
SLAC -PUB -402 
April 1968 

A FORMAL PICTURE DESCRIPTION SCHEME AS A BASIS 

FOR PICTURE PROCESSING SYSTEMS+ 

Alan C. Shaw 

Stanford Linear Accelerator Center 
Stanford University, Stanford, California 

(To be submitted to Information and Control) 

*Work supported by U. S. Atomic Energy Commission, the SLAC IBM 
Graphics Study Project, and the National Science Foundation Grant GP-7615. 

- 1 - 



LIST OF SYMBOLS USED 

:= ¶-> 0,’ ,- s-x,*,-, /, 0. 

Number of Pages: 65 (including figure pages) 

Number of Tables: 0 

Number of Figures: 17 

Proposed Running Head: Formal Description of Pictures. 

-2- 



ABSTRACT 

A formal picture description scheme to be used as the basis for 

picture processing systems is presented, The scheme is applicable to 

a large class of pictures including, but not restricted to, those contain- 

ing line -like elements. The paper first presents a general linguistic 

model for picture processing in which the analysis and generation of 

pictures are defined as the derivation and execution, respectively, of 

descriptions. A particular realization of the descriptive component of 

the model including some of its formal properties is then given; a picture 

class is described in terms of its underlying graph structures by a gram- 

mar generating strings in a picture description language. A series of 

examples illustrate the capability and limitations of the description 

scheme. Some applications of implemented systems to the analysis and 

generation of pictures are discussed. 

-3- 



A FORMAL PICTURE DESCRIPTION SCHEME AS A BASIS 

FOR PICTURE PROCESSING SYSTEM@ 

I. INTRODUCTION 

Picture processing is defined here as the analysis and generation of pictures 

by computer ,with or without human interaction; the area thus encompasses both com- 

puter graphics and digital pattern recognition. A distinction between “natural” and 

“artificial” pictures can be made analogous to that between natural and artificial 

languages. Formal methods of syntax and semantics are oftenemployed to describe 

artificial languages and subsets of natural languages; moreover, the same mechanism 

can then be used to drive language analysis systems. A similar linguistic approach is 

suggested for pictures. This paper presents a formal linguistic description scheme 

which is applicable to a large class ofpictures including, but not restricted to those 

containing line-like elements. The scheme is intended bothas a language of discourse 

about pictures for humans and as the basis for computerpicture processing systems. 

The rationale for a linguistic approach to picture analysis has been persuasively 

presented by Kirsch (1964) and Narasimhan (1962, 1964, 1966). Narasimhan states: 

‘I ..O the aim of any adequate recognition procedure should be not 

merely to arrive at a “yes”, “no”, or “don’t know” decision but to pro- 

duce a structured description of the input picture. It is our contention 

that no model canhope to accomplish this in any satisfactory way unless 

it has built into it, in some sense, a generative grammar for the class of 

patterns it is set up to analyze and recognize. ” (Narasimhan 1964). 

There have been several serious efforts at providing a linguistic model for 

picture processing. These include the work of Eden (1961, 1962), Narasimhan 

* 
This research was supported in part by the Atomic Energy Commission, the 

&AC-IBM Graphics Study Project, and the National Science Foundation grant 
GP-7615. The material in this paper appears as part of the author’s Ph. D. thesis 
(Shaw 1968). 

-4 - 



(1962, 1964, 1966), Clowes (1967a,b), and Anderson (1968). None of these, how- 

ever, offer a formal descriptive mechanism upon which a reasonably large class 

of analysis and generation problems may be treated. 

In order to understand the use of descriptions, a general linguistic picture- 

processing model is first discussed. The description scheme and some of its formal 

properties are then developed in detail. A series of examples illustrate its capability 

and limitations. Finally, some applications to analysis and generation problems are 

briefly mentioned. 

II. A LINGUISTIC MODEL FOR PICTURE PROCESSING 

The linguistic model consists of two parts: 

1. A general model within which pictures may be described, 

2. An approach to the analysis and generation of pictures based directly 

on descriptions. 

A picture is conceived as consisting of a number of elementary or primitive 

patterns related to each other in some meaningful way. At this level, a primitive 

description scheme is postulated involving two components - structural and se- 

mantic. A primitive description T(a) of a picture o is defined: 

‘I’(a) = (TsW TV(W), 

where Ts(o!) specifies the primitive patterns contained in (Y and their relation- 

ship to one another, and TV(o) gives the values or attributes of each primitive 

in 01. For example, Ts(o) might describe the fact that (I! consists of two inter- 

secting lines, whereas TV(o) specifies the exact geometry of these lines. In this 

way, many pictures might have the same primitive structural description. Define 

Q(S) = 1 CL lo! is a picture A Ts(a) = S/ . 

Consider a set of rules or grammar $ generating a language x( g) whose 

“sentences” are primitive structural descriptions of a given class of pictures. 

-5- 



Then gis said to describe the picture 

given set of interpretation or semantic 

class 6$j = U P sE4,g)/ (S) . LetJ be a 

rules in l-l correspondence with $. In 

addition to its primitive description, a picture cue 6$g is said to have a hierarchic 

description H(o) = (Hs(o), Hv(cr)), where the syntactic or structural component 

Hs(o) consists of the ordered set or sets of rules of g that may be used to gener- 

ate Tst4 - that is, Hs(o!)- is the linguistic structure or parse of Ts(cr) accord- 

ing to J7 - and Hv(o) is the result of obeying the corresponding interpretation 

rule for each rule of gused in parsing Ts(a). 

Example : 

Let 27 i = ,LC -L, LC-c, LC- L 0 c, L--P, &cl 

’ 

and 

J= /vLc :=vL, vLc:= vc, vLC:=xsect(vL,vC), vL*- v 
*- 8’ vc := vc 1 , where 

L and c are picture primitives naming the class of all line segments and circles 
. . 

respectively, 0 denotes the geometric relationship of intersection, !7 is a phrase 

I structure grammar (Chomsky 1959), vi, i cILC, L, C, II, c , represents the 
i 

semantics or interpretation of the corresponding rule of g, and xsect is a function 

which computes the intersection(s) of a line with a circle. Then 

&z, = {a, c, Q a c) and @g =0(Q) u@(c)ucd(B 0 c). 

If TS(o!) = 1 0 c for CY~&$ , then (HS(@) ,Hv(o)) could be represented by the 

simple tree of Fig. 1. 

A complete description D(o) of a picture Q! is defined: 

D(a) = (T(a), H(a)) = Us@4 TV@)), P$Wt HvW),, 

where T and H are the primitive and hierarchic descriptions, and Ts, Hs 

and TV, Hv are the structural and semantic components of each. 

The general approach to picture processing can now be formulated; 

1. The picture primitives are named and defined, 

2. The picture class is described by a generative grammar if? and associated 

semantics 9. 

-6- 



3. The analysis of a given picture cx proceeds by parsing it according to 

Gand$ to obtain its description D(cY); that is, g and + 3 are used 

explicitly to direct the analysis. 

Conversely, a picture (Y is generated by executing its description D(a). 

It is important to note that the “meaning” of a picture is expressed by both its 

primitive and hierarchic descriptions. Thus, several grammars may be used to 

generate the same class of primitive descriptions, but the hierarchic descriptions, 

and hence the meaning, may be different for different grammars. Even more gener- 

ally, the same picture class may be described by totally different primitive and 

hierarchic descriptions; the intended interpretation of the picture dictates its 

description. 

The form of the various elements of the model are purposely left open at this 

point. It is expected that there does not exist one universal form that is useful for 

all applications. The next few sections discuss a particular realization of the de- 

scription component within the above framework. 

III. PICTURE PRIMITIVES AND CONNECTIVITY 

Kirsch (1964) suggests that the elementary or primitive components of a 

picture be defined as those patterns “which are recognizable by suitable character 

recognition equipment. ” The definition is slightly different here. A picture primitive 

is any n-dimensional pattern (n 2 1) with two distinguished points, a tail and a head. 

In general, a primitive will be a pattern that can be recognized or generated more 

conveniently as a unit than in terms of its subparts. Thus, what constitutes a prim- 

itive is primarily a matter of convenience and is dependent on the application and 

picture class. For example, in character recognition, the characters themselves 

may be primitives, or it may be more advantageous to consider line and curve 

segments as primitives and describe the characters in terms of these. 

- 7 - 



A primitive can be linked or concatenated to other primitives only at its tail 

and/or head. Because two points of possible concatenations are defined, a 

primitive can be represented as a labeled directed edge of a graph, pointing from 

its tail to its head node (Fig. 2); this will be a frequent and useful abstraction. 

Note that generally there is no inherent direction associated with a primitive 

pattern per se; the use of directed edges to represent primitives is used to dis- 

tinguish between the tail and head. 

Ln many applications, the absence of a specific visible pattern in a particular 

area of a picture is a necessary part of its description. An example is a photograph 

of some high energy particle physics reactions; the apparent stopping of a particle 

track and the later appearance of several tracks emanating from the same vertex 

indicates the presence of an unseen neutral particle (Fig. 3). Blank (invisible) 

and “don’t care” patterns connecting disjoint primitives are also extremely useful 

for describing simple geometric relations, such as those between adjacent charac - 

ters of a word and adjacent words in text. When a relationship is to bedescribed be- 

tween dis joint primitives separated by other patterns, the separating patterns are de - 

fined as “don’t care” primitives .Blank and “don’t care” primitives are therefore allowed. 

