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ABSTRACT 

New sum rules from current algebra valid in the limit of large negative four- 

momentum squared of the current are obtained; some of these depend upon com- 

mutators of space-components of the current densities. They contain convergence 

factors which make their validity plausible on most models of high-energy behavior, 

with the Regge-pole model being one of them. With one exception, their utility con- 

sists of placing constraints upon models of hadrons designed to saturate the current 

algebra scheme. 
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I. Introduction 

Sum rules derived from current commutation relations have thus far been 

restricted to relations involving the maximum helicity flip part of the current- 

particle scattering amplitude, and thus, based on Regge-pole arguments, the most 

convergent amplitudes. I Analogous sum rules naively derived for other ampli- 

tudes are not expected to hold’due to the interlocking morass of Schwinger terms, 

disconnected diagrams and subtractions in dispersion relations. We may how- 

ever suspect more relations at large spacelike masses, Q’, of the virtual parti- 

cles associated with the currents. A heuristic argument for this hope may be 

obtained from analogy with nuclear physics. 3 If we consider the hadrons to be 

made up of other “simpler” constituents then at large current masses Q2 or 

equivalently small wavelengths we sample the constituents incoherently and ex- 

pect multiparticle correlations to vanish. For finite Q2, it is these correlations 

that prevent us from obtaining new sum rules. 

With one exception all the relations derived have no immediate possibility of 

experimental verification, as at large negative Q2 no simple pole dominance is 

expected to be valid. The one exception is a sum rule devised previously which 

bounds backward high-energy electron scattering. A possible utility of these 

rules is that they place constraints on possible hadron models which may be 

constructed to saturate the current algebra scheme. 

In Section II the kinematics, crossing properties, dispersion relations, and 

various asymptotic relations for the current-particle scattering amplitude are 

presented. In Section III the sum rules are derived in the Q,- im 5 lim.it and 

these results are discussed in Section IV. Some details of the calculations are 

listed in the Appendix. 
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II. Kinematics, Crossing Properties, Dispersion fielations and Asymptotics 

The commutator of the currents will for simplicity be sandwiched between 

spin zero hadron states. In the forward direction the same analysis applies to 

spin averaged amplitudes o We then consider the scattering of a current of mo- 

mentum gI on a state of momentum p1 to a current of momentum q2 and a state 

of momentum p2: 

PI+ qI - P2 + 9.2 

and introduce the variables 

p =PI+ P2 

(2-l) 

A = p2 - PI = qI - 92 

Q=ql+q2 

(2.2) 

u =P-Q, t=A2, 6=&Q=q;-q; 

We now study the covariant amplitude 

h’$$ (P, Q, A) = - (27r)3 i Jllw,w, /d4X e@lX Wo)<P2~[$ (4 j,P(O,l /I?,> 

+possible polynomials in (Pi, qj) . (2.3) 

In the above the j’s are Gell-Mann’s6 currents with the superscript refering to 

U(3) @ U(3) indices; CC’~ = $-Y-q, the energy of the state. The difference be- 

tween the covariant amplitude M ,“: (defined as the response of the S matrix to 

the variation of external sources coupled to the currents in question7) and the 

retarded product is an operator localized at x 
P 

= 0, and hence its Fourier trans- 

form is a polynomial. 5 Hereafter we shall assume that the polynomial is no 

worse than a constant already encountered in the vacuum expectation value. The 

nature of this constant and consistency of this assumption will appear subsequently. 

The covariant expansion of M ab 
P” 

is, for the case of states and currents of the 
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same parity: 

M@ 
CL” 

= PclPv A:’ ( + PpQV + PyQp)@+ (ppQv - PVQp)A;' 

+ 
( 
PFAv + PvAp P A 

P ” 
- PvAF)A;P+(Q/v + QvA&$P 

+ QpAu ( 
aP 

--Q,4)A;'+ QpQv AtP + ApAv A9 + gllv A@ 1. 

Crossing symmetry tells us 

(2.4) 

A;%,t,Q2,8) = vi ApO(-v,t,Q2, -6) (2.5) 

with 
+l, i = 1,3,4,7,8,9,10 

pi = 
-1, i = 2,5,6 

We likewise assume that for large spacelike Q2 and fixed t, 6, the Ai’s satisfy 

usual dispersion relations in v and their asymptotic behavior in this variable is 

governed by the Regge-pole hypothesis for the absorptive parts of the Ai’s. ’ Thus 

Al, A2 and A5 satisfy unsubtracted dispersion relations. All others have one 

subtraction except for A6, which has two. 

