent results are in reasonable agreement 

with experiment 47 ; further, most of the effect can be computed from the 

on-shell nucleon-nucleon scattering matrix 43 , so much more precise p-p 

experiments than those currently available would be required to spot 

significant off-shell differences between models. There is a possibility 

that low energy n-p bremsstrahlung might be more promising, according to 

McGuire and Cromer 49 . The quantity which is measured is tl(p,q;q2/2p), 

or in Cromer's notation 50 , the quasi-phase 

-iSg & 
Y/e tJ/(p,q;d/2li) = +t$P,S) = (p/q) sin 6-e 

(111.1) 

+ (q2- P') / 0 
dr Fj,(Pr)[u,j$qr) - cos Et(q)F&(qr) - sin &,p,(q)Gt(qr)l 
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where to first order in the off-shell parameter .(p2- q2) 

Ag(P,q) = (g4in Eg(s) [l + ,s] (111.2) 

Their calculations show significant differences in n-p bremsstrahlung 

at low energy when A,, varies from 0 to 2 F. Since for exponential, 

square or Yamaguchi interactions fitted to the same scattering length 

and effective range, they quote values of 1.20, 1.11 and 4.22 F res- 

pectively for Ae we see that even this first order off-shell variation 

is significantly different between local and non-local models. Clearly 

models which agree on-shell at least up to 300 MeV, and not just at low 

energy, should be compared, but the result looks promising. 

A somewhat different difficulty with calculations of three-nucleon 

low energy parameters from two-nucleon input arises because of our un- 

certainty about the n-p and n-n 
1 So effective range. Since Thomas 

showed long ago that a zero-range nuclear force leads to infinite binding 

for the three-nucleon system, we expect in advance that et will be sen- 

sitive to this parameter, and as we will see shortly, this is indeed the 

case, However, until recently, there has been a discrepancy between the 

n-p effective range directly measured in low energy n-p scattering using 

the most accurate measurements, and the value predicted from charge in- 

dependence (2.35 F, or, correcting for the fl'-fi' 
45 mass difference, 2.73 F) . 

Fortunately, a re-evaluation 51 of the experiment of Houk and Wilson re- 

ported last year 52 taken together with a new experiment by Koester also 

report last year5? removes this difficulty, as we now show. 
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The route leading from p-p scattering data to the prediction that 

r np 
S 

= 2.73 t 0.03 F is a little involved, so we review it here. It is 

first necessary to show that the p-p data below 3 MeV can be analysed 

for the 'So phase shift unambiguously. Taking account of vacuum polari- 

zation corrections is straightforward, but it is also necessary to under- 

stand the nuclear scattering in other angular momentum states. The 

coulomb-nuclear interference term in the differential cross section gives 

a direct measurement of the central-force combination 6 1o+36 ? 11+Sj6 , 172 
(in the notation of Ref. 22), but the original analysis of the p-p data 

below 3 MeV54 had in addition to assume that the tensor force combination 

of the P phases was given (to an accuracy of 5%) by one-pion-exchange 

(OPE), that the !D2 phase was also given by OPE to an accuracy of 5@, 

and that the L'S conbination of the P phases is less than 5% of the 

tensor force combination. The lowest energy at which the L.S effect is 

actually measured is about 25 MeV, where it is about a quarter of the 

tensor effect, and since all models of the nuclear force (especially 

models based on vector meson exchange), assume it to be short range, it 

should only be a few percent of the tensor force at 10 MeV and below. 

.55 Under this assumption, Noyes and Lipinski showed that it is possible to 

obtain a unique analysis of p-p scattering at 9.69 MeV, which analysis 

confirms the remaining assumptions to better than the requisite accuracy, 

and hence a fotiriori justifies them at 3 MeV and below. Having estab- 

lished the values of the S phase at single energies, a shape-dependent 

effective range analysis then confirms (to about the 3% experimental 

accuracy available in the shape parameter) the prediction 56,57 given by 

OPE. Since the OPE shape effect is also seen at 10 55 and 25 25 MeV, the 
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theoretical value can be adopted, and a:' and rfP extracted from the data. 

Since electromagnetic effects other than vacuum polarication and the 

coulomb repulsion can be shown to be negligible, charge symmetry then 

allows the unambiguous prediction 45 that a: = - 16.96 k 1 F and 
nn r = 
S 2.846 + 0.02 F, where the errors include a generous estimate of the 

model-dependence of the result. Since Bander 53 has shown that the anaiysis 

of the reaction d(rc-,y)2n for the n-n scattering length had a theoretical 

uncertainty of at most 1 F, the experimental result of Haddock, et al. 59 

that ai" = 16.4 + 1.9 F is in excellent agreement with the prediction; 

unfortunately there is no direct experimental evidence on the value of 
nn nP r. 

(lnd 

Exact charge independence would predict the same values for as 

.:I, in disagreement with the experimental value of - 23.7146 F, but 

as has been known for a generation, any slight charge-dependent correction 

(which we expect but do not know how to calculate) could account for this 

discrepancy. Independent of how we adjust the model phenomenologically 

to account for this discrepancy with the predicted scattering lengths, and 
+ 0 including the known n -JI mass difference in the OPE part of the model, 

we showed 45 np that the predicted value for the effective range is rs = 

2.73 + 0.03 F; estimates of other possible charge-dependent effects at 

shorter range 60 show that they could contribute a correction at most half 

as big. 2,25,45,61,62 As we have emphasized repeatedly , there is less than 

5% probability that the value of rip = 2.44 k 0.11 F obtained from accepted 

values of E d' "nH' ~npw and the two n-p total cross sections measured 

by Engelke, Benenson, Melkonian and Lebowitz 63 at 0.4926 and 3.205 MeV 

is compatible with this prediction. That the discrepancy might rise in- 

stead from one or more of the other ingredients of the analysis was 



-27- 

64 emphasized by Breit, Friedmann, and Seamon . The new measurement of 

anH by Koester 53 and the preliminary result of Houk and Wilson as re- 

ported at'Gainsville5' did not significantly alter this situation. 

Recent analysis of the data of Houk and Wilson has 51 shown that 

the published value should be replaced by CJ (0) = 20.442 + 0.023 b. 
w 

Taken together with Koester's result 53 that anH = - 3.719 t 0.002 F, 

this gives immediately that the triplet scattering length is at = 

5.4255 f. 0.0043 F and the singlet scattering length a = - 23.7146 -I- 0.0127 F 

with error correlation < SatEas > = - 0.9566 I"Btl I:asi. At this level 

of accuracy it can be seen immediately from our previous error analysis 65 

that, in calculating rs, the uncertainty arising from the quoted errors 

in e d, at7 and as is at most a few percent of that coming from the error 

in published n-p total cross section measurements in the 0.5-5.0 MeV range. 