It is convenient to define one special primitive, the null point primitive h -- 

having identical tail and head. h consists only of its tail and head point and will 

be represented as a labeled node in a graph. 

A primitive is treated as a member of a pattern class; the latter may be 

designated by a name, a tail and head specification, and a Boolean function on 

properties which its members satisfy. The structural description Ts(cr) of a 

primitive Q! is defined simply as the name of the class to which it belongs; for 

example, if Ts(o) = line, then rr C@(line). The semantic description TV(o) is 

given by the list: value (CY) = (tail ((w), head (a!), vl, v2, . . . , vn), where tail (a) 

and head (a) are the coordinates of the tail and head of o, and vl, v2, . ..) V n 

-a - 



is an arbitrary list of attributes. The primitive description T(o) of a primitive 

ace @(classname) is then T(o) = (TS(o!), TV(a)) = (classname, value (a)). A par- 

ticular instance a! of the null point primitive has the description: 

T(o) = (h , (tail(o), head (a)) ), where tail (cz) = head (cz) . 

Example : 

Let arc name the class of all two-dimensional pictures (9(arc), consisting of 

an arc of a circle subtending an angle of less than 180°, with tail at the clockwise 

extremity and head at the counterclockwise extremity of the arc. Then, a partic - 

ular picture or e@(arc) with radius r, tail (x1, y,), and head (x2, y,) might be 

described as 

T(Q) = (arc, ((x1, Y,), (x29 y,)t r)) - 

Underlying the above definitions is the assumption that there exists one recog- 

nition or generation function for each primitive pattern class. On a successful 

recognition, the recognition function yields the description of the primitive; con- 

versely, the description of a primitive is the input data to the generation function. 

The primitive structure of a picture can be represented as a directed graph, 

where the edges are the abstracted primitives labeled by their class names, some 

nodes may be labeled h, and the graph connectivity mirrors the tail/head concat- 

enations of the primitives. A picture is said to be connected if, upon making each 

edge of its corresponding graph undirected, the resulting graph is connected. The 

following assumption is made: All pictures are connected. 

That this is a reasonable assumption can be seen by considering the extreme 

case of a picture consisting of a number of disjoint, unrelated primitives. Here, 

the geometric relation (coordinates) of each primitive relative to the origin of 

the picture coordinate system is usually meaningful; the connectivity is obtained 

by linking the origin to each primitive by appropriate blank primitives; this is 

illustrated in Fig. 4 where ti and hi point to the tail and head of primitive i. 

-9- 



IV. THE PDL PICTURE DESCRIPTION LANGUAGE 

PDL is a linear string language; a sentence S in PDL - expressed S~PDL - 

provides the primitive structural description Ts of a picture by naming all its 

primitives (their class. names)and their tail/head connectivity. The following syn- 

tax will generate any sentence ScPDL: 

SLP I (SO S) 1 (h.S) 1 SL 1 (/SL) 

SL- se I (SLG SL) 1 (CYSL) 1 (/SL) 

@ -+pq-I * f 

where p may be any primitive class name (including h) and B is any label 

designator. Any SPDL will also be called a PDL expression. 

Example: 

Ts (CY) = ( ( ( (fn + pred)w + cond ) * (-fn) )X ( (/(fn + pred)w ) + cond ) ) 

for the picture (Y. 

Not only primitives, but all pictures have a tail and a head; concatenations 

among pictures can occur only at their tail and head positions. Consider the pic- 

ture a! consisting of two subpictures (;‘I and cr2 such that QI~@(SI), cr2E@(S2) 

and TS(o) = (SIG S2), SI, S2c PDL . Then the tail and head of Q! according to 

Ts(o!) is defined: 

tail (ac) = tail (a,) 

head (o) = head (02) . 

In the same manner as primitives, more complex pictures can thus also be re- 

presented by a directed edge of a graph. 

The meaning of the binary concatenation operators I+, -Y x, *i is presented 

below by defining @( ( S,@S2)); it is assumed that SI, S2E PDL , ollep(SI), and 

- 10 - 



5 E @Gy. The notation cat means “is concatenated onto”: - 

13w,+s2)) = 1 head (a,) @tail (a! ) 1 
2 I 

Gv ts1 432,) = I 
fyq head (oI) cat head (o ) 1 

Gv(slx~2H = Lf “, ’ 
I 1’ a2 / tail (al) cat tail (02)! 

@W,*S2)) = /“pq (tail (a,) cat tail (02)) A (head (cu,) cat head (02))/ 

The graphs of the resulting pictures are illustrated in Fig. 5; t and h indi- 

cate the tail and head of the resulting expression. Figure 6 uses these operators 

to describe a line drawing of an “A” and an llF1l; typical members of each primitive 

class are shown with arrows pointing from the tail to the head positions. 

The connectivity graph of a PDL expression will often be referred to; in this 

case, the notation tail (S) and head (S) is used to indicate the tail and head nodes 

of the graph of the PDL expression S. Thus S and each picture in @(S) has a tail 

and head position. Tail (S) and head (S) will generically refer to both the pictures 

and the graph unless specifically stated otherwise. 

Because of the freedom allowed in specifying primitive classes, a PDL ex- 

pression may be undefined for some primitives. For example, if @(arc) is defined 

as in the example of Section III, and @(Q ) is the class of all line segments with 

tail and head at their endpoints, then the concatenation expressed by (Q * arc) can 

only have meaning for those members of @( Q ) and (@(arc) that are geometrically 

compatible; if @(arc) is restricted so that any chord is less than m units in 

length, and @(Q ) is restricted to lines of length greater than 2 x m, then 

(Q * arc) is always undefined, i.e. ,@((a * arc) ) is empty. This is no problem 

theoretically since the connectivity graph is constructed by treating each primi- 

tive abstractly, regardless of whether the concatenations are geometrically pos - 

sible. It would, however, lead to undefined results in generation and failure in 

analysis of pictures. This anomaly is ignored henceforth by allowingc23(Ts) to 

define an empty set of pictures for some Ts. 

- 11 - 



The binary operators in conjunction with A are sufficient to describe all pos- 

sible tail/head concatenations between two pictures, i. e. , they are locally complete; 

Fig. 7 enumerates and describes all possible non-degenerate local concatenations. 

The unary operators m and / do not describe concatenations, but allow the tail 

and head to be moved. A notion of description equivalence is introduced in order 

to discuss the unary operators, labeled expressions, and some formal properties 

of PDL. For S1, S2e PDL: 

1. S1 is weakly equivalent to S2 (S1 sw S2) if there exists an isomorphism 

between the graphs of S1 and S2 such that corresponding edges have 

identical names. 

2. S1 is equivalent to S2 (S1= S2) if 

a. slsw S2’ and 

b. tail (S1) = tail (S,) and head (S1) = head (S2) . 

The unary hr operator acts as a tail/head reverser with the following properties: 

1. (-S1) zw Sl’ S1e PDL 

2. tail ( (-S1) ) = head (Sl) and head ( (w S1) ) = tail (S1) . 

The purpose of PDL expressions with label designators, such as & is to 

allow cross -reference to that expression within a description; with the / operator, 

this enables the tail and head to be arbitrarily located. A PDL expression Se is 

equivalent to the value of the following function g : 

g (S!) = if primitive (S) then - -se 

else 

else 



where primitive (S) = E if (1) S is a primitive class name, or (2) S = &I 

where S 1 is a primitive class name, and false otherwise. Concatenated label 
. . . . . 

designators are interpreted as single labels; thus ( (a’+ b)I + a’) I ( (a’I+bI) + a’) . 

Figure 8 illustrates the use of label designators and the / operator to describe 

(a) a picture whose connectivity is equivalent to that of the complete 4-node graph, 

and (b) a line drawing of a three-dimensional cube in 3 -space; in the latter, the 

primitives are line segments in the X, Y, and Z directions, where the Z direction 

points into the paper. The explanation of the / operator assumes that any expres- 

sion se within a PDL expression has been recursively transformed by the above 

function g into an equivalent expression so that only primitives have label desig- 

nators. Then it is required that each primitive within the scope of a / operator, 

i.e. , each primitive that is part of some (/S) within the PDL expression, have a 

label designator (this is part of the PDL syntax given earlier) and be identical in 

name and label to one and only one primitive outside the scope of a / . The / is 

interpreted as a superposition or blanking operator. Each primitive within its 

scope is another instance of its identicaloutside primitive; the description of con- 

catenations onto either one will refer to the same primitive. Thus / allows multiple 

descriptions of the same primitives and structures, effectively moving the tail or 

head to a more convenient place for further concatenations. A more formal defini- 

tion of the meaning of / and label designators is given in Section V B. 

It is now possible to state completely the rules for determining the tail and head 

of an expression S 6 PDL and of each a! 6 p(S): 

- 13 - 



tail (S) = 

i i 
head (S) if primitive (S) then 

else 

if s =.(S1ar s,,, 0 c {f, x, -, *I, 

else 

else 

if - 

else 

where the function g is defined earlier. 

