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ABSTRACT 

Modern cosmological theories imply the existence of a univcr- 

sal degenerate Fermi sea of neutrinos. The fact that the Fermi 

energy Kf varies from theory to theory could in principle be used 

to help decide which universe we live in. 

We show that a parity violating term is introduced into Maxwell’s 

equations as a result of the neutrino sea. In particular we study 

whether a new, meaningful limit on the Fermi energy can be estab- 

lished by studying the propagation of light and the character of mag- 

netic fields in such a neutrino sea. Unfortunately, the solutions to 

these equations show that the effect of the neutrino sea on electro- 

magnetism is too small to be observed. 
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B. Derivation of the Modified Maxwell Equations 

As stated in the introduction, the first derivation of the neutrino-sea-depen- 

dent term in Maxwell’s equations is rather heuristic. This derivation is moti- 

vated by the desire to add a parity violating term to Maxwell’s equations con- 

sistent with the usual requirements of Lorentz covariance and differential 

current conservation. 

We assume that the neutrino sea is completely filled at an absplute temper- 

ature of T = O’and thus characterized only by the Fermi energy KE. We define 

a 4-vector Ku so that it has components K” = KF,z = 0 in the rest frame of the 

neutrino sea; i. e. , the frame in which k-space is filled symmetrically about 

the origin. Ku then characterizes the neutrino sea in an arbitrary frame? We 

assume for simplicity that the eldra term depends linearly on KU and the electro- 

magnetic field tensor. We also exc1ud.e the possibility of derivative terms. The 

motivation to search for an extra term with parity opposite from the rest of the 

equation is based on the hope that the parity violating effects can be more 

easily observed than those which do not violate parity. 

For reference,we write Maxwell’s equations: 

a, FVu = 47i;T’ 

capGY a’ F6’ = 0 . 

With the preceding-remarks in mind, we see that the two possible candidates for 

extra terms are the 4-vectors 
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Thus the modified Maxwell equations which include parity violating terms are5 

a uF vu = 47iJV +C1c VCGY K F 
o! 6Y 

, 

The co-efficients Cl and C2 are assumed to be constant,which corresponds to 
6 

assuming a constant spatial density of neutrinos in the universe. We can 

prove that C2 = 0 as follows. Contract Eq. (4) with aa. The left side of the 

equation vanishes identically and we have C2K* acy FolS = 0. Substitution of 

a”F& from Eq. (1) into this expression yields 

4n C2 KSJ8 = 0 

Since Ja is arbitrary, this implies C 2 = 0. 

The modified equations now assume the form 

auFVU = 4n Jv + Cl ‘Vo16YK~F~y 

ecyp8y bPF6’ = 0 

(5) , 

. (6) 

These equations are consistent with current conservation,which can be seen by 

contracting Eq. (5) with a’. The constant Cl will be determined in the micro- 

scopic derivation. 

By writing this out in the more familiar vector notation, 

we see that the neutrino sea introduces a parity violating term in the induction 

law. 
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The microscopic derivation is based on elementary particle formalism. 

The object of the calculation is to determine the first-order weak correction to 

the photon propagator produced by the neutrino sea. Feynman graphs for this 

process are shown in Fig. 1. The photon propagator is altered because of the 
+- - 

interaction of the virtual e - e pair with the neutrino sea. The formalism is 

developed and the detailed calculation carried out in the appendix. The method 

of calculation is first to determine the modification of the electron propagator, 

and then to use the modified electron propagator in the usual calculation of the 

photon polarization tensor. The result of the calculation is that the polarization 

tensor is modified by the finite term 

eoUV CJ 4, + 0(q2/Mi) 

where we have evaluated Ku in the rest frame of the sea. 