This same analysis showed that, in the same energy range, the contribution 

from higher partial waves is almost negligible, and that the single and 

triplet shape corrections nearly cancel. The effective range is then 

given by 

r = 
S 

2(@-7 +- $)/k2 
S S 

where 

u =U - u 
S 9 t - Y#o 

3n -= --+ 
% 

i 

l( yat- l)k 
+ k2 

"t 

(111.3) 

(111.4) 

The error analysis is clearly trivial. Results for the individual cross 
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section measurements, previously selected by Hafner 65 on an experimental 

basis, are given in Figure 2, and the weighted average for r s using three 

different data selections, both with and without the restriction rs = 

2.73 * 0.03 F, in Table I. Clearly, complete agreement between the 

theoretical prediction and the data has now been achieved. 

We now examine the sensitivity of the result to the assumptions. 

Our reason for believing the OPE shape correction has been documented 

above, but all that is in fact involved in this n-p analysis is the 

assumption that the shape correction is approximately the same in the 

singlet and triplet S-waves, since the opposite sign of as and at then 

insures a cancellation; if we omitted the triplet shape correction, the 

weighted average of rs would rise by only 0.029 F, and if we omitted the 

singlet shape correction, it would fall by the same amount. Note that 

if we included accurate data above 5 MeV, this would no longer be true, 

as the maximum'triplet shape correction occurs at about 5 MeV. 

The sensitivity to the data selection is more serious. If we use 

only the two published Columbia measurements 63 , rs falls by 0.11 F, while 

if we use only the older measurements, it rises by 0.13 F. Both sets of 

data are still separately consistent with the prediction, but barely con- 

sistent with each other, as can be seen from Figure 1 and Table I. 

Further, as has been pointed out to Houk and Wilson 52 , Koester's value 

for a nH requires the change of the previously accepted value for aC/aH 

by five standard deviations. If the old ratio were used, rs would fall 

by 0.15 F, and the Columbia measurements would still imply a failure of 

charge-independence. Hence, continued attention to this problem is still 

needed. 
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66 According to Houk , if we use only the two published Columbia cross 

sections, plus two unpublished measurements by Lebowitz at 3.204 and 5.374 

MeV, and treat the singlet shape parameter as free, rs = 2.704 + 0.095 F, 

again in agreement with the prediction. At this higher energy, and par- 

ticularly in order to include the accurate unpublished measurement by 

Lebowitz at 7.942 MeV, careful attention to the shape correction and to 

the contribution from higher partial waves will be needed in order to 

exploit the accuracy now potentially available. Careful analysis of the 

experiments of Houk and Wilson and of Lebowitz is now in progress and 

will be reported elsewhere 66 . 

Additional evidence for the expectation that rs is closer to 2.7 

than 2.3 F is provided by a recent analysis of data up to 350 MeV by 

Breit, Friedman, Halt and Seamon 67 . So far as the test of charge inde- 

pendence goes, Breit 33 has also shown that this could be carried out t0 

high precision in the 20-30 MeV region, where coulcmb corrections are 

smaller than at low energy, high precision p-p data already exist which 

overdetermine the I=1 phase shifts, and the necessary spin-dependent ex- 

periments are easier to perform. We hope, however, that we will not soon 

again be confronted with basic numbers shifting by several standard devia- 

tions, and that this reconfirmation of charge independence presented here 

will stand for some time at the current level of accuracy. 
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Iv. CALCULATIONS CX? 'et, a2, AND a4 

Although n-d cross section measurements at low energy allow two 

alternative sets of doublet and quartet scattering lengths, by measuring 

the transmission of neutrons through a polarized deuterated target, 

Alfimenkov, Lusichikov, Nikolenko, Taran, and Shapiro 68 demonstrated 

that the set with a4 > a2 is correct. The latest experiments and analy- 

sis by van Oers and Seagrave 69 yields the values a2 = 0.11 f 0.07 F and 

a4 = 6.14 + 0.06. In the quartet state, the exclusion principle keeps 

the neutron from approaching too close to the deuteron, and it is rea- 

sonably easy to obtain the correct value for a 4 from any model that has 

the right low energy behavior for on-shell nucleon-nucleon scattering; 

hence the separable model calculations reproduce a4 quite well and need 

not be discussed further. Also k ctn E4 has the usual type of energy 

dependence we expect for elastic scattering with no bound state, and 

since the quartet scattering dominates the low energy region, fairly 

simple calculations reproduce the low energy behavior quite well, as Amado 

will discuss this afternoon. 

The behavior of k ctn s2 at low energy is quite another matter, as 

can be seen from the curve given by van Cers and Seagrave 69 which we 

reproduce at Figure 3. The fitted curve of the form k ctn s2 = 

- A + Bk2 - C/(1 + Dk2) looks very strange at first sight to those used 

to the two-nucleon effective range expansion, but the occurence of a 

pole in k ctn s2 very close to threshold in fact has a simple explanation. 

Delves" gives a plausibility argument for this pole, which can now be 

considerably sharpened. 71 Aaron, Amado, and Yam and Bander72 both found 
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that three identical bosons interacting via separable potentials of the 

Yamaguchi or square-root Yamaguchi type and of approximately the right 

range and.strength to fit the average of the singlet and triplet nucleon- 

nucleon S-wave interactions not only give a bound state somewhat more 

tightly bound than the triton (as we will discuss below), but also a 

very weakly bound first excited state. Bander noted that the residue 

of the pole in T corresponding to this state has the opposite sign to 

that of the residue of the triton pole, which in a two-body system would 

imply a "ghost" state of imaginary probability; this "wrong" sign for 

the residue is not so obviously a difficulty in a three-body system. 