The primitive semantic or value description TV(o) of a picture o is a list 

of the descriptions D(p) of those primitive pictures p contained in Q! which have 

their connectivity and class names described in Ts(o) . 

Example : 

A picture (I! consisting of a straight line segment concatenated onto an end- 

point of an arc might have: 

TS(c!) = (line + arc) 

TV@) = t (line, t (x1, Y,), (x2, Y,), m) ) , 

(arc9 t (x29 Y,)9 (x37 Y3)Y r)) )9 

where m is the line slope and r is the radius of the arc-generating circle. 

- 14 - 



One more assumption is necessary in order to complete the PDL description 

scheme. It is assumed that all pictures have a well-defined origin from which a 

PDL description “starts “; that is, any PDL description S of a picture is inter- 

preted as ( A + S) where the tail and head of A is the pit ture origin. The origin 

can be any convenient point in the picture and is usually determined by either the 

digitization or the generation mechanism. In analysis problems, this normally 

means that the first primitive concatenated onto the origin is a blank or “don’t care” 

primitive whose recognition function is equivalent to a search strategy to find some 

interesting visible part of the picture. 

V. PDL: FORMAL PROPERTIES AND HASIC THEOREMS 

A. Algebraic Properties 

The definition and interpretation of the PDL language can be viewed as a pic- 

ture or graph algebra over the set of primitive structural description under the 

operations + , - , X, * , -, and / . Elements (S c PDL) are considered equal if 

they are equivalent. A number of useful algebraic properties are given below; it 

is assumed that 

s, S1’ S2’ S3 c PDL, #bE (+, ‘3 -3 *\, Q’b-*‘(f, ‘Y -1. 

1. Associativity: 

Each of the binary concatenation operators is associative. 

(a) t (sl + S2) + S3) s (Sl + (S2 + S3) ) 

03 t ts1 x S2) x S3) = (Sl x (S2 x S3) ) 

(cl t q - S2) - S3) = (Sl - (S2 - S3) ) 

w t (Sl * S2) * S3)’ (Sl * (S2 * S3) ) 

This allows the elimination of parentheses from an expression whose 

operators are identical. Thus, ( (Sl + S2) + S3) can be put in the simpler 

form (SI + S2 + S3), and ((SI - S2) - S3) in the form (S1 - S2 - S3) . 

- 15 - 



2. Commuta tivity : 

(a) * is the only commutative binary operator. 

ts1 * 9 = (S2 * S1) 

w x and - are lfweaklylf commutative. 

ts1 x S2) +# (sz x Sl) 

3 - 5-J 3 632 - Sl) 

3. The - Operator: 

(a) - acts much like complement&ion in a Boolean algebra: 

t-q + S2) ) = t c-s,, + t-s,) 1 

+q* S2) )z t C-S,) * (-S1) ) 

tw - obeys a “de Morgan’s law” with respect to x and - : 

(‘y(Sl x S2) ) = t (4,) - t- Sl) ) 

t-ts1 -fi$) = t W,)X t- Sl) ) 
Note that ..+ reverses the order of the operands. The equivalences of (a) 

and (b) are useful for moving the - within an expression. 

(c) Involution: 

(-(N-s) ) s s 

4. The / Operator 

(a) t/t/s) ) = t/s) 

tb) (/ts,$,s2) ) = t (/sl) Q’b (44 ) 

5. The Null Point Primitive A: 

ta) (S@bh) = th@bS) 

tb) ts@b+‘) = s (S + A) & S since (S * A) implies head(S) = tail (S) 

(c) (-A) I h 

(d) @Qlk’) = h 
- 16 - 



B. The Graph of a PDL Expression 

By using some of the algebraic properties of the last section to move unary 

operators and label designators as far as possible within an expression, a standard 

form f(S) E PDL of an expression S can be obtained. f(S) is defined: -. 

f(S) = if (S = S1v S = (/Sl)v S = (-S1) v S = (-(/S,)) ) A primitive (S1) t@ S 

else 

if s = (s1$s2)? Q’b E (+ , ‘, -, * 1, t& tf (‘1) Q’b f(S2) ) 

else 

if S = S$ then f@ w ) 

else 

if_ s = (-(slg,s2) ), 0 c {+, *), then tftt-s,) ) @ ft t-sl) ) ) 

else 

if s = (-(sl x S2) ) t. (f( (-S2) ) - ft W1) ) ) 

else 

if s = (“(S1 - S2) ) t. (f ( (MS,) ) X ft t-sl) ) ) 

else 

if s = (/(S,Q, S2) ), Q, e {+ , x, -, *I, then ( f( (/S1)) 0 f((/S2))) 

else 

if S = (-(-S1) ) then f(S,) 

else 

if - s = (-(/s,) ) v S = (4 -sl) ) then ft t- ft t/sJ ) ) ) 

else 

if _ s = t/ t/sl) ) t& ft t/sl) ) 

Example 

t (-(ai + b) ) + (/ (- ai) ) ) 

has the standard form: 

t t t-b) + (-ai) ) + t-t/b ) ) 

- 17 - 



The standard form f(S) of S has the properties: 

1. f(S) = s . 

2. The operand of each / is a primitive class name. 

3. The operand of each m is either a primitive class name or / followed 

by a primitive class name. 

The function definition is a case analysis of all possible forms of S as given by 

the PDL syntax. 

A valid PDL expression ( vPDL) is one whose standard form is such that if 

(/p”) appears in it one or more times for some primitive p and label Q , then 

pQ also appears once and only once outside the scope of a / . 

The graph, and therefore the primitive connectivity, described by a vPDL S 

is defined by the following algorithm: 

1. Transform S into standard form by applying the function f. 

2. Replace each expression of the form (/p’) by a new primitive p; . This 

removes all / operators. 

3. Generate the connectivity graph of the resulting expression. 

4. Contract the tail and head nodes of each edge p/” to the corresponding 

nodes of pQ. 

5. Eliminate all edges of the form p/“. 

The above algorithm formally defines the meaning of labeled expressions and 

the / operator. A simple example is given in Fig. 9. 

C. Basic Theorems 

1. Connectivity Description 

Each step in the formation of a graph of a vPDL can always be per- 

formed and has a unique result. This leads to: 

- 18 - 



THEOREM 1 

Any vPDL describes a unique primitive connectivity. 

This gives the assurance that one and only one primitive connectivity is 

represented by a vPDL. 

2. Completeness 

THEOREM 2 - 

Any connected set of primitives can be effectively described by a vPDL. 

Proof: 

The proof is by induction on the number n of connected primitives. For 

n = 1, the vPDL is p, where p is the primitive class name. Suppose 

that any connected set of n primitives can be effectively described by 

a vPDL. 

Consider (n + 1) connected primitives. Select n of these that are con- 

netted, say pl, p2, . . . , p,. By the induction hypothesis, their connec 

tivity may be described by a vPDL: 

‘n = Sn(P1’ P2’ .* *, P,) 

(a) The first possibility is that the (n + l)st primitive, P,+~, is con- 

nected by only one of its nodes to a primitive in Sn. Then, there must 

exist at least one pi, 1 ,< i < n, whose tail or head, or both are con- 

nected to P,+~. The following connectivities are possible: 

(1) head (Pi) to head (Pn+l) 

(2) hi1 (Pi) to head (P~+~) 

(3) head (pi) to tati (P~+~) 

(4) id (Pi) to tail (Pn+l) 

- 19 - 



Consider case (1) : 

Since pl, p2, . . 0 , p, are connected, a 17path1f, described by Sit can 

be found from head (Sn) to head (pi) such that: 

tail ( Si) = head (S,) and head (Si) = head (pi) (Fig. 10(a) ) . 

The form of Si can be: 

- si = (Sil + si2 + . . . + sin ) , 
i 

where S.. = (-pij) or S.. = p.. 
13 11 11 

and pij E ~pi, P2, - -* 2 P,\ 

j = 1, 2, . . . , ni. 

(Parentheses are omitted in Si since + is associative). 

All the primitives in Si which are labeled in S, are now given the same 

label in Si. Call the resulting expressions St. Label uniquely all the 

unlabeled primitives of ; attach the same labels to the corresponding 

primitives in Sn. Call the resulting expressions SLi and SL,, respectively. 

Then the following vPDL describes the connectivity of the (n + 1) primitives: 

S n+l = ttsLn + t/sLi)) - Pn+l) 

The remaining cases are handled by a similar construction. 

(b) The only other possibility is that P,+~ is connected at both of its 

nodes to Sn. Therefore, there exist pi and pj, 1 ,< i, j < n, such that: 

(1) head = head(pn+l) A (head = tail (P~+~) 

V in = hi1 tPn++ ) 

or 

(2) head = tail (P~+~) A (head (pj) = head(~,+~) 

v WI (Pj) = head(~,+~) ) 
or 

(3) tail (Pi) = head@ n+l) A (head tPj) = hi1 @n+l) 

v kil(pj) = tail (P,,) ) 

- 20 - 



or 

(4) tail (pi) = tafi(~n+~) A (head (pj) = head (~n+~) 

v tail (pj) = head Cpn,,) ) . 

Consider the case: 

head (pi) = head (~n+~ ) A head (pj) = tail (~n+~) . 