A@= A 
u” ImAi(v’,t,Q2,8) 

/ Y’ -v dv’ i ; i = 1,2,5 7r 
--Q) 

A@ i = Ai(0,t,Q2,S) + f 
Ob Im Ai(v%Q2,H 

/ v’ (v’ -v) dv ; i =3,4,7,8,9,10 

-CO 

@P 

A;@ = A;‘(O, t, &:a) + v 
?A;‘(0,t,Q2,S) 2 

+$- 
O3 Im A6 

aV / 

(v’lt,Q2,6) 

vf2 (v’ - v) 
dv’ 

--;10 

(2.6) 
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For spacelike Q2, the absorptive parts are nonvanishing for 1 v 1 
2 

d($+2-Q2> 

with M being the lowest value of s or u leading to physical states. 

In order to obtain asymptotic sum rules, we shall be interested in the limit 

Q0- 
i 00 with 2 fixed. In this limit Q2 - -co ; v and 6 will likewise tend to co, 

though linearly rather than quadratically. In the dispersion relation for the Airs 

we may thus neglect v with respect to the lower limit of integration for v ‘. The 

above conjecture is aP true barring pathological behavior of Im Ai . Thus all 

terms of the form of a dispersion integral behave as 

n 

lim -$ 
Im AyP(v1,t,Q2,6) 

dv’ = lim 
(BgQo) Im AyP(v1,t,Q2,8) 

dv’ , 
QO 

-+ i03 / u’“(V -v) 
QO 

-3 jw 7r s (v yn+l 

(2.7) 

and asymptotically we are left with a polynomial in Q,. A heuristic argument for 

this comes from the structure of the Jost-Lehmann-Dyson’ representation, which 

we assume to be unsubtracted 

‘i ap (P,&u,s) 

(Q -u)~ - s ’ 
(2.8) 

with the u integrationgoing over a finite region. In the Q, -+ ia) limit we may 

expand as follows 

ALYP 
/ 

CfP d4u ds p i 1 
i ----) 

+2Q+ 
Q2-s (Q2-s)2 

. . . . . 1 (2.9) 
If the asymptotic behavior in s is reasonable then this leads to the answer below. 

With all the dangers inherent in using any representations for determining asymp- 

totic behavior the above is at best a plausibility argument. Thus the limiting 

relations are 

AyP (v , t, Q2,6) - A”@ (0, t, Q2=- to, 0) + v 
aA~‘(0,t,Q2=-~,0) 

2” 

+6 
aAy’(O, t, Q2, 0) 

aa 
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I 

for i # 6 and for i = 6 we likewise add the neli-t order terms 

A @P 2 
6 (v,t,Q 6) --+A 

a2AQp 
+ “6 

6 (2.11) 
av as 

III. Derivation of Sum Rules 

The idea of the derivation is the same as in Ref. 4 0 We write, for fixed C& 

a dispersion relation in Qo. This is just the Low equation 

Map = 1 
PV 7r 

(+ Polynomial) 
-co 

As Q, - im 

M@+ 1 
P -so J 

Im Map 
W 

dQb (t- Polynomial) 

(3.1) 

(3.2) 

The numerator is, however, the equal-time commutator of the currents, so that 

Map 
2(2n)3 

P”v - 

p2 I[ja(x:O), f(O)] Ipl > d3x ii91’ ’ 

QO 
(3.3) 

We assume the following commutation relations for the currents; they contradict 

no commonly used models (o-model, 10 quark model, 11 and field algebra’ 2, 

jz (5, 0), j:(O)] = -iSop Vk 6” &l + iPPy j:(O) s3(z) 

I 
= ic 6 fapy j:(O) a3(x) i odd parity term 

ij 

(3.4) 
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The matrix elements of j Y and Sap 
c1 

are given by 

(W3 ,/G <pzl$?) 1 PI> = ppF:(t)+Ap F;(t) 

(2793 J-- < P2 ] sap(o) 1 PI> = s@(t) (3.5) 