The situation has been clarified by 73 Osborn , who finds that local Yukawa 

and exponential interactions also lead to this weakly bound first excited 

state, and that it has a perfectly reasonably wave function. In fact, as 

one might guess, the wave function for this state corresponds to a very 

diffuse "orbit" about a tightly bound core consisting of the other two 

particles, in contrast to the much more compact and nodeless ground state 

Although 9% of the actual triton wave function corresponds to the fully 

symmetric state which would be obtained for three identical bosons inter- 

acting via central forces, the actual spin dependence of the two-nucleon 

interaction brings in admixtures of other states, and apparently is suf- 

ficient to move the first excited state above the threshold for n-d 

scattering (i.e. force it up to the point where it is Itvirtual", or in 

S-matrix language, move the pole onto the second sheet of the Riemann 

surface.) However, between the triton pole in T and this virtual pole, 

the T matrix must go through zero, and if this happens below threshold 

(where k ctn 6 - ik = T -1 is real) this will guarantee a pole in k ctn 6. 
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That this actually happens is shown by the fit in-Figure 3. Clearly, 

now that this situation is understood, three-nucleon calculations should 

be aimed at getting this zero in T right, as well as a2, or better still, 

the four constants A, B, C, D of the van OersSeagrave fit. We also see 

that the precise value of a2 obtained by a calculation can be expected 

to be quite sensitive to the details of the nuclear force which is assumed. 

Since Thomas 74 showed that zero-range nuclear forces would give 

infinite binding energy to the triton, we must also expect calculations 

of et to be quite sensitive to the range of the force and to its radial 

variation, in marked contrast to the shape-independent approximation for 

low energy nucleon-nucleon partieters. The variational calculations of 

various authors 75 more than a decade ago showed that purely attractive 

central forces considerably overbind the triton, and that the result is 

sensitive to the radial form assumed. This result has been reconfirmed 

by Noyes ans Osborn76 by direct solution of the Faddeev equations for 

the bound state of three identical bosons of nucleonic mass interacting 

via the sum of two potentials fitted to the parameters a = - 23.6% F, 
S 

= 2.7251 F, at = 5.4039 F, y = 0.231608 F -1 r 
S 

. For two Yukawa poten- 

tials, these give a binding energy of 12.76 MeV, for two exponential 

potentials 10.50 MeV, and for two Yamaguchi potentials, 11.24 MeV. Before 

commenting on this result, we will first attempt to establish the accuracy 

of the numbers. 

The first question to ask is about numerical accuracy. The code 

used gaussian quadrature for the double integrals, and many checks showed 

the results good to at least $6. More convincing is the exact agreement 

(to better than this accuracy) with a calculation by Ball and Wong 77 which 
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used an expansion in Stbmian functions whi&Wong will discuss in the 

next talk. The code also (as a two-variable code) agreed with the single- 

variable calculations of the Yamaguchi interaction, which can be done to 

much higher accuracy; the latter calculations agreed exactly with pub- 

lished results of Siten'ko and Kharchenco when their parameters were used. 

The second question is whether the neglect of higher angular momentum 

states in the two-nucleon interaction is justifiable. For gaussiam 

interactions, the exact calculation of Baker, Gammel, Hill and Wills 75 

indicates a contribution of about 3% of the binding energy from & > 0 

states, but is is not clear that the calculation is completely reliable 

on this point. Ball and Wong 77 in fact find only -$$ correction from 

8 = 2 states in their calculation using Yukawa potentials. Further, a 

new calculation by Humberston, Hall and 79 Osborn using variational tech- 

niques which give both upper and lower bounds which are very close to- 

gether, and which include all angular momentum states, bracket Osborn's 

curves 73 very closely in the region of interest. Incidentally the last 

mentioned calculation shows that the apparent collapse of the gound state 

found by 73 Osborn at higher coupling constants was spurious, and that the 
1 

linear variation of Ed with potential strength continues into this region. 

We conclude that the binding energy of three identical bosons interacting 

via purely attractive local potentials can be accurately and unambiguously 

calculated. Unfortunately, this has still not been demonstrated for local 

potentials with short-range repulsion, or I would be talking about that 

instead of separable potentials. In particular, there is no evidence 

that the upper and lower bounds obtained by the variational methods will 

lie nearly as close together in the case of hard-core potentials, and good 

reason to expect the opposite. 
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The implication of these numerical results (which, as already noted 

are equivalent in the case of the local potentials to variational results 

nearly two decades old) are quite distrubing. To put the 2.26 MeV dis- 

crepancy between the exponential and the Yukawa models in context, we 

note that Loiseau end Nogami 90 have estimated that the three-body force 

due to meson exchanges will contribute about 1.5 MeV (attraction) to et. 

Of course, this is not a very reliable number, but does show that we will 

have to calculate it to considerably better than an MeV in order to get 

new physics out of a discrepancy between theory and experiment. But the 

local potential result shows immediately that simply fitting the effec- 

tive range parameters is not enough to determine the binding energy to 

the requisite accuracy - even for local central forces the high energy 

behavior (or radial variation of the interaction) is significant. The 

result for the non-local Yamaguchi interaction is even more disturbing. 

As we will see below, the on-shell behavior of this model is closer to 

the experimental S phases than a purely attractive local potential would 

give. If we construct a local potential to fit the Yamaguchi singlet 

phase at all energies (which can be readily done using the procedure 

given by 81 Newton for constructing a generalized Bargmann potential), 

this local potential is slightly repulsive at short distance, so would be 

expected to give even less binding than the exponential potential (see 

below). Yet the non-local Yamaguchi potential, as we have just seen, 

gives 0.74 MeV more binding thanthe exponential potential, indicating 

that the difference of off-shell behavior between local and non-local 

models is likely to be more than an MeV. Hence reliable models for the 

off-shell as well as for the on-shell two-nucleon interaction will have 
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to be developed before we can trust calculations of et. As discussed 

in the last section, theory is not a very reliable guide for this, and 

we will have to extract as much as we can from electromagnetic experi- 

ments. 

This suspicion about the importance of off-shell behavior in triton 

binding energy calculations has been dramatically confirmed by preliminary 

results we have just received from van Wageningen's group. Concentrating 

still on the bound state of three identical particles bound by an average 

nucleon potential, if the two-nucleon force gives rise .to a single bound 

state, there are two ways to define a local potential equivalent to the 

Yamaguchi interaction. One is to require ccmplete agreement with the 

phase shift at all energies from zero to infinity, which gives the genera- 

lized Bargmann potential mentioned above. The second is to require com- 

plete agreement with the bound state wave function, in which case the 

local potential is the Hulthen potential. In all three cases the scat- 

tering length and binding energy of the two-body bound state are the same. 