As in (a) there is a- path, described by Si, from head (Sn) to head (pi) ; 

similarly, there is a path that can be described by Sj from head (pj) 

to tail (Sn). Si and Sj satisfy: 

head = head (pi), tail (Si) = head (Sn) 

head (Sj) = tail(Sn) , tail (Sj) = head (pj) 

(see Fig. 10(b) ). The same labeling as in (a) is done except that any 

primitive common to Si, S., and Sn 
J 

is labeled in all three expressions. 

Call the resulting expressions SLi, SLj, and SLn . Then the connectivity 

of the (n + 1) primitives is described by the vPDL : 

S n+l = t ( t'sLj) + t sLn + t/sLi) ) ) * Pn+1) ’ 

The other cases are treated in a similar manner. Therefore, the case of 

(n + 1) connected primitives is proven. 

Q. E. D. 

Note that, in general, more than one vPDL can be obtained to describe the 

same connectivity; for example, in part (b) of the proof, a similar argument 

would yield the vPDL : 

S’ n+l = ( ( sLn + tjsLi) 1 * ( tw(jsLj) I+ Pn+l) ) * 

Corollary (Linear Cipher) : 

Any directed graph can be described by a vPDL. 

Theorem 2 proves the completeness of a PDL with respect to the primitive 

structural description of any connected set of primitives. The corollary further 

- 21 - 



suggests that graphs of various types may be represented and possibly manipulated 

within PDL. 

3. Moving the Tail and Head 

The path construction used in the proof of Theorem 2 can be employed 

to move the tail -and/or head of a vPDL to any node(s) in the structure. 

THEOREM 3 

Given a vPDL S1 describing a set of connected primitives whose cor- 

responding graph has n nodes, it is possible to derive n2 - 1 (and no 

more) other vPDL’s, S2, S3, . . . , S 
n2 

, such that 

i, j = 1, 2, . . . . n2 

i #j 

= 2, . . . , n2, is equivalent to an expression having 

one of the forms: 

(a) ( t/S;,) + WJ, + (hLd ) ) 
II I 

tb) t t/Sil) + SL1) 

tc) ( tsL1 + t”i2) ) 7 

where SLl is obtained from 

primitives in S1 that appear 

Proof: 

IY 

S1 by giving the same labels to those 

ill&S il and/or Si2. 

9 
Since there are n nodes in the graph, there are ny different ways of 

assigning the tail and head. Therefore, given S 1 with its tail and head, 

there are n2 - 1 other assignments that can be made. Since the primi- 

tives are connected, a path can always be found from the desired tail to 

tail (Sl) and from head (S1) to the desired head. Using the construction 

in the proof of Theorem 2, expressions of the form (a) (or (b) when the 

- 22 - 



new head = head (S1), or (c) when the new tail = tail (S1 ) ), can 

always be derived. Properties (1) and (2) foIlow immediately. 

Q. E. D. 

Theorem 3 allows one to take the origin (tail) of a picture at any convenient 

place. It also assures access to any node in the graph when building up descriptions. 

4. An Adequate and Independent Set of Operators 

The question naturally arises whether label designators and the / oper - 

ator are necessary or just convenient. Theorem 4 proves the inadequacy of the 

system without these features. 

THEOREM 4 : 

The operator set { + , x , * , - , N ] is not sufficient for the description 

of any connected set of primitives. 

Proof: 

Assume that / is not part of the PDL language. If (S1 (= 1 S2) is con- 

tained in a vPDL S, the nodes 

are inaccessible within s since only tail (S1) and head (S2) can be used 

for further concatenations in S (by definition); furthermore, the inacces - 

sible node has at most two edges meeting at it. Consider a picture 

whose connectivity is equivalent to that of the complete 4 node graph 

(Fig. 8(a) ); let each edge have the name x. Then any description 

S of this connectivity must contain a subexpression equivalent to 

(X1sbb-* X2), where X1 = (N x) or x , X2 = ( N x) or x, 

- 23 - 



and Q’b-* ’ {+, x, -}. * is not possible since (X1 * X2) does 

not describe any subgraph of the graph; this also applies to (X1 * h) . 

Finally, if only expressions of the form (XIob-+h) appeared, the equiv- 

alence (XIQlb-* A) = X1 could be applied to obtain the above form. But, 

each node must have 3 edges meeting at it. Since the expression 

(x1Qlb-* 2 X ) leaves-one node inaccessible with at most two edges tied 

onto it, S cannot describe the picture. 

Q. E. D. 

However, there does exist an adequate and independent set of operators. 

THEOREM 5 

Any vPDL is equivalent to one that uses only the operator set { + ,- , / 1. 

Moreover, these operators are independent. 

Proof: 

t 

The following equivalent expressions demonstrate the adequacy of 

{ + ,-Q/t: 

(Sl * s2j z t ts’1 + t- 54 ) + t/s;1 ) 

(Sl x s2> s ( (s; + t/t- s:, ) ) + S2) 

(3 - s2> E ( (S1 f (- s;, ) + (/S$ ) , 

where i does not appear as a label in S1 or S2. + is independent 

of - and /, since it is the only concatenation operator. - is independen 

since + and / cannot be used to describe the connectivity: (a + (-b) ). 

/ is independent since - and + cannot alone describe the connectivity 

( (a + (-bi) ) + (/bi) + (-c) ) . 

Q. E. D. 

Theset {x, -, * 1, while unnecessary, is still very convenient, especially 

in the description of pictures with simple structure. 

- 24 - 



VI. HIERARCHIC DESCRIPTIONS 

The set of rules or grammar $? that describes (generates) the class of pic- 

tures @g will be a type 2 (context-free) phrase structure grammar (Chomsky 1959) 

with the following restrictions. Each rule or production is of the form: 

S-pd111pd121 -- ---Ipdl,, n 21, 

where S is a non-terminal symbol and pdli is any PDL expression with the ad- 

dition that non-terminal symbols are allowable replacements for primitive class 

names. Sentences of Oe (g) will consist of PDL expressions; thus, the class of 

terminal symbols of g will be a subset of 

i +9x, -,*,.u, /Y (Y ,) u 
i class names 

Each grammar 27 will have one distinguished non-terminal symbol from which 

-&it?) -0 e g enerated; the symbol on the left part of the first production of $’ 

will be the distinguished symbol. Any sentence S E d(g) is assumed to have 

one parse; that is, g will be an unambiguous grammar. 

The hierarchic structural description Hs(o) of a picture a! e pghaving 

primitive structural description Ts(cr) E i( g) is defined as the parse of 

Ts(o) according to g; Hs(a) is conveniently represented as a parenthesis-free 

tree. A simple example is given in Fig. 11. 

The use of a formal grammar to describe picture classes has several advan- 

tages. Alternatives in a production allow the same name to be assigned to different 

strut tures that belong to the same pattern class. Large classes of similarly struc- 

tured pit tures can be concisely defined by recursive productions. For example, all 

tree structures with “branches” from primitive class b can be defined by the syntax: 

TREE- b 1 (b + TREE) 1 (TREE x TREE) 

Nodes or points in a picture may be named (and assigned properties by 4 ) by rules 

of the form: 
NODE-A . 

- 25 - 



The rationale behind the selection of context-free grammars rather than more 

complex ones is mainly one of simplicity; their form is simple, they can generate 

PDL descriptions for a large, useful, and interesting class of pictures, and there 

is a great deal of theoretical and practical knowledge on their use in the descrip- 

tion and analysis of string languages (Ginsburg 1966, Feldman and Gries 1968). 

Corresponding to each rule of swill be a semantic rule in 9. Two sets of 

semantic rules are postulated - a natural semantics 3 n and an imposed seman- 

tics 3 m. The natural semantics Hv(a!) of a picture CY is a list containing the 

name, tail, and head of each non-terminal symbol (syntax rule) in Hs(o), where 

the tail and head of a non-terminal symbol is defined as the tail and head of the 

PDL expression generated by it. Any ai, i = 1, 2, 3, in Fig. 11 would have: 

Hv(~i) = ( (P,(t,h)p)’ (HOUSE, (‘,h)HousE), (TRIANGLE, (t’h)TRIANGLE) ), 

where (t,h)k is the tail and head of k . 

The purpose of an imposed semantics is (1) to take an action and assign a value 

or set of values to a non-terminal symbol upon successful application of its syntax 

rule during a parse, or (2) to augment the syntax by generation instructions and 

parameters for a picture generation. A mechanism to express elements of Y? m 

has not been developed; the natural semantics only is used here. 

The description scheme for pictures can now be summarized: 

The class of pictures of interest is generated by a given grammar gsuch that 

and 

&g)c PDL. 

Then, the description of D(cY) of any picture a! E pgis 

D(Q) = t tTs@L TV&O It tHStW, HvW ) ) 3 

- 26 - 



where TSW E R(G), 

TV(o) is a list of the descriptions of all primitives of a!, 

Hs(o) is the parse of Ts(cr) according to $, 

Hv(a) is the natural semantics of a!. 

VII. THE FORMAL DESCRIPTION OF SEVERAL PICTURE CLASSES 

The examples of this section illustrate both the power and the limitations of 

the PDL system as a formal picture description scheme. Comparisons with the 

work of other researchers are made where appropriate. 