In order to compare this with the first derivation and to determine the con- 

stant C 1’ we use the fact that the exact photon propagator satifies 

CYX DuV(q) = D&(q) + D:CL(q) ’ DhvW 

or 

(D-l)uu = kD”) -‘>,, - fluV 

The determinant of,(D -l)uv = 

for the electromagnetic field. 
V 

- nuvthen gives the dispersion relations 

If we now find the dispersion relations for the modified Maxwell equations, 

they must be the same as the dispersion relations derived from the microscopic 

picture. This is carried out in the appendix and we see that the dispersion 

relations are identical if we set Cl = AZ- K2e2/lS 51p . 
dz F 

This determines the 

constant Cl and shows that the two deriLrations lead to consistent results. 
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C. Discussion of the Modified Maxwell Equations, 

The modified Maxwell equations are 

-- 
v l E = 4np p. B=o 

aE vxf3=47rF-KB+ at 

where we have set 

Ku = (KF,z and -27 Ki (KF in eV) 

Now we proceed as in any elementary teti and solve these equations in every 

possible way. Looking at the static equations first, we see that it is only the 

magneto-static equations which are affected by the anomalous term. These 

equations are 

TX B+ KB = 47ry V.-g+) 

- - 
The solution is readily found by making the substitution B = V x A - Kn . The 

equation for Xis - V2h - K2x = 4~7 with the condition p A = 0 . The solution is 

X(x!) = 
/ 

d3x COSKI? -xl - ; 
4nl2 -Ti( J (x) 

‘The solution for % , to first order in G is then 

B =bxAo -KAO 

where 
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This solution presents the interesting result that the magnetic field from a 

localized static current should have a term which drops off as l/r instead of 

the usual l/r2 , To estimate the distance from the source where such a term 

would be observable we simply assume that the first term in B goes like l/r2 

and the second like K/r. . -When the terms are equal r = l/K . To discuss the 

feasibility of doing this experiment, we take a conservative value (compared to 

Weinberg’s estimates) of Kf = 1eV . This gives a result of r = 10 121t yr. An 

experiment based on this would be out of the question since the age of the uni- 

verse is believed to be only about 10 10 years. 

Another possibility which suggests itself is that of setting up an experiment 

in which the two parts of 5 , namely v x x0 and u. are perpendicular to 

each other. For example, one might set up a current in a wire along the z-axis, 

as in Fig. 2. Then x0 will be in the z-direction and v x A, in the (x, y) 

plane. The fact that v x x0 and tie are perpendicular might allow one to 

measure I% 0’ Unfortunately, this is again impossible as is seen by comparing 

the two terms 

K 1 AOi N 1O-22 cm-l 1 A0 1 

lAoI lfTxzio/- -ii--- 

where L is some laboratory-sized dimension, say L 1 cm. Thus 

K lAOI 

I I/ 
N 1o-22 

A0 L 
So we wou1.d be required to measure fields which are 10 -22 times smaller 

than laboratory fiel.ds. 
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Another interesting case is provided by the propagation of light in a source- 

free region. The appropriate equations are 

v .E=o v l jfj =() 

G- Tfxg-=- 
at - Kg 

A solution is easily obtained by assuming a wave to be propagating in the z- 

direction with frequency 0 and wave number p. The divergence equations 

insure that E and B are in the x-y plane. The curl equations yield the following 

results. There are two non-degenerate eigensolutions, namely the left- and right- 

handed polarization modes. The usual degeneracy is destroyed by the parity vio- 

lating term in the modified Maxwell’s equations, so that each mode has its own 

dispersion relation. 

zR = A [4X + iby] e 
i@z-w,t) 

FL= A [& - igy] e 
i (pz -wLt) 

X 

. 
gL = 2 FL 

W 

2 2 
wcp -Kp 

Illustrated in Fig, 3 al-e the dispersion relations for the two propagation modes. 

We see that WL is imaginary for p < K and so the L. H. polarization mode cannot 

propagate for p <Ii, This cutoff wavelength with Kf = 1 ev is hem $ - i -1012 It yr. 