L P ?Sok'2 . . finds that for a Yamaguchi interaction which binds the triton 

with 12.263 MeV, the equivalent Hulthen potential binds it with 14.352 

MeV, while G. Erens 93 finds that the equivalent generalized Bargmann 

potential binds it with 10.689 MeV. The two local potential results are 

variational, but comparison with the exact results of Osborn and of Ball 

and Wong for similar potentials shows that the variational calculations 

should be good to at least 1%. Hence whether we ask for the local equi- 

valent of the Yamaguchi potential on the basis of the two-nucleon wave 

function, or on the basis of the on-shell scattering, leads to nearly 

4 MeV difference in the calculated value of et. This destroys at one 
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blow many commonly expressed assumptions, such as-that all that is needed 

is to fit the scattering length and binding energy, or to get the right 

two-nucleon bound state wave function. It also shows immediately that 

just how we take the two-nucleon scattering matrix off shell in the three- 

body problem has more effect on et than the anticipated effect of three- 

body forces! Hence we must get the physics of this off-shell extension 

right, if we exe to draw any fundamental physical conclusions from these 

calculations. 

Since we have just seen that central force Yamaguchi models give 

results quite comparable to purely attractive local potentials (i.e. 

overbind the triton), the pioneering calculations g4,~5,~6,~7 which 

established this fact were mainly important in demonstrating the ease 

with which the three-body problem could be solved in the separable approxi- 

mation, and we turn to the more recent and more ambitious calculations 

which have attempted to include tensor forces and/or short range repulsion 

in the model used for the nuclear force. Unfortunately, here we have no 

local potential calculations for comparison. After herculean efforts, the 

variational calculations of E t using the Hamada-Johnston potential had 

improved the 2-3 MeV binding obtained by Blatt and Delves 33 to about 5.7 

MeV, and as of last summer Delves 39 estimated that by 1970 they might 

converge to about 7 MeV leaving the 1.5 MeV estimate of attractive three- 

body forces by IDiSeaU and Nogemi 30 to take up the slack. We will have 

a progress report on this program from Delves this afternoon. In con- 

trast, simple separable models overbind the triton, and the hope has been 

that by making the models more 'realistic", the binding energy would be 

reduced. 
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The simplest way to present the latest results is to compare them on 

a very instructive plot given by Phillips 90 which compares simultaneously 

the value for a2 and for et, and is reproduced in Figure 4. At that time, 

as we discussed in the last section, it was still an open question whether 

to use the n-p experimental value of 2.44 MeV for the singlet effective 

range, the value of 2.73 MeV predicted 45 by charge independence from p-p 

scattering, or the n-n value of 2.35 MeV predicted by charge-symmetry 

from p-p scattering. The seriousness of this uncertainty in the three- 

nucleon problem is obvious at a glance, and we are happy that we could 

report above that is it probably no longer a worry. However, the sensi- 

tivity of the results to the D-state probability remains, and we emphasize 

again the importance of re-analyzing e-d scattering, photodisintegration, 

etc. to see if any more light can be shed on this problem. 

The model used by Phillips for this calculation was 

vs(P,q) = - % 
1 1 

(p2+ Bs2) (q2+ ps2) 

VJp,q) = - % 1 - 
1 

tP2S12(8) / 1 

P2+ Bt2) (p2+ FE)' 1 \ 

tds,,m 

q2+ St2 cs2+ ZJ2 1 

with the singlet parameters adjusted as indicated, and the triplet para- 

meters adjusted to change the percentage D state while maintaining a fit 

to at = 5.397 F, ed = 2.2245 MeV, and & = 0.282 F2. A still more exten- 

sive parameter study on the effect of varying the singlet effective range 

(but not the percentage D state) was carried out earlier by Site&o, ' 

Kharchenco, and Petrov 91 , and further details published by Kharchenco, 

Petrov and Storozhenco 92 more recently. In order not to confuse the plot, 
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we give only two representative points from these .calculations, labeled 

It and 3,. The difference between the It point and the corresponding 

value by Phillips is due solely to the difference in a 
S’ 

as can be seen 

from the study of the dependence on as contained in those papers, or from 

the earlier work of Mitra and collaborators 35 . Of course this insensi- 

tivity ot as is due to the fact that a change of only a percent or so 

in potential strength is all that is needed to shift as from - 17 to 

- 23 F. Corresponding points for differing values of rs would be simply 

shifted over from the values given by Phillips by approximately the same 

amount. 

A different effect studied by the same authors is indicated by the 

point labeled 3, which replaced the Yamaguchi cen'iral force form factor 

in both the singlet and the triplet interaction by (p2+ S2)-3, while 

maintaining the same fit to the two-nucleon parameters. Clearly, this 

has as much effect as changing the percentage D state by 1%. In order to try 

to see why, we have computed the change in the on-shell singlet phase 

shift for the still more extreme case (p2+ S 
2 -3 ) which requires an in- 

crease in A from 0.15 X 10' to 2.96 X 10 21 and S from 1.13 to 5.22. 

Surprizingly, there is remarkably little change in the on-shell phase 

shift, as can be seen from Figure 5. 

A still more ambitious calculation has been made by Schrenk and 

Mitra93, and the results are also presented in Figure 4. Here the trip- 

let force model is the same as above for the points labeled (C + T)y, but 

uses the Naqvi 94 parameters for (C + T)N; the second triplet force is 

less realistic in that the original fit was made including an L*S term, 

which has simply been dropped here. The main change is that the singlet 



-39- 

potential is of the form 

Vs(P,,9) = - % 
i 

1 1 22 
t'P q 

(p2+ B;) (q2+ B;) - (P2+- Q2(q2+ $j2 I 

where the second (replusive) term causes the singlet phase to change 

sign at high energy. * 95 The point labeled N is the fit due to Naqvl , 

which is somewhat unrealistic because the effective range is much too 

short (2.33 F). The points labeled G are several fits due to Gupta 96 

which are still unpublished; we compare the one which is claimed to be 

best with experimental values of the 
I So phase in Figure 5 and agree 

that the fit is reasonably good. Over the same range (50-330 MeV), 

publi.shed phases for the Naqvi model are very close to the Gupta curve. 

Unfortunately the calculation is quite lengthy, so we did not have time 

to compute values for the other Gupta parameters to see how they agree 

on-shell. There seems to be surprizingly little change in et and a2 in going 

from 2.33 to 2.7 F in the singlet effective range, a result we do not 

know how to interpret. Clearly, however, the on-shell changes between 

the models can produce differences as important as those found by Sitenko, 

et al. in changing the form, or by Phillips in changing the percentage 

D state. Whether introducing repulsion into the triplet model as well 

would finally produce "agreement with experimentll is anybody's guess at 

this point. 