Primitive classes are defined informally by a pictorial sample, a mnemonic 

name, and often a textual description, rather than by a detailed definition of their 

recognition or generation functions. The latter depend to a great extent on factors 

that are irrelevant at this point; these include the amount of noise in a particular 

picture, the hardware used for reading and displaying pictures, and the eventual 

purpose of the description. 

A. Particle Physics 

In high-energy particle physics, one of the most common methods for obtain- 

ing the characteristics of an elementary particle is to analyze the trajectory 

“trail” left by the particle and its byproducts in a detector chamber, such as a 

bubble or spark chamber (Shutt 1967). Several hundred-thousand photographs of 

these trails or tracks might be taken in a typical experiment. Because of the large 

numbers involved and the accuracy and quantity of computation required for each 

lYnterestingll photograph, machine processing of the pictures is desirable. 

In addition to the particle tracks, the pictures usually contain some identi- 

fying information (in a “data box”), such as frame number, view, input beam 

characteristics, and date, and a set of “fiducials, ” which are marks on the 

chamber whose positions are precisely known. Fiducials allow the tracks to be 

reconstructed in real space. 

- 27 - 



Figure 12 gives the syntax for an abstracted particle physics picture. A neg- 

atively charged particle TM is assumed to enter a chamber containing positive 

particles F and under the influence of a magnetic field; TM enters from the left. 

The following types of reactions are provided for: 

(a) Interaction with P : 

-TM+P --TM + TP 

---TM + TP + TN 

-TN 

(b) Negative Particle Decay: 

TM--TM+TN 

(c) Neutral Particle Decay: 

TN -TM + TP 

(d) Positive Particle Decay: 

TP--TP+TN 

TP and TN represent positively charged and neutral particles, respectively. The 

notation used above is similar to the conventional physics notation. The products 

of the reactions can themselves undergo the same series of reactions; this can 

occur an indefinite number of times. The chamber has four fiducials (“X”s) and 

an identification box. 

The descriptions G(g) ) are ordered for left-to-right recognition in that 

the lower left-hand fiducial, FI, appears first and its center is then used as the 

tail for the descriptions of the rest of the fiducials , FID, the identification box, 

ID, and the particle tracks PT. The sketches of the primitives are only repre- 

sentative. For example, cm and cp are the names of curves with negative and 

positive curvature, respectively; dp is a short line segment of approximately unit 

slope. The blank and “don’t care” primitives describe known and unknown distances 

between visible parts of the picture. The primitives eh and ev would be precisely 

- 28 - 



defined a priori since the fiducials are in fixed positions relative to each other. 

On the other hand, es, the starting primitive, would be defined as a search strat- 

egy to find the lower arm of the left-corner fiducial. 

The use of h for the vertices of interaction, P and N, illustrates the ability 

of PDL to deal meaningfully with points as well as edges. Physics pictures of this 

type are natural candidates for description by recursive syntaxes; the recursive 

definitions of TM, TP, and TN are based on charge conservation and allow for 

an indefinite number of well -formed reactions. 

B. Kirsch’s 45’ Right Triangles 

Kirsch (1964) presents a two-dimensional context-sensitive grammar that 

generates all 45’ right triangles in a plane divided into unit squares; this is sug- 

gested as an illustration of the possible form of picture grammars. Unfortunately, 

it has not been possible to generalize his approach to more interesting pictures 

(Lipkin, Watt, and Kirsch 1966). 

Figure 13 contains a syntax and examples of two-dimensional 45’ right tri- 

angles with the same point identifications or labels as that given by Kirsch. The 

primitives are defined as all translations over a two-dimensional grid of the 

samples shown. Each point in a triangle is assumed to appear as an “Xl’ on one 

raster unit (square, grid point). -- 

When a picture is represented as finite grid of points, the possible coordinates 

of the tail and head of any picture (including A) are restricted to the grid point 

coordinates. The definitions of the binary operators as concatenations onto means 

that the expression (h + h) describes pictures where the coordinates of A are 

identical to those of head (a), a! e p(h) (the rightmost “X” in cv); also if 

CY e@((h+v)), a! isoftheform g. These interpretations are used for 

digitized pictures. 

- 29 - 



The identification of the triangle points as interior (I), base (B), hypotenuse 

(II), right vertical leg (L), right angle (R), and the vertices bounded by the hypoten- 

use (V and W) is accomplished by the rules: 

I 

B 

H 

II 
L -A 

R 

V 

W 

In the examples, the subscript on each IIX” indicates its label. 

The right-triangle syntax will also generate expressions which do not describe 

any pictures; this is an example of the problem discussed in Section IV. DH and 

DI might not be the correct “length” for the * concatenation; if this is the case, 

the class of pictures described by the particular Ts is empty. 

C. Simple Block Letters and a Page of English Text 

A block version of the upper case letters of the English alphabet is described 

in Fig. 14. Parentheses which are redundant because of the associativity of the 

operators are omitted. The PDL expressions for each letter were formed so that 

the tail and head is located uniformly throughout the alphabet on the “typographic” 

line; pictures containing groups of letters and other symbols can then be character- 

ized by PDL easily. The description could be rewritten as a grammar taking ad- 

vantage of some of the common structures in the letters; for example, )1 appears 

in P, R, S, and B. 

The expressions in Fig. 14 can be compared to the descriptions used by 

Narasimhan (1966) for generating the upper case English alphabet. Narasimhan 

uses productions or rewriting rules of the form: 

S(ns) - Sl l S2(ns 

1 2 sls; ns2s) , 

s ; n 

- 30 - 



where S 1 is a terminal symbol (primitive name) or non-terminal symbol (phrase 

n=-$ S2 is a terminal symbol, S is a non-terminal symbol (the defined phrase), 

%SZ 
is a list of the nodes of concatenation between S1 and S2, nSIS and nS2S 

define the correspondence between the nodes of SI and S2 and those of S, and 

nS is a node list labeling the nodes of S. All nodes of possible concatenation must 

appear in the description; this is cumbersome for simple, pictures such as the 

English alphabet, and might be unmanageable for more complex pictures. The 

system can only describe connected pictures and some other mechanism is re- 

quired when dealing with pictures whose subparts are not connected. Because only 

two nodes of possible concatenation are defined in a PDL description, it is not 

necessary to explicitly number nodes and maintain node lists. 

A page of text is broken into sentences, lines, words, and characters by the 

syntax of Fig. 15. Blank primitives establish the connectivity of words on a line 

(iws), characters within a word (its), and lines (ils). Left, right,and bottom are 

left, right, and bottom of the page indicators. The PDL expressions of the last 

figure could be used for the letters generated by CHAR. This type of syntax could 

conceivably be the basis for analyzing and generating textual information. 

D. Closed Boundaries of Figures 

A description of the edge sequences comprising the boundary of a figure can 

be easily expressed by a PDL grammar. 

Example : 

BOUNDARY -(CURVELIST * h) 

CURVELIST - CURVE 1 (CURVELIST + CURVE) 

CURVE -cl I I c2 . . . . . . . cn, 

where { ci(i = 1, n) is the set of edge or curve types that may appear in the 

figure. 

- 31 - 



Ledley et al. (1965) employ a standard BNF syntax to describe the curves of -- 

chromosome boundaries. Examples of their productions are: 

<arm> ::= B <arm> 1 <arm> B 1 A 

<side> ::= B <side> 1 <side> B 1 B 1 D 

< submedian chromosome> : := <arm pair> <arm pair) 

A, B, and D are basic curve types. An obvious PDL syntax for the same example 

is : 

<arm > -(B+ <arm>) 

<side> -(B + <side>) 

<submedian chromosome> -( (<arm pair> 

E. Flow Charts 

1 <<arm> + B) 1 A 
1 (<side> + B) 1 B ( D 

+ <arm pair> ) * h ) 

None of the previous examples require the use of label designators and the 

/ operator. Flow charts provide a good illustration of a practical picture class 

for which the set (+ , - , x , *YN t is not adequate. A notational convenience is 

introduced for the examples of this section: Consider a PDL expression with 

standard form, 

s = s ( % p2 ‘n PI , P2 , ***, P,, P,,l’ P,+2’ ***Y Pm y > 
‘i where pi , 1 < i 5 n are the labeled primitives of the form and pi, n < i < m - 

are the primitives without labels. Then 

“nQ 
, ***, P n 2 Pn+I’ P,+2’ a.0 f Pm ; 

that is, the underbar on a label means that all primitives already labeled in the 

standard form of the expression, and only those, are given the additional label, 
. . 

e.g., (a’ + b)L z (alJ + b). This eliminates many redundant labels that would 

otherwise appear in the standard form of the PDL descriptions generated by the 

flow chart syntaxes. 

- 32 - 



The example illustrates how an algorithmic programming language can be 

defined by the syntax of its flow charts in conjunction with the syntax of its strings; 

the latter describes the allowable strings in the language while the former denotes 

flow of control. Figure 16 (a) contains samples of the primitives. The line seg- 

ments with arrow heads leading from enter, fn, and cond may be any sequence 

of concatenated segments thus allowing the head of these primitives to be placed 

anywhere in a picture relative to the tail. The box in fn is a functional box and 

pred represents a predicate or test. cond may be either the true or false branch 

of the predicate; the initial blank part at its tail carries it to one of the vertices of 

the diamond of pred. The primitives can be further described in PDL as concate- 

nations of line segments and circles, cond could be given a true or a false label, 

and character strings could be defined within the boxes. Figure 16 (b) contains a 

partial syntax for a simple ALGOL-like language. ASSIGNMENT statements, 

BLOCKHEAD (e. g., begin <declaration list> ) , BLOCKTAIL (e.g., end ) -! 