Any attempt to put meaningful limits on Kf by observing the above dispersion 

relations would require measurements of \vaveler@hs the same order of magneture 

as hc and thus seems to be out of the question. 
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The fact that the two rotational modes have different dispersion relations 

leads to the suggestion that one may be able to observe the rotation of linear 

polarization. For example, if we polarize a beam along the x-direction at t= 0, 

its subsequent behavior will be 

$xc~~(WR-~L);+$ 
Y sin (wR - ~3 1 c cos (W&- WL) f - Pz 

3 

After a time T = 
7T 

WR--WL ’ 
the polarization vector will be in the y-direction. 

For measurable wavelengths we have K << p so 

WR = 

L 

Therefore, 

uR-wL=K and T N n/K -1012 years. 

Again, we haven’t the time to wait. 

The solution for the time-dependent Green’s function is presented in the 

appendix. The extra term in Maxwell’s equations effects the low frequencies in 

the propagator through the same dispersion relation found in source-free propa- 

gation. Thus, radiation from the low frequencies in the source might exhibit 

properties differing from the propagation with the usual dispersion relation 

W2 = P2 . However, the problem is,as before, that of detecting such low fre- 

quency radiation, 

Up to this point we have been concerned with the photon or electron propa- 

gating through a stable Fermi gas of neutrinos; i. e., lF>in= IF>out - we 

would now like to consider the scattering of the photon off of the sea. We will 

have an initial ltinlY state 

-+ 

YKXIF) 
in 
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consisting of a photon and the ‘lvacuumtf and a final rroutll -state 

+ + + 
aplsl ‘p2s2 YKlX’ I 

F> 

out out out 

which consists of a photon, a neutrino, a hole and the “vacuum. 1’ This is just , 

the physical process of a photon knocking a neutrino out of the Fermi sea. We 

can calculate a lifetime for the photon this way by calculating the total cross 

section to see how long it takes the photon to scatter completely out of the initial 

beam. The relevant Feynman diagram is presented in Fig. 4. 

Using the formalism developed in the appendix, the calcuIation is 

straightforward, if tedious. The expression for the total transi- 

tion rate out of the initial state for low frequencies w << me , is 

K4 G2e4 
A $5 (:24) 

For visible light with Kf = 1 ev, the lifetime is T = l/A”10 
37 years. 

If we assume the lifetime to be 10 10 years, which corresponds to the most 

distant light sources observed, we get an upper limit on KF . 

Unfortunately, this limit doesn’t tell us anything since much better limits 

have been established. 

D. Summary 

We started with the assumption that the universe is filled with a degenerate 

Fermi gas of neutrinos at zero temperature. We have derived in two different 
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ways a neutrino-sea-dependent term which modifies Maxwell’s equations. 

The solutions which we studied lead to the conclusion that the neutrino-sea- 

dependent terms are too small to be observed. Any limit on Kf which follows 

from these solutions is much higher than limits already established. 
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APPENDIX I: EXPLANATION AND ILLUSTRATION OF THE FORMALISM 

In Appendix I we explain the formalism and use it to derive contributions 

to the electron self-energy and to the photon polarization tensor. 

A. Formalism 

The only difference in the following formalism and the usual formalism is thatwe 

assume that all neutrino states with energy less thanKF are filled. These filled states 

are just the neutrinos which comprise the neutrino sea. We then define a new “vacuum” 

[F> = fl 
all K<KF 

b”Ks IO> IFin>= IFout>= IF’ 

all s 

where b+ KS is the creation operator for a neutrino of momentum K spin s. 

We use the usual minimal electromagnetic interaction and the current- 

current form of the weak interaction. Although the weak interaction is CP, T, 

and CPT invariant, our vacuum is not,because the neutrinos turn into anti- 

neutrinos . This asymmetry allows effects such as an e--e+ mass difference. 

The neutrino field operator is 

For convenience in calculation, we make a canonical transformation to neutrinos 

and holes, as follows.’ We define two new operators. 