Two calculations which bear on this point have been made by Tabakin 97 , 

and by Borysowicz end Dabrowski 93 . Unfortunately, neither includes tensor 

forces, but Tabakin has taken the care to make sure that the models he 

compares agree on-shell to 0.01 radians in so over the entire elastic 
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scattering range. He uses two second rank separable potentials, one of 

a smooth type similar to that used by Naqvi ad Gupta, and the second a 

"hard shell" potential of the type invented by Puff 99. The latter keeps 

most (but because of the non-locality of the separable model, not all) 

of the wave function outside the core radius, and hence produces dif- 

ferent short-range correlations , and a phase shift which goes to infinii;;; 

like -tic, rather than going to zero at infinite momentum. He finds tl~at. 

the hard-shell model givs 0.4 MeV less binding to the system, showing 

that even on-shell agreement to 330 MeV and similar (separable) off-shell 

behavior, will not lead to the ssme value of et to that accuracy, if the 

infinite momentum behavior of the two models differs. 

The effect could be considerably larger than the estimate from 

Tabakin's calculation, as has been shown by Borysajicz and Dabrowski $3 
. 

Since Tabakin fitted an average between the singlet and the triplet S 

phases, his hard-shell radius came out to be only 0.2 F, which is con- 

siderably smaller than one would expect from hard-core local models. 

Borysowicz and Dabrowski find a decrease of binding energy of 2.7 MeV 

when going from a no-core model to a Puff model with r 
C 

= 0.4 F, as com- 

pared with the 0.93 MeV Tabakin finds in a similar comparison. Unfor- 

tunately, the Borysowicz-Dabrowski version of the Puff model, has, as 

it stands, too much short-range repulsion, as can be seen from the com- 

parison with 1 So phase shifts given in Figure 5. It also does not attempt; 

to answer the question raised by Tabakin about short-range correlations 

'(or different asymptotic behavior for S), since the two models were ncjt 

fitted to the same on-shell scattering, as Tabakin was careful to do. 
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And the absolute value of the binding energy obtained (3.3 MeV) has 

been questioned by Jaffe and Reiner 100 , who obtain 8.7 MeV for what is 

supposed to be an identical calculation. 

Another interesting aspect of the Borysowicz-Dabrowski calculation 

is that it includes the effect of splitting the singlet parameters in 

a charge-dependent way (from as = - 23.69, rs = 2.5 to the pair a w = 
S 

- 23.69, rtf" = 2.5 plus a: = - 16.6, rr = 2.8); this drops the binding 

energy from 11.6 MeV to 10.7 MeV for no-core, and from 8.9 to 8.3 MeV 

with a core. This would seem to indicate a smaller sensitivity to rs in 

the presence of a core than without it, as was indicated by the calcula- 

tion of Schrenk and Mitra discussed above. Unfortunately, they do not 

indicate how much isospin 3/Z admixture this charge-dependent effect 

introduces, but they do find a rather small change in the percentage of 

S' state due to this cause. The percentage of S' state changes from 1.1 

to 2.0 when the core is added, or from 1.4 to 2.4 when the core is added 

in the charge-dependent model. 
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v. WAVE FUNCTIONS OF H3 AND He3 

An extensive review of the work on the ground state properties of 

the three-nucleon system up until 1967 has been given by L. M. Delves 39 

in his lectures on "The Nuclear Three-Body Problem" given at the Symposium 

on Light Nuclei at Brela. We shall only give a short summary of his con- 

clusions and report somewhat more fully the work which has been done since. 

V.l The Coulomb Energy of He3 

If the nucleon-nucleon interaction is charge symmetric the Coulomb 

energy of 'He, which is experimentally found to be 

f& = 0.764 MeV 
C 

must be wholly ascribed to electromagnetic effects. Unfortunately, although 

much work has been done, the question if this is really true has not yet 

been settled. Direct variational calculations 101 of nEc, assuming charge 

symmetry, lead to an estimate 

AEc - 0.6 MeV 

which is likely to be low, since the trial wave functions used underbind the 

triton. A number of authors"' have followed a different approach. They 

calculated the Coulomb energy with wave functions which have been fitted to 

the experimental electron scattering form factors. The conclusion as reported 

by Delves has been that it is very difficult if not impossible to obtain a 

Coulomb energy of 0.76 MeV. The result of very careful calculations by 

Oksmato and Lucas 103 has been a discrepancy of 0.13 MeV, on the low side, 
104 

in the Coulomb energy. Calculations of other authors using local poten- 

tials have been more or less consistent with this. If this is true we can 
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conclude that the n-n interaction is stronger than the p-p interaction, or 

that charge asymmetric three-body forces exist. Interpreting the result as 

a charge asymmetry of the two nucleon potential, the discrepancy of 0.13 MeV 

corresponds to about l$ in the strength of the n-n and p-p interaction, 

according to a rough calculation of Okamoto 103 . 

There are counter arguments against this interpretation. One is that 

no charge asymmetry has been found in the Coulomb energy of the heavier 

mirror nuclei. This argument is somewhat weakened by the difficulty of 

interpreting small quantitative effects in complex nuclei. The second argu- 

ment came from the work of Mitra and his group 106 . They found for those 

separable potentials, which approximately fit the triton binding energy, a 

Coulomb energy which was too high rather than too low. Since repulsive core 

effects had not been included in their potentials they expected agreement 

with experiment after inclusion of such effects. 

Since then more attempts to settle this question have been made with 

separable potentials. Some authors were mostly concerned with the problem 

of treating the Coulomb interaction in the framework of separable potentials. 

Adya 107 is concerned with testing the validity of two different approxi- 

mations to the Coulomb Green's function in a simplified model triton. The 

best approximation is just a little bit better than the straightforward 

perburbation calculation with a triton wave function. This best value for 

AE c, which is 1.3 MeV, is expected to be much too high because of the 

approximations involved. An exact treatment of the Coulomb interaction in 

3 He combined with separable two-nucleon potentials of rank one has been 

given by Alessandrini, et al. 10s . To do this they employed the formalism 

of Alt, Grassberger and Sandhas log (AGS). They found that in the case that 
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there is a non-separable interaction between only one pair of particles, 

the AGS equations can be solved exactly. This allowed them to take the 

Coulomb interaction into account without any approximations. However, no 

repulsive core effects were included. The contribution Of the tensor forces 

was estimated by using the Sitenko and Kharchenko 110 parameters in the 

Yamaguchi potential. This overbinds the triton. Using only the central 

part of the (CN+ SN) 106 Naqvi potential, which underbinds it, they respec- 

tively obtained 0.63 and 0.84 MeV for @.Ec. Although the average value is 

in reasonable agreement with the experimental value, hard core effects are 

expected to lower it by 15%. 