AE (<arithmetic expression>) , BE (< Boolean expression> ) , and VARIABLE 

are not defined further since this would add nothing essential to the example. The 

various statement types are similar to a subset of ALGOL GO(Naur 1963). GO TO 

statements are not included; they cannot be translated, from their syntax alone, 

into a flow chart. 

With the exception of ASSIGN, INIT, INC , and TEST, there is a one-to- 

one correspondence between the elements of the flow chart syntax of Fig. 16 (c) 

and the language syntax; each component of the language translates into a flow 

chart component. Examples of the flow chart elements are given in Fig. 16 (d) ; 

unlabeled hatched areas may contain any diagram generated by STMNT. 

The use of different label designators for S, BLOCK, STMNT, and BASIC 

ensure unique labels for each generation of TEST in the STEPUNTIL statement 

- 33 - 



and (ASSIGN + TEST) in the WHILE statement. For example, S could generate: 

(STMNT + (STMNT + (STMNT + STMNT’$- )s ) which is equivalent to : 

(STMNT + (STMN+ f (STMNT” + STMNT=‘) ) 1. 

Several automatic flow chart generating programs have been written. Some of 

these require the programmer to insert detailed flow charting instructions or com- 

ments in his source code (e; g. , Knuth 1963). Sherman (1966) describes the con- 

trol syntax of a source language by a series of descriptors, which are then used to 

produce a general flow charting program for the language; however, Sherman is 

unable to handle languages with recursively-defined elements. The methods pre- 

sented in the last example could serve as the basis for a general flow-charting 

program which does not have the above restrictions. Sutherland (1966) has designed 

and implemented a system for graphically specifying programs (on a computer- 

controlled display) and executing them; he uses an unconventional set of primitive 

elements for the flow charts and the computations. Flow charts could be drawn, 

syntactically analyzed, and executed within the PDL system to provide a more 

conventional and natural system of this type; a suitable set of semantic rules cm _li 

would have to be designed along with the interactive components of the system. 

Finally, it might be simpler for a compiler to deal with the derived flow chart 

rather than the source program for generating efficient code. 

It should be noted that the above applications are only educated predictions 

by this writer, since the details of such PDL flow chart generation and analysis 

systems have not been worked out. 

F. Some Description Limitations of the PDL System 

PDL is not a description panacea; the previous examples suggest its range of 

application. Further experimentation is necessary in order to precisely delimit the 

class of pictures for which useful descriptions maybe obtained. At this stage, never- 

theless, it is possible to enumerate some of its limitations and possible extensions. 

- 34 - 



The class of PDL descriptions, d(g), that may be generated from a context 

free grammar Z$ is theoretically limited (Chomsky 1959 , Ginsburg 1966). Con- 

sider the description of an arbitrary “staircase” of “X” ‘s on a grid (Fig. 17 (a)). 

If the notation 2 a represents 
i=l a+a+... +a, 

-- 
n a’s 

and the primitives h and v are those of Fig. 13, then the set 

it 5 [zh +F v])(Q,m,n> 11, 
i=l j=l k=l 

where ” c ” and ” 1 ” indicate expression grouping, contains all possible PDL 

staircase descriptions (without redundant parentheses) with constant horizontal and 

vertical distances. This set, however, cannot be generated by a context-free gram- 

mar since this would imply that 

{ ( (ab)m(cd)n)Q 1 m, n, Q I 11 

is a context-free language. 

Concatenation of picture elements is the only explicit relation in PDL. The use 

of blank primitives allows many simple geometric relations among disjoint picture 

elements to be expressed. There are a great many other relations that one might like 

t0 see directly expressible in apicturelanguage. For example,@ (Sl+ (b + S2) ), 

where S1 and S2 describe picture components and b is a blank primitive, might 

be the class of pictures such that the elements of some subset of c”(S,) is contained 

within those of a subset of @(S,); alternatively, one might want to say that some 

elements of @(S 1 ) overlap those of @(S 2 ) (Fig. 17 (b;). In either case, the in- 

tended relation is difficult to express generally; ifqS1) and @(S,) are severely 

restricted and b defined appropriately, then (Sl + (b + S2) ) might be satisfactory, 

but the more complex relation is not obvious. A related difficulty is that of relations 

depending on magnifications, rotations, and other transformations of pictures. In 

Fig. 17 (b), it might be desired to group the small triangle with the small square; 

- 35 - 



if a wide range of sizes and rotations of thes elements are possible, then a PDL 

description reflecting this size grouping cannot be found. A possible solution to 

this problem is to allow the definition of arbitrarily complex relations as blank 

and don’t care primitives; this has a natural appeal in that edges of a graph often 

denote relations. Use could also be made of the preservation of the topological 

relations among picture components under a large class of transformations. For 

example, if the primitive description of a picture (I! is: 

T&(U) = S(P1, ~3, . . . , P,) 

TV(a) = WPIL W,), +-- 3 W,) 3 

where 

Pi ’ @(Pi), i=l , l -*, n 

and A represents a magnification or rotation transformation, then 

where 

T&‘W = S(ql, q2’ 0-e 2 qn) 

T&W = WAP1), WV& . . . 9 JWP,) ) 3 

A Pi E @Si) * 

Each primitive is restricted to only two points of possible concatenation. There 

are many cases where more than two concatenation points appear to be necessary. 

Some of these can be treated in a natural way by a judicious choice of the tail and 

head. In Fig. 17 (c), the circles c and line segments Q are primitives; c has 

both its tail and head at the center of the circle. The multiple concatenation of the 

lines onto the central circle can be expressed by adjoining blank primitives b to 

each end of a line segment; then a description is: 

P-(c + ( (L + c) x (L + c) x (L + c) x (L + c) ) ) 

L-(b+B+b) 

- 36 - 



These suggestions are left for future work. The important points are: 

1. A large, interesting, and useful class of pictures can be described 

in a simple and natural manner within the PDL system. 

2. The system is capable of extension without destroying its basic 

simplicity. 

VIII. PICTURE PROCESSING APPLICATIONS 

The author’s thesis (Shaw 1968) presents a general algorithm for parsing 

(analyzing) pictures based on this description scheme. A top-down goal-oriented 

picture parser accepts (1) a primitive recognizer or pattern recognition routine 

for each primitive class and (2) a grammar, and it uses the latter to direct the 

analysis of pictures; a successful analysis of a picture Q! yields its description 

D(o) as output. The analyzer has been implemented and applied to a digitized 

sample of spark chamber film. Two experimental interactive graphics systems 

have been developed which employ the PDL language to describe pictures (Noyelle 

1967, and George 1967, George and Miller 1968). These systems allow a user at 

a CRT console equipped with a light pen to draw and manipulate pictures via PDL 

descriptions. Experience with these analysis and generation systems has demon- 

strated the potential usefulness of this approach to picture processing. 

PDL is being used as the description notation for a picture calculus which 

is currently in development (Miller and Shaw 1967). This calculus is comprised 

of the picture description language PDL, formal rules for transforming and com- 

paring pictures, data structures and control for generation of pictures, and the 

parsing and primitive recognizers needed for picture recognition. 

- 37 - 



IX. CONCLUSIONS 

The description scheme has the following properties : 

1. It is capable of describing, both to humans and to computers, a large and 

interesting class of pictures. 

2. The notation is simple and natural. 

3. Descriptions are complete. They contain both the syntax (structure) and 

semantics (meaning) of pictures in a form that allows a reasonable facsimile 

of a picture to be generated. 

4. Descriptions may be used to drive picture processing systems. 

5. Descriptions are (almost) independent of any digitized representation of a 

picture; that is, a description would generally remain invariant over changes 

in the number of levels of digitization of a picture and the coordinate system. 

6. The language is applicable to pictures in n-dimensions, for n 2 1. 

Current plans are to investigate the descriptive ability of PDL in other appli- 

cation areas, to continue the development of its formal properties as a part of the 

picture calculus, and to gain more experience on picture analysis and synthesis 

systems based on the scheme. 

ACKNOWLEDGEMENT 

The author is deeply indebted to his thesis advisor, Professor William F. Miller, 

for many useful discussions, for his constant encouragement and enthusiasm in this 

work, and for his constructive reading of this paper. 

- 38 - 



REFERENCES 

Anderson, A (1968)) Syntax-directed recognition of hand -printed two-dimensional 

mathematics. Ph. d. dissertation, Applied Mathematics, Harvard University. 

Chomsky , N. (1959), On certain formal properties of grammars. 

Inf. Control 2, 137-167. 

Clowes, M. (1967a), Perception, picture processing, and computers. Machine 

Intelligence 1, Collins and Michie (Eds. ), Oliver and Boyd, London, 1967. 

Clowes , M. (1967b), A generative picture grammar. Seminar Paper No. 6, 

Computing Research Section, Commonwealth Scientific and Industrial Research 

Organization, Melbourne, Australia. 