The number c depends on the model for the commutation relation. If the 

fundamental carriers of the currents are spin one-half particles then c = 1. If 

these are spin zero objects or we deal with field algebra 12 , then c = 0. The 

Schwinger term S a@ is likewise model dependent and may be a c number, as in 

field a.lgebra. We do assume that it is symmetric in CX, p. - 

To obtain the sum rules we compare the covariant expansion (2. 4) with that 

given in (3.3), (3.4) and (3.5). We start with the O-O components and find 

P2 A@ o 1 tQ2.t, v 36) + 2PoQo A;P 
QP + 2pOAoA4 + 2QoAoAiP+ Q; A;’ 

+ A2 A@+ A@ 2iplPy 

0 9 10 -- QO -im QO PO+ F;(t) A0 1 
(3.6) 

We have assumed that Moo vanishes as Q,- im because for qI or q2-t 0, Moo WL As.” 

involves a retarded product of a total charge operator. This operator is conserved 

or partially conserved; it does not couple to high-mass states. Another way of 

saying this is that we assume that Q M 
P ,PV 

is bounded by a constant as Qoh ia , 

as implied by the commonly accepted divergence conditions of vector and axial 

vector operators. 7,13 We shall make the same assumption on Moi, namely, it 

tends to zero as Qo’ ia . @ As discussed in Section II, the Ai are assumed to 

converge rapidly as power-series expansions in v and 6 in the infinite-Q0 limit, 

@P so that (except for A, ) we need keep only up to linear terms. Writing 
” 

A$@ d 
SAY . ZA@ 

1 
+ Ai (Q2,t, 0,O) + v 1 (Q2,t,0,0) + 6+- (Q2,W,0) 

Z" 

i# 6 (3.7) 
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Q$ (and a similar expansion for A6 ) we then replace v and 8 by 

and identify the coefficients of the various powers of PO and A0 on the right and 

left hand sides of (3.6). From- the coefficients of PO, for example, we find 

V 
- QOPO 

6 
- QoAo 

aAap ?A@ 
lim 

Qo * 
2Q2A;‘(Q2, t, 0,O) + Q4 -+ (42,W’,0) + Q2+ (Q2,W0) 

-+loO 

ZZ 2 ifPr F:(t) 

A large number of additional relations are obtained in the same way and are 

catalogued in the Appendix. 

The same method can then be applied to Moi, whereupon another large num- 

ber of asymptotic relations are generated. These are also catalogued in the 

Appendix. At this point, the equations can, for the most part, be broken down 

into conditions on the individual Ai(Q2, t, 0,O) and their derivatives m One inter- 

esting result is that A,,(&‘, t, 0,O) -+ s(t) as Q, ---+ io3 , with the consequence that 

Mij cannot vanish as l/Q, if there exist operator Schwinger terms S(t) . We 

assume in this case that M.. -+ (const) aij + 0( l/Qo), a behavior consistent with 
11 

lowest-order perturbation theory of spin zero bosons, although perhaps not in 

higher orders, where space-space equal-time commutators have a propensity for 

not existing. 14 

However, upon assuming the space-space equal-time commutators exist, the 

same procedure we have applied to Moo and M 
Oi 

when also applied to M.. com- 
13 

pletely fixes the asymptotic behaviors of the Ai QIp(Q2, t, 0,O) and their derivatives. 

We record the results here, and some intermediate steps in the Appendix. 
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Nonvanishing Limits 

aA, 
Q2A2(Q2,t,0,0)-2ifLYPYFy(t) Q4 a~- (c - 1) 2ifPy F:(t) 

Q2A6(Q2,t, 0, 0)-2ifCYPyF2(t) aA Q4 x- (c- 1) 2ifCYP’ FL(t) 

Q2A7(Q2,t, O,O)- s(t) 
aA 

Q2 $--- 2ciPPy Fl(t) 

aA 
Q2 +-- 2cifcypy F:(t) 

A10(Q2A O,O) - - s(t) (3.lOa) 

Vanishing Limits 

aA. 
QoAi(Q2, t, O,O) -0 i = 1,4,5,9 Q2 -- a8 0 i = 1,4,5,9 

Q2A3(Q2,t, 0,0)----O 
3 aAi QOX- 0 i = 2,3,6,7 

aA. 
Q2$-0, i= 1,4,5,9 4 a2A6 

Q ---y---O 
a2A6 

av 
Q4s-0 

3 aAi 
Qo av --0 i 2,3,6,7 4 a2A6 = Q avas-O 

(3. lob) 

Given the assumptions of Regge asymptotics, 8 some of these relations can be 

translated into asymptotic sum rules. These we also record. 