This procedure was also used by Gupta and Mitra 106 and was recently 

criticized by Okamoto and Lucas 111 . They reject the subtraction of the 

tensor part, since it produces an incomplete potential. The parameters of 

the Yamaguchi potential were also criticized because they were fitted to a 

singlet effective range of 2.15 fm instead of rs = 2.320 rt. 0.044 F, the 

'experimentaltr value 112 . Because the two protons are believed to be predomi- 

nantly in the singlet state the use of the correct value of r s is probably 

important for the calculation of AE . 
C 

To investigate this point Okamoto and Lucas make variational calcula- 

tions with local exponential potentials fitted to the same low energy scat- 

tering data as the Yamaguchi potential used by Gupta and Mitra, and found 

nearly the same Coulomb energy AEc = 0.85 MeV. Next they repeated the cal- 

culation with an exponential potential fitted to r = 2.83 F and with various 
S 

hard core radii. They then find AEc = 0.613 MeV for the hard core radius 

of 0.436 fm and conclude that Gupta and Mitra's calculation probably contains 
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a large error due to the wrong choice of r s and the neglect of the hard core. 

A separable calculation of LQc with a rank-two separable central 

potential of the Puff type, which takes hard core effects into account, was 

recently reported by Jaffe and Reiner 100 . They fitted Puff potentials not 

only to the n-n interactions, but also to the p-p interaction, a procedure 

which does not do full justice to the Coulomb potential. On variational 

grounds the Coulomb energy should be bounded by its expectation value as 

calculated with trition and He wave functions. Jaffe and Reiner found 

values of 0.71 and 0.73 MeV respectively. This confirms the importance of 

the repulsive core of the Coulomb energy, but still does not allow a de- 

finite conclusion concerning the charge dependence of nuclear forces in 

view of the approximations involved. 

Simonov and Badalyan113 also reported a calculation of the Coulomb 

energy of 'He using a promising method of partial wave expansion of the 

wave function in six dimensions, which allows an exact solution of the 

three-nucleon bound state problem. Although agreement was obtained with 

the experimental data to 5-l@, the central potential used was extremely 

unrealistic, being a square well without a repulsive core. 

Clearly the question of the charge dependence of nuclear forces has 

not yet been settled, although the gap between the calculations with separ- 

able and with local potentials has been somewhat narrowed. 

V.2 The Charge Form Factors and Radii of3H and$e 

The elastic scattering of electrons from 3 H and 'He can be expressed 

in terms of two functions of the momentum transfer q, the charge and magne- 

tic form factors of the target particle. Rather accurate experiments have 
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been carried out on e - 3 H and e - 3 He scatteringf and analysed 114,115 . 

The resulting form factors 114 are identified with the Fourier transform 

of the spatial distributions of the electric charge and magnetic moment 

of the bound states of 3 H and 3 He. 114 Since charge exchange effects are 

practically absent and the magnetic exchange effects likely to be large, 

the charge form factors provide the most reliable data on the properties 

of the three-nucleon bound state wave function. Although the wave functions 

of 3 H and 3 He are not expected to differ much, since the Coulomb potential 

and other charge dependent effects 

charge form factors are different. 

are relatively weak, the 'H and 'He 

For small q2 we can write 

F =l ch 
2 2 

-&ch ' 

where r ch is the root mean square radius of the charge distribution of the 

nucleus. From experiment 114 

rch(He3) = 1.97 * 0.05 F 

rch(H3) = 1.70 * 0.05 F 

At higher energies the 3 He charge form factor continues to fall off more 

rapidly with than the 'H form factor. However, this is not necessarily 

a contradiction since the charge form factor measures the charge distribution 
114 116 

rather than the mass distribution. Schiff- and Dalitz and Thacker 

have pointed out that this is likely to be true, since the interaction bet- 

ween the like particles, which are predominantly in the singlet state, is 

weaker that that between unlike particles. This causes the like particles 

to spread out over a bigger region in space than the unlike particles. 
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This effect gibes in the right direction to explain the difference in form 

factors even if the wave functions of 3H and 'He are substantially the 

same. 

Delves" has given a careful discussion of the difference between 

the 'H and 'He form factors in terms of the classification of the triton 

wave function. A difference between the 3H and 'He form factors is expected 

as soon as other states than the principal S totally symmetric state are 

present in the wave functions. If the 'He and 3H wave functions are nearly 

identical, the most important admixtures are expected to be the S' state 

of mixed symmetry, and the D-states. The 3He wave function will contain 

an additional T = 3/2 mixed symmetry S state, induced by the Coulomb po- 

tential. The form factors can be analyzed in terms of these admixtures, 

leading to estimates for the probability of the various states. The first 

calculation by Schiff 115 assumed that only the S' state contributed, leading 

to an unlikely high probability P(S') of 4%. The inclusion of the D-states 

by Gibson 1x7 failed to remove the discrepancy. However, the necessary S' 

probability depends quite strongly on the assumed shape of the S' wave 

function, which is clearly demonstrated by the fact that the Dalitz-Thacker 
116 

wave function corresponds to an S' probability of about 1.59. TO in- 

vestigate the role of the induced T = 3/2 state in 'He, Gibson 
113 included 

it in his calculations and found that it was possible to reach agreement 

with experiment with Psl = 2% and P3/2 = 0.25%. However, Ps, = $ is still 

uncomfortably large compared with the variational result 
101 

ps ' = l.% and 

the result from inelastic e - 3 1-15 H scattering . This can be reduced if the 

neutron form factor is not taken to be identically zero 
106,119 . With a 
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positive form factor for the neutron as given by experiment 120 it is 

possible to obtain a Ps, = 1%. The reliability of these conclusions is 

somewhat diminished by the strong wave function dependence of P S' especially 

on the asymptotic part of the wave function 116 . They hold only for a 

given assumed shape of the wave function. 

Recently a new calculation of Ps, with rank-two separable poten- 

tials of the Puff type, including repulsive core effects has been reported 

by Borysowicz and Dabrowski 98 who find P S' 
= 2.0 - 2.4% respectively for 

charge independent and charge dependent forces, which is more than twice 

the value of Ps, = 0.31 - 0.96% found by Bhakar and Mitra 
121 

. This seems 

to show that inclusion of the hard core increases the discrepancy again. 
122 

Although Phillips favors a Ps, = 1.2% with rs = 2.7 fm and PD = 7$, 

with a difference in the charge radii of 0.12 to 0.16 fm, he does not 

include repulsive core effects. He does also point out that the variation 

of PS’ with rs is fairly large. 