Eden, M. (1961)) On the formalization of handwriting. Am. Math. ~oc. 

Appl. Math. Symp. 12, 83-88. 

Eden M. (1962)) Handwriting and pattern recognition. IRE Trans. Inform. 

Theory IT-8, 160-166. 

Feldman, J. and Gries, D. (1968), Translator writing systems. Commun. Assoc. 

Comput. Mach. 11, 77-113. 

George, J. (1967), Picture generation based on the picture calculus. GSG Memo 

5 0, Computation Group, Stanford Linear Accelerator Center (internal report). 

George, J. and Miller, W. (1968), String descriptions of data for display. 

SLAC-PUB-383, Stanford Linear Accelerator Center. Presented at 9th 

Annual Symposium of the Society for Information Display. 

Ginsburg, S. (1966), The Mathematical Theory of Context-Free Languages. 

McGraw Hill, New York, 1966. 

Kirsch, R. (1964), Computer interpretation of English text and picture patterns. 

IEEE Trans. Electronic Computers EC -13, 363-376. 

Knuth, D. (1963), Computer-drawn flowcharts. Commun. Assoc. Comput. Mach. 6, 

555-563. 
- 39 - 



Ledley, R. , Rotolo, L. , Golab, T., Jacobsen, J. , Ginsberg, M. , and Wilson, J. 

(1965), FIDAC: film input to digital automatic computer and associated syntax- 

directed pattern recognition programming system. Optical and Electra-Optical 

Information Processing, Tippet, J., Beckowitz, D., Clapp, I,. , Koester, C. , 

and Vanderburgh , Jr. , A. (Eds.), M. I. T. Press, Cambridge, 1965. 

Lipkin, L. , Watt, W, , and Kirsch, R. (1966)) The analysis, synthesis, and descrip- 

tion of biological images. Annals of the New York Academy of Sciences 128, 

984-1012. 

Miller, W. and Shaw, A. (1967), A picture calculus. SLAC-PUB-358, Stanford 

Linear Accelerator Center. Presented at the conference on Emerging Concepts 

in Computer Graphics, University of Illinois (to be published). 

Narasimhan, R. (1962), A linguistic approach to pattern recognition. 

Digital Computer Laboratory Report No. 121, University of Illinois. 

Narasimhan, R. (1964), Labeling schemata and syntactic description of pictures. 

Inf. Control 7, 151-179. 

Narasimhan, R. (1966), Syntax-directed interpretation of classes of pictures. 

Commun. Assoc. Comput. Mach. 9, 166-173. 

Naur, P. (Ed. ) (1963), Revised report on the algorithmic language ALGOL 60. 

Commun. Assoc. Comput. Mach. 6, 1-17. 

Noyelle, Y. (1967), Implementation on the PDP-1 of a subset of the picture 

calculus. Term project for CS260, Computer Science Department, 

Stanford University (internal report). 

Shaw, A. (1968), The formal description and parsing of pictures. Computer 

Science Report No. 94, Computer Science Department, Stanford University 

(Ph. D. Thesis). 

- 40 - 



Sherman, P. (1966), FLOWTRACE, a computer program for flowcharting 

programs. Commun. Assoc. Comput. Mach. 9, 845-854. 

Shutt, R. (Ed. ) (1967), Bubble and Spark Chambers, Vol. II. Academic Press, 

New York, 1967. 

Sutherland, W. (1966)) On-line graphical specification of computer procedures. 

Technical Report No. 405. Lincoln Laboratory, M. I. T. 

- 41 - 



FIGURE TITLES 

No. Fig. Descriptive Lege_nd 

1. Hierarchic description of a picture. 

2. Representation of a picture primitive. 

3. An invisible primitive. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

4. An extreme case of a connected pit ture. 

4(a) Labeled picture 

4(b) Corresponding graph 

Graphs of binary concatenations. 

Primitive structural descriptions of an “A” and an “F”. 

Local completeness of { +, X , - , * ) . 

PDL descriptions with labels and / . 

8(a) The complete 4-node graph with directed edges 

8(b) A 3-dimensional cube 

The graph of a vPDL. 

Theorem 2 

10(a) head (p,,,) c@ head (pi) 

lo(b) head@n+l) _ cat head (pi) A tail (pn+I) cat head (pj) 

Structure descriptions of a picture. 

11(a) ~X(-Gl and primitives 

11(b) Examples and parse of a “P” 

Particle physics example. 

12(a) Sample pit ture 

12 (b) Primitives 

12(c) syntax g 

- 42 - 



Fig. No. 

13. 

Descriptive Legend 

Right-Angled 45’ triangle of Kirsch . 

13(a) Primitives 

13(b) g: Right-Angled Triangle 

13(c) Examples 

14. Simple English block characters . 

15. 

16. 

17. 

14(a) Primitives 

14(b) Examples 

14(c ) Primitive s true tural descriptions 

A page of English text 

15(a) Sample 

15(b) Primitives 

15(c) g: Syntax for a page of text 

String and flow chart syntax for a small algorithmic language. 

16(a) Primitives 

16(b) Small language string syntax 

16(c) Small language flow chart syntax 

16(d) Examples 

Some description limitations. 

17(a) Staircase of “X”‘s 

17(b) Complex relations among figures 

17(c) More than two concatenation points on a primitive 

- 43 - 



LC, xsect (v,, vc) 

;/n 

1 

6, VQ, @ 

(Q, ?,, 

(C, vc’ 

(CT “J 

Fig. 1 

Information and Control 
Alan C. Shaw 
Fig. 1 



tail 

Primitive p 

head 

/ 

P 

Abstracted Primitive 

Fig. 2 

Information and Control 
Alan C. Shaw 
Fig. 2 



I 

visible track 
of charged 
particle 

t 

unseen neutral 
particle track 

1024A3 

Fig. 3 

Information and Control 
Alan C. Shaw 
Fig. 3 



h 
P 

/hq 

q 
-P hbq9 5 / hr 

/ / 
/ 6 

I 

1’ 
r 

ezzzT& 

b 
P 
I 
I 
I 
I 
I 
I 
I 

/ 
bs/’ hb ’ trw 

r / 
/ 0 

/ 
/ 

/ / / 

h 

I ///’ 
lb4 f. origin 

53 ’ tb ’ 53,’ tbs 
P q 

Fig. 4 (a) 

1024A4 

Fig. 4 (b) 

Information and Control 
Alan C. shaw 
Fig. 4 (a), (b) 



Ts (4 Graph 

@I+ 3) 

(Sl x 9 

ts1* 53) 

h 

:,, 

h 

/ 

s2 

t 

t 
s1 h 

s2 
t a h 

% 

Fig. 5 

Information and Control 
Alan C. Shaw 
Fig. 5 



T&9 = ( ctp + 
I 

=h 

Primitive Classes 

((( dp+h 

TStF) = (VP + 01 x (VP + h) ) ) f-- 

t- 

1024A6 

Fig. 6 

Information and Control 
Alan C. Shaw 
Fig. 6 



Concatenation 

a 

b 

f- 
a 

b 

3 
a 

-72 a 

22 
a 

A 
a 

Description 

(a f b) 

(a x b) 

(a - 9 

(b f a) 

(a * b) 

t @+b) * A) 

1024A7 

Fig. 7 

Information and Control 
Alan C. Shaw 
Fig. 7 



TsW = d + a) -* (U/h + d) + (Ah) * ((a + bj) * c)) 

1 I Li------’ 1 I 

L t/' 7 

I J I J 

iP f 1 J 
0 

Z 
Y IL- 

X 

Fig. 8 (a) 

I 

Y 

a 

I 
,c- -- 

/ Z 

t x 

TJ@) = ( ( (x * ( (Yi + x) + l-Y\ ) ) 

* uu/Yi)+z)+((~* ((-Y)+(xk+Y))) 

+ 6-z) ) ) + (- C/Y5 ) ) ) 

* ( (z + c/4 ) + (4 ) ) 

l024A8 

Fig. 8 (b) 

Information and Control 
Alan C. Shaw 
Fig. 8 (a) , (b) 



I 

( ( ( (ai f b) * (b f a) ) * c) + (/ai) ) 

step 2 
> ( ( ( (ai + b) * (b + a) ) * c) -I- a)) 

1024A9 

Fig. 9 

Information and Control 
Alan C. Shaw 
Fig. g 



head 

%+l 

Fig. 10 (a) 

1024AIO 

Fig. 10 (b) 

Information and Control 
Alan C. Shaw 
Fig. 10 (a), (b) 



P - A 1 HOUSE 

A -* (dp + (TRIANGLE + dm) ) 

HOUSE + ( (“1 + (h + (-vm) ) ) * TRIANGLE) 

TRIANGLE --+((dp+cW *h) 

Li?t%= ~(dp+(((dp+~)*h)+~j), 

dm 

Fig. 11 (a) 

Ts(Qi) = ( ( - + (h + b-j i ) * ( (d-P + b) * hj j 

Hs(ai)’ P 

1 
HOUSE 

Information and Control 
Alan C. Shaw 
Fig. 11 (a), (b) 

Fig. 11 (b) 1024All 



X n omm X 

origin \X 

Fig. 12 (a) 

bl n bon 
- - 

dp /r dm * 

eh - C 

en 0------d - 
P es / 

/’ f 
? 