These new operators obey the usual fermion commutation rules and have 

the virtue of destroying the vacuum. 

aps I F>= c ps F>=O 
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-I- 

aPs 
creates neutrinos and c i- 

Ps 
creates holes. d’ 

Ps 
as usual creates anti- 

neutrinos. In terms of these new operators, the neutrino field operator be- 

comes 

& (4 = c /g3 
5s 

,/s [Ups eBipex aps ~(p-KF) I- Ups eWip* x cpfs 8(x,-p) 

+v d+ eip*x 
Ps Ps 3 

Using the above formalism we calculate the neutrino propagator. 

i sFv (X-X’) = < F 1 T &,(x) TV (XI) 1 F > 

-ip. (x-xl) 

2P. 

B. Electron Self-Energy 

The weak interaction current-current Hamiltonian is 

The first order weak correction to the electron propagator is 

i Sk-(XI-x) = -i 
/ 

d4s <FIT tie(x’) ~e(xl HwO 1 F> 
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Using Wick’s theorem, we find that to first order in the .weak interaction, the 

self-energy is 

c 
G ‘-; 

@I=~ - 
3n2 

y() (1 - Y5) 

The Feynman diagram for this process is shown in Fig. 5. This self-energy 

produces an electron-positron mass difference which is seen as follows. We 

take the expectation value of the modified electron Hamiltonian between electron 

states and between positron states at rest. 

H’ =z-p +pm+PC@) 

<e-lHII e>= m -I- AE 

<e’lH1l e$= - m + AE 

so 

6m = (m+AE) +(-m+AE)= 2AE 

where 
1o-23 AE=G/..- = - 

3x2 
K3 

37r2 F 
KF in eV 

This result is not surprising in view of the asymmetry in our boundary con- 

ditions which means that TCP is not a good symmetry. 

C. Photon Polarization Tensor 

To calculate the photon polarization tensor we will use the modified electron 

propagator in place of the tisual electron propagator. This procedure can be justi- 

fied by using Ii7ickts theorem and perturbation theory. We will keep terms 
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which are first-order in the weak interaction. The diagrams which contribute 

to the first order weak correction are shown in Fig. 1. 

inu,(s) = -e2/G4 TR [yu Si @)Yu Si W-P)] 

where 

If we plug in is; (p) and keep only first-order weak terms, 

’ inuu (q~=-C/~4 TR[Yu & yY+m yO(1-y5)‘$$7i7 

where 
C = e2 G/G Ki /3rr2 

We can use the charge conjugation operator to simplify this to 

inky(q2) 1 1 1 = 2~ s 4 TR r 
Lyu $-m+iC 

Y 
PI 

YgY5-- lqq-xGz 1 
Using the identity 

co 

1 

I4 =-iM+m)o 
/ 

clz eiz Cp2-m2+iE) 
-m+iE 
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to elevate the denominators and making the substitution B = p - - q which ,” 

completes the square in the exponent, we have 

[ 
-+z3-Jl+z2( + m2(2z3+z1+z2) + q2z$yi-z21] 

Z 

i 
[ 

(z~+zp3 

Z q2 - z (m2-iE) 
xe 3 

where z=z1+z2+z3 . 

We can subtract 0 from this expression in the form 

Now introduce under the integrand and scale all the z’s 

. by the substitution zi--+ Xzi . Then we do the X integral. 

iC 
cc co co 

irr’ CY 
uv =- 27r2 cou vcYq 

/J/ 
d”l k2 h3 SP - 4 

- 0 0 0 

X 

i 

[ 
m2(2z3+z1+z2) +q2zi(z1+zd 

1 
~ (2z3-zl-z2) 1og (m2-ir) 

i m 
c 

2 -iE-z 3 (“I+ “2) q2 1 i 
( 

m2-it- -z3(zI+z2)q2 
> i ’ 
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To zeroth order in q2/m2, we have 

in&,(q) = e2 -$- KS --$- EOuvolqa 

To first order, this result is independent of the electron mass and is the same as 

the result for the muon in a mu-neutrino sea. 
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APPENDIX II: SOLUTION FOR THE TIME-DEPENDENT GREEN’S FUNC- 
TION OF THE MODIFIED MAXWELL’S EQUATIONS 

Solution for the time-dependent Green’s function of the modified Maxwell’s 

equations is explained in Appendix II. 