In a recent article 123 Ohmura discusses the differences in the 

electromagnetic form factors due to the Coulomb potential, assuming local 

central potentials without a hard core, having no spin and isobaric spin 

dependence. This means that the 'H wave function is exactly given by the 

principal S-state. It is then found that the Coulomb repulsion alone is 

clearly insufficient to explain the observed difference in the electro- 

magnetic form factors. The author also comes to the conclusion that the 

charge radii are not determined mainly by the asymptotic region, but that 

the wave function in the inside region is quite important, in disagreement 

with Dalitz and Thacker 
112 . A very small probability for the T = 3/2 

state of 0.001 - 0.006% is found in the He3 nucleus. The Schroedinger 
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equation for the three-body bound state is solved approximately by an 

expansion of the wave function with Legendre polynomials omitting the 

higher order terms. A negligible admixture of T = 3/2 states is also 

predicted in the previously discussed work with separable potentials by 
109 Alessandrini, et al. . 

From the previous discussion we see that recent estimates of PS, 

range from 2.4% - 0.3% and the T = 3/2 probability from 0% - 0.25%. It 

has clearly not yet been demonstrated that the difference between the 

charge radii of 'H and 'He can be satisfactorily explained, without 

coming into conflict with other experimental evidence concerning the three- 

nucleon systems. In his review article, Delves $9 points out that the ab- 

solute magnitude of the form factors is rather easier to fit than the 

?H - 'He difference. This is not surprising since we leave the initial 

condition F(0) = 1 and the initial slope as determined by the charge radius. 

Hence any wave function giving the correct charge radius will fit the small 

momentum transfer part of the form factor. Only at momentum transfers 

q* 2 7-3 fm 
-2 some structure appears in the form factors. They then drop 

below the straight line predicted for a Gaussian charge distribution, which 

can be explained by the presence of a repulsive core in the nucleon-nucleon 

potential. It is found that even wave functions which are not particularly 

good can give quite reasonable fits to the form factors 115 . On the other 

hand, it is not enough to fit the triton binding energy, since different 

wave functions yielding nearly the same binding energy give different form 

V.3 The Beta Decay of the Triton 

In his review 89 article Delves discusses the information on the 3, 
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wave function which may be contained in the beta-decay of 3 H into 3 He. 

In particular, Blin-Stoyle 124,125 has suggested that a comparison of this 

decay with neutron decay should lead to a test of the PCAC theory of weak 

interactions and give information on the S'- and D-states probabilities. 

It can be shown that the ft value for an allowed beta-decay is given by 

(ft)-1 = m5c4 [G;jyI12 
2fl3fl7hl2 

+ G;1MA121 

Where Gv and GA are the polar and the axial vector coupling constants and 

% A 
and M the matrix elements of the corresponding weak Hamiltonians. An 

analysis of O+ to O+ decays 126,127 combined with the measured value of (ft) 

for neutrons 12' leads to values of Gv and GA using i%j2 = 1, 1MAi2 = 3 

for the neutron. The measured ft value for 'H is125 

WI3 = 1137 +_ 20 sees. 
H 

If we assume that the 'H and 'He wave functions are nearly equal, it follows 

that 

which is independent of the 3 H wave function. 

For the axial vector matrix we find according to Blatt 
130 

I I MA 
2 = 3[P, - $ Ps' + ; PDl 

where he neglected any T = 3/Z states. Inserting variational values 

Delve:' finds 

I I MA 
2 - 2.70 
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I I 2 
In any case MA < 3, independent of the accurady of the variational 

calculations. Even that value leads to contradiction with the ft value 

of the neutron 124,131 . Blin-Stoyle and Tint14 tried to remove the dis- 

crepancy by taking exchange effects into account, using CVC and PCAC 

theory. Unfortunately, they obtained a reduction instead of an enhancement 

in the value of 
I I 

M 2 
A , increasing the discrepancy. Delvesgg points out 

that there are several possible reasons for this discrepancy: 

1. neglect of T = 3/2 and other charge dependent effects, 

2. assumption of CVC and PCAC theories, 

3. the experimental results for the reaction p + p -+d + IX, used 

by Blin-Stoyle and Tint125, are in error, and 

4. the measured ft values of the neutron and/or of 'H are in error. 

The last mentioned reason seems to be the most likely. Some inde- 

pendent reasons for doubting the ft value of the neutron are given by Blin- 

Stoyle125. Until new experiments have been performed no additional infor- 

mation on the three-nucleon bound state wave function can be deduced from 

the beta decay of 'H. 
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VI. CONCLUSIONS 

TWO points emerge clearly from this review. The first is that it 

will be necessary to understand the deuteron well enough to tell the 

difference between 44 and 7% D state, if we are to avoid a basic un- 

certainty of around 1 MeV in calculations of E t and of around 1 fermi 

- in calculations of a 2' In order to do this we will have to understand 

the wave function inside distances of 1 F, and in particular be able to 

discriminate between a hole in the wave function 0.5 F in radius as sug- 

gested by hard core models and vector meson repulsion, or 0.7 F in radius 

as suggested by the boundary condition model and the large number of 

elementary particle degrees of freedom which can be excited inside this 

radius. Fortunately, the comparable uncertainty due to uncertainty in 

the correct value to use for r: and rr has probably been removed. 

The second is related in that we have also seen that it will be 

important to understand the off-shell behavior of the two-nucleon T 

matrix better than we do now, and the size of the hole in the wave function 

has an important bearing on this question. This is pretty well defined if 

we stick to local potentials, but differs in one way for the non-local 

boundary condition model, and in another for the non-local separable 

models. Work on momentum dependent models is still virgin territory in 

the three-nucleon problem, but the work of Ingber on the closely related 

nuclear matter problem indicates this may also be crucial, at least in- 

directly, because of the difference it allows in the two-nucleon central 

force model. Again, current uncertainties on these points frustrate 

meaningful comparison with experiment at the l-4 MeV level in et and the 

l-2 F level in a2 calculations. 
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Other conclusions are more controversial. It seems likely that 

separable models can be brought into good agreement with nucleon-nucleon 

phase shifts, that a rather low cutoff in the number of two-nucleon 

angular momentum states can be used without much error, and less certainly, 

that when the small effects are included, such models will give more 

binding to the triton than variational calculations with local hard-core 

potentials. It will, therefore, be necessary to also claculate such 

hard-core models by other methods (Faddeev, or methods giving close bounds 

on et from both sides) in order to be sure the variational calculations 

have converged. It is our guess that when this has been carried out, 

there will still be a 2 MeV or so discrepancy between separable and local 

models which give the same fit to two-nucleon elastic scattering data up 

to 300 MeV. Hence, it is expected that we will have to extract off-shell 

information froma variety of two-nucleon electromagnetic experiments 

before we can say whether or not there are three-body forces in the three- 

nucleon system. 