ec e--+ t I ep 
- A 

Fig. 12 (b) 

PICTURE --) (es + (FI + (FID x (ID x PT) ) ) ) 

FI -+ (dp+(~WpxW-dm)N 

FID -+ Ueh+W+t(ev+X)) -(X+eh)H 

ID -+ ( (eb + B) + ( ( ec + B) + ( (ec + B) + (ec + B) ) ) ) 

PT - (ep+TW 

X + ((dpxcWx((-dp)x(A--cW)) 

B --. bojbl 

-i 
2 - TM - 
g s 

(cm + MD) / (cm + MP) 1 cm 

1 .. 
MP 

e^ 
+ (P+((TMxTP)xTN))j(P+(TMxTP)))(P+TN) 

cd 3’ n 
.z 4 z 

MD - (TMxTN)ITM 

2 862 TP - (CP + PD) 1 CP 

Q& 
?! . 2~ 

TN -+ (en + (N + (TM x TP) ) ) 

PD - (TPxTN)(TP 

P + h 

N +A Fig. 12 (c) 
1024A12 



x: x 
cl 

RAT 

IRAT 

DH 

DI 

V 
W 

R 
H 

B 

L 

I 

Fig. 13 (a) 

-(t(v+h)+(IRAT+(v+W)))*DH) 

-(t(B-+h)+~T+tv+L)))*DI) 1 (x+R) 

-((d+H)+W 1 d 

-((d+I)+DI) Id 
- h 

- A 

- h 
- h 

- A 

- h 

- A 

DI DH - 

X X 
X X 

X X 

?I xH 
X X 

X X 

Information and Control 
Alan C. Shaw 
Fig. 13 (a), (b), (c) 

Fig. 13 (b) 

IRAT 

xR 

xL 

xB % 

xL 
XI xL 

xr XI xL 
%Xr5tXL 

xB xB xB xB xR 

Fig. 13 (c) 

RAT 

xw 
xV% 

xH xL 

xH 3 xL 

‘H 3 3 xL 
x x x x x V B B B R 

t 

1024813 



gl: \I 

g2: 
1 

g3: 

\ 
\ 

B 
t h 

K 
t h 

S 
t h 

dl: If 

d2: 

d3: 

// 

Fig. 14 (a) 

D t h 

cl 
t h 

U 
t h 

hl: - 

h2: - v2: t 

v3: 

1 

s 
t h 

R 
i; h 

X t h 

Fig. 14 (b) 
1024814 

Information and Control 
Alan C. Shaw 
Fig. 14 (a), (b) 



A - (d2 + ( (d2 + g2) * h2) + 82) 

B- ((~2+((v2+h2+gl+(-(dl+vl)))*h2)+gl+(-(dl+vl)))*h2) 

c - (((~gl)+v2+dl+hl+g1+(~~1))~(h1+((dl+v1)xh))) 

D- (h2 * (v3 + h2 + gl f (- (dl f v2) ) ) ) 

E - ( (v2 + ( (v2 + h2) x hl) ) x h2) 

F- ( (v2 + ( (v2 + h2) x hl) ) x h ) 

G- ( ( ( - gl) + v2 + dl + hl + gl + (-vl) ) x (hl + ( ((11 + vl - hl) x h) ) ) 

H- (v2+(v2x(h2+(v2x(~v2))))) 

I - (v3 x A) 

J - ((((-gl)+vl)xhl)+((dl+v3)xh)) 

K- (v2 + (v2 x d2 x g2) ) 

L- (v3 x h2) 

M- (v3 + g3 + d3 + ( - v3) ) 

N- (v3-kg3-t (V3XA)) 

O- (hl* ((-81) +v2+dl+hl+gl+ (-(dl+v2)))) 

P- ((v2+((v2+h2+gl+(-(dl+vl)))*h2))>:h) 

Q- (hl* ((-81) +v2+dl+hl+gl+ (m(dl+ ((-gl) xgl) +v2)))) 

R- (v2+ (h2* (v2+h2+gl+ (-(dl+vl)))+g2) 

S - ((((-g1)+vl)xhl)+((dl+vl+(~(gl+hl+gl)) 
+vl+dl+hl+gl+(-vl)) XA)) 

T - ( (v3 + (hl x (--hl) ) ) x A) 
U- ( ( ( ( - 81) + v3) x hlj I- ( (dl + v3) x ii) ) 
V- (t-g3 xd3xx) 
W- (((+3)+d3+g3)+(d3xA)) 
X- (d2+ ((-g2) xd2xg2)) 

Y- Uv2+((-@)=WxV 

Z - ( (d3 - h2) x h2) 

Fig. 14 (c) 

Information and Control 
Alan C. Shaw 
Fig. 14 (c) 



/ 
origin 

t 

THIS IS AN EXAMPLE OF A PAGE OF 

TEXT DESCRIBED BY THE GRAMMAR G. ALL 

LINES ARE LEFT JUSTIFIED 

AT THE MARGIN. A SENTENCE MAY START 

ANYWHERE ON A LINE. THERE ARE NO 

BLANK LINES BETWEEN LINES OF TEXT. 

G DESCRIBES A PAGE IN 

TERMS OF CHARACTERS WORDS SENTENCES 

AND LINES. 

-L 

Fig. 15 (a) 

Information and Control 
Alan C. Shaw 
Fig, 15 (a) 



left: 
t 

------ 
margin: - 

I 
ils: i 

i 
1 

period:. 

right: bottom: 

linewidth 

\ 
start: \, 

\ 
‘b 

eh: c-----e ev: 
- 

iws: O---d its: o---o 
- - 

Fig, 15 (b) 

PA GE - (start + (S + EOP) ) 

S - SENT 1 (S + SENT) 

SENT + (BEGINSENT + (L + (its + period) ) ) 

BEGINSENT - iws 1 (EOL + ( (linewidth + left) + (ils + margin) ) ) 1 h 

L - LINE ] (L x ( (ils + margin) + LINE) ) 

LINE - WORD 1 (LINE + (iws + WORD) ) 

WORD - CHAR (WORD+ (its + CHAR) ) I 

CHAR -ABC...... YZ I I I I 

EOP --+ (ev f bottom) 

EOL - (eh + right) 

Fig. 15 (c) 1024Al5 

Information and Control 
Alan C. Shaw 
Fig. 15 (b),, tc) 



enter t*h 

fn r-h 

t h 

exit 

t 0 .h 

pred 

cond rh it th 
I 
t 

Fig. 16 (a) 

Information and Control 
Alan C. Shaw 
Fig. 16 (a) 



PROGRAM 

BLOCK 

STATEMENTLIST - 
STATEMENT 

BA SIC 

CONDITIONAL 
FOR 
STEPUNTIL 

WHILE 

IFTHEN 

IFTHENELSE 

PROGRAM 

BLOCK 

S 

STMNT 

BASIC 

CNDTNL 

ASSIGN 

FOR 

ST EPUNTIL 

WHILE 

IFTHEN 

IFTHENELSE 

INIT 

INC 
TEST 

BLOCK 

BLOCKHEAD;STATEMENTLIST BLOCKTAIL 

STATEMENT 1 STATEMENT; STATEMENTLIST 

BASIC 1 CONDITIONAL 

ASSIGNMENT 1 FOR IBLOCK 

IFTHENIIFTHENELSE 
STEPUNTIL 1 WHILE 
for VARIABLE := AE step AE until AE do STATEMENT - - 
for VARIABLE := AE while BE do STATEMENT - 
if BE then BASIC - 
if BE then BASIC else STATEMENT 

Fig, 16 (b) 

BLOCK 

(entry + (S + exit) ) 

STMNT 1 (STMNT + S’ ) 

BASICICNDTNL 

ASSIGNIFORIBLOCK~ 

IFTHENI IFTHENELSE 
fn 

STEPUNTIL 1 WHILE 

( INIT + ( ( ( (TEST ” + cond) + SI’MNTSU) 

* ( -1NC) ) x ( (/TEST s”) + cond) ) ) 

( ( ( (ASSIGN + TEST) w + cond) * (- STMNT~) ) 

x ( (/(ASSIGN + TEST)W) + cond) ) 
(pred -I- ( (cond + BASIC’) * cond) ) 

(pred + ( (cond + BASIC =) * (cond + STMNsg) ) ) 

fn 

fn 

pred 

Fig. 16 (c) 

Information and Control 
Alan C. Shaw 
Fig. 16 (b), (c) 



I 

t- 

WHILE 

(i) FOR 

h 

STEPUNTIL 

BASIC 

IFT HEN IFTHENELSE 

(iii) PROGRAM or BLOCK 

h 

BASIC 

1024A17 

Fig. 16 (d) 

Information and Control 
Alan C. Shaw 
Fig. 16 (d) 



X 

X 

xxxx 

X 

xxxx 

X 
37 .A ,Y ‘<- x 

.Yz 

xxxx 

X 

xxxx 

X 

X 

X 

X 

xx 

X 

X 

X 

XX 

X 

x 

X 

XX 

Fig. 17 (b) 

Information and Control 
Alan C. Shaw 
Fig. 17 (a), (b) 



0 1024Al9 

Fig. 17 (c) 

Information and Control 
Alan C. Shaw 
Fig. 17 (c) 