We start with the equations 

auFVu = 4nJV -(K/2)e”‘O’ Fry a (1) 

(2) 

Equation (2) permits us to introduce a vector potential AU , where 

F uv = avAu _ a”Av . Equation (1) becomes 

allau2 - $(a,A”, = 4nJ” - (K/2)E Ovaa[$A~ - aoA,l 

Now we choose to solve this in the Lorentz gauge a,A” = 0. The equations 

are then 

v=o 

v = 1,2,3 

a,a”A, = 4;rrJo 

a,a’z= 47& K (TXx) 

(3) 

(4) 

These equations are solved by Fourier transforming the equations and inverting 

the operators. 
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The solution of Eq. (3) is well bown 

- x’) J,(x’) 

where 
G(x) YZ - 

s 

The solution of Eq. (4) is a little more laborious. If we assume the solution is 

of the form 

Ai = 47~ 
/ 

d4x’ Gij (x - x’) J j (x’) 

then Gij(x) satisfies 

ca,a" 6ij + K c imjV,) Gjk(x) = 6ik64(x) 

or 

NOW we must invert ( - pz aij $ iKEimj pm) considered as a matrix in ij. 

m.. = 
11 

- iK.p3 

- P2 

+ iKpl 

+ iKp2 

- iKPl 

2 
-P 

Gij@) =(m-jij = 
-  P2Sij -  

iK E imjPm + K2 P iPj 

(P~)~ - K2t,12 p’[(~$~-R”/pi “3 
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and 

so 

Gdq = s d4r, ~ emip ’ x Gij(p) 
(27-o 4 

X(x1) = 47T 
f 

d4p d4x --- .-ip . (x’-x) - p 2 r(x) - iK 6x3(x) + K2rF. x(x) 

m4 . (p2)2-K21p/2 p2 [(P2)2-K2iY-il 1 
and 

A, (~‘1 = 
-ip . (XT-x) 

(- P3 
Jo(x) 

We can make this a little simpler by making a gauge transformation. 

A(x’) = -i- K2 TX, l 

2l 

Z(x) = X(x) -!- C\(x) 

Ab (x) = Ao(x) 

Then 

dp4dx4 I 
2- 

A’(“‘) = 47r 
,-ip . (XT-X) - p J (x) - iK,sx(x) 

PM4 CP5” - K2iPl 2 1 
-s 4 4 

Ah (x’) = 4~ cpe e -ip . (xl-x) 

m 
[ &;,‘,;I 
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APPENDIX III: EQUIVALENCE OF THE TWO DERIVATIONS OF THE 
MODIFIED MAXWELL’S EQUATIONS 

Appendix III shows the equivalence of the two derivations of the modified 

Maxwell Equations. 

We will show the equivalence of the two derivations by showing that they 

both have the same dispersion relation. From Appendix II we have the dispersion 

relation for the first derivation. 

P2 [(p”,” - K2 15 12] = 0 

To find the dispersion relation for the second derivation we must find the poles 

of the modified photon propagator. We use the fact that 

Uhuv = tD;‘& - n& 

The dispersion relation is given by the determinant of the matrix (Do -5 -7r&) w 

=> p2[(p2)2 - K21Fi2] = 6 

0 -iKp2 iKp 1 
2 

-P 

which is identical to the dispersion relation obtained in the first derivation. 
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FIG. l--Polarization of the photon propagator by the neutrino sea. 

/ _ x lOllA 

FIG. 2--Proposed experimental setup where the two parts of B are 
perpendicular to each other. 
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FIG. 3--The dispersion relations fk light propagating in the neutrino sea. 

FIG. 4--Light scattering off of the neutrino sea. 

e e 

FIG. 5--Contribution to the electrons self-energy from the neutrino sea. 
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