The point of view taken here is to treat the three-nucleon system as 

a problem in physics rather than in mathematics or in nuclear phenomenology. 

We mean in no way to belittle the real accomplishment made by the separable 

models in showing that very simple interactions and equations can give a 

reasonable description of both the two- and the three-nucleon systems at 

the lo-1576 level. But we hope that these real successes will not blind 

us to the fact that a much harder task remains before a convincing con- 

nection between nuclear and elementary particle physics can be forged out 

of these studies. 
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Table I. Values of the 'So n-p Effective Range for Various Data Selections 

Present Analysis Previous Analysis" 

unp(o) = 20.442 -+ 0.023 b am = - 3.719 * 0.002 F unp(0) = 20.33 f .Oy B &ri.H= -3.741 + ,011 F 

at = 5.4235 F a =- 
S 

23.7146 F 

'd = 2.22452 MeV 

(errors negligible in determination of rs) ("t and as codetermined with rs)a 

Data Selection r D.F. 
S x2 4 Prob 

54.9 

80.8 

79.4 

r D.F. 
S 

2.52 -I- 0.10 6 

2.44 t- 0.11 1 

2.64 t- 0.13 4 

x2 
4.45 

0.15 

1.27 

$ Prob 

62.1 

68.5 

86.5 

ALLb 2.758 * 0.053 7 5.942 

EBMLC 2.646 f 0.072 1 0.060 

ALL - EBML 2.891 + 0.078 5 2.449 

Adding constraint 
r 

S 
= 2.73 * 0.03 F 

ALL 2.736 + 0.026 E3 5-993 

EBML 2.713 + 0.028 2 0.232 

ALL - EBML 2.750 + 0.028 6 2.750 

64.8 2.71 + 0.03 7 8.40 33.8 

89.1 2.71 k 0.03 2 6.31 4.25 

81.7 2.73 + 0.03 5 1.77 87.!3 

a H. P. Noyes, Nucl. Phys. 2, 508 (1965), Table 2. 

b H. P. Noyes, Phys. Rev. 130, 2025 (1963), Table 1. The attentive reader will note that the degrees of freedom 
do not add up for the prxous analysis. On checking the computer output I find that for some reason which 
now escapes me, the cross section at 2.54 MeV (Table 1, No. 6) was omitted; if this is done in the current 
analysis, the value for rs for the remaining seven points becomes 2,734 in embarrassing good agreement with 
the prediction. 

' C. E. Engelke, R. E. Benenson, E. Melkonian and J. M. Lebowitz, Phys. Rev. 129, 324 (1963). 
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FIGURE CAPTIONS 

Figure 1. Possibility that the outgoing wave from another channel (channel 

3 in the illustration) can always scatter the two particles in 

the direct channel (2 and 3 in the illustration) if they are 

inside the range of forces, which gives a source term in channel 

1 which only vanishes like pl/rl for rl large. 

Figure 2. Values of rip computed from n-p total cross section measurements 

below 5 MeV compared with the prediction from charge-independence, 
I!z 

corrected for the 'II - fi 
0 mass difference in the OPE term, that 

r w 
S 

= 2.73 + 0.03 F. 

Figure 3. Fit to the low energy n-d doublet S phase shift of the form 

k ctn s2 = - A + Bk2 - C/(1 + Dk2) as given by van Oers and 

Seagrave, Phys. Letters 24~, 562 (1967). 

Figure 4. Comparison of calculations of et and a2 as given by A. C. 

Phillips, Nuclear Physics A107, 209 (196Q V. F. Kharchenko, 

N. M. Petrov and S. A. Storozhenko, Nuclear Physics A106, 464 

096% and G. L. Shrenk and A. N. Mitra, preprint and Brela 

Symposium. The much more extensive results obtained by the 

second group in the reference cited and in the earlier pub- 

lication by A. G. Sitenko, V. F. Kharchenko and N. M. Petrov, 

Physics Letters 21, 54 (1966) h ave mostly been omitted in order 

not to confuse the plot. They use only 4$ D state, and are 

slightly shifted from Phillips' results (open circle, solid 
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circle, open triangle) because of the.slightly different value 

for as, as is illustrated for r 
S 

= 2.7 F by the open square 

labeled It. Values for other values of rs also agree with 

Phillips if shifted by about the same amount. The value 

labeled 3t is obtained by these authors by cubing the Yama- 

guchi form factor in the central but not the tensor parts of 

the interaction. Results from Shrenk and Mitra are not 

directly comparable, since they include a second rank singlet 

potential fitted by Naqvi and Gupta. The (C+T)y points use 

the same (Yamaguchi) triplet interaction as Phillips % D 

state points. The (C+T)N points use the Naqvi triplet para- 

meters, omitting the L*S term. The designation of the sing- 

let model used (N,Gl,G;,G~,G;,G2,G3) refers to parameters taken 

from Naqvi and Gupta by Shrenk and Mitra, and occurs in the 

same order along both dotted curves; for clarity the points are 

labeled only along the (C+T)N curve. 

Figure 5. Comparison of various separable singlet models with experiment 

between 50 and 330 MeV. The dotted experimental curve is from 

the n-p Yale IV fit (R. E. Seamon, K. A. Frideman, G. Breit, 

R. D. Haracz, J. M. Halt and A. Prakash, Phys. Rev. s, 1579 

(1968)) and the experimental points the latest Livermore p-p 

results (M. H. MacGregor, R. A. Arndt and R. M. Wright, 

"Determination of the Nucleon-Nucleon Scattering Matrix VII. 

.(p,p) Analysis from 0.400 MeV" UCRL 70075 (Part VII) and Phys. 

Rev. (in press)) corrected by the n-p to p-p difference used 
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by the Yale group; the Livermore energy-dependent fit is es- 

sentially identical in spite of the very different fitting 

procedures and different criteria for data selection used by 

the two groups. The shape-independent curve is the same as 

the separable model using the square root of the Ysmaguchi 

form factor (Bander). n=l is the Yamaguchi form, and n=3 

those form factors raised to the 9th power. The Puff poten- 

tial result is computed from the parameters given by Borysowicz 

and Dabrowski. The Gupta result has been computed by us from 

the parameters for the Gl model as given by Shrenk and Mitra; 

surprisingly, the Naqvi parameters give a curve between 30 

and 330 MeV which lies almost on top of Gl, according to the 

phase shifts published by Naqvi, although it will differ signi- 

ficantly at low energy due to the different effective range. 
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