Q,j+$ Im AyP(vt,Q2,t,0)-0 Q, f$! Im AZ’ -0 
-W -a2 

03 
Q2 

f 
y2 Im AyP -0 Q2fc Im At’-0 

-co v --co VI2 

2 
43 

7r / 
&$ Im A~~~v9,Q2,t,0)-2i~PYF~(t) Q4fe Im A~‘----0 

-CO -w Vf3 

Qi fws Im AEP-O mdv9 ~30$ 12 Im A~‘---+0 

--to -ui v 
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I 

3 
QO 

OrJdv 9 
s 

- Im AiP-O 
--co Vf2 

Q2rf$ Im A:‘-0 
--co 

4 - *dv’ J QJP 9 
71 

Vf2 
Im A8 (v , Q2, t, 0)-(c - 1) Zip PY Y Fl(t) 

-CO 

CJ WE 
s 

Im AlO(v ,Q2,t,0)--2ciP Fl(t) OP 9 PY Y 
R 

-CO Vf2 

(3.11) 
The asymptotic form of the Fubini-Gell-Mann-Dashen 15 sum rule 

a3 
L 

s 
dv9 Im AyP (Q2,v9,t,6) = 2if n 

aPr,:(t) (3.12’ 

is not present among this myriad of sum rules. However, if one has a conserved 

(or partially conserved) current, Im A2 can, for large Q2, be related to v ImAl , 

and the sum rule (3.12) is recovered from (3.11). The “backward” sum rules for 

neutrino processes4 can be obtained from the sum rule on the transverse amplitude 

Alo. Beyond that result, no practical application seems to be in sight. The gener- 

alization of these relations to other parity choices and cases with spin is left to the 

courageous reader. 

IV. Conclusions 

The main results of this work are contained in (3. lOa), (3. lob) and (3.11). These 

sum rules are a direct consequence of locality and (perhaps optimistic) smoothness 

assumptions on the covariant amplitude describing scattering of a current from a 

hadron. The results appear to have no new direct applications. However, since 

the mechanism for saturating all local sum rules at high Q2 is obscure (assuming 

indeed that the sum rules are correct!), it is hoped that these results might provide 

additional clues to what the physics looks like in these asymptotic regions. 
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Appendix 

The relations obtained from the asymptotic behavior of Moo, as described in 

Section III are as follows: 

(1) 

P(p($ 

2 
P&)) 

3 
Q. AloP) + Q, As(O) - 0 

2 aP aA aA 
2Q A2 (0)+Q4$ +Q2 +- 2iPpy F:(t) 

3 aA Q. Al(O) + 2Qo ay -0 

2 aA 
Q r-0 

aA 
2Q2 A6W f Q4 -$ + Q2 

aAlo 
as - 2ifLyPy FY(t) 2 

aA 

2Qi aa6 + Q, AgW--0 

a2A6 
Q4 - 

aA 

as2 
+Q2 s-0 

3 aA aA 

2Qo a6 - + 28, A4(0) + 2Q30 3-0 

aA a2A aA 
2Q2 -- - - 

as + 2Q4 avai + Q2 a: -0 

Q2 aA 
x + 2Q 

2 aA 
ay t Q4 

a2A6 
--0 

aV 2 (A* 1) 

The factor in parentheses indicates the coefficient of the particular term m We 
suppress superscripts o!!p. 

ati From a similar calculation for RIOi and MyoP we obtain 

tpi) Q2(A2? A3) - Zii? BY F;(t) 
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I 

(pipO) 

aA 
(Pips) Q2 ~-0 

aA aA aA 
(PiPo*o) Q2 ~ ’ Q2 ~’ Q2 ~ ----LO 

(PiA;) Q2 

(Qi) Q2 A 8 -s(t) 

(POQi) Q. 

2 
(PoQi) Q2 

(Po*oQi) Q2 ~~ 3 ~ + 

(*oQi) 

2 3 a2A6 --0 tpOAo&i) '0 av2 

3 3 a2A6 
t*oQi) Qo a62 -0 

CA,) Q 
2 

(A62 A+ --+-I *f@’ F;(t) +_ s(t) 
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I 

tp 04) 
2 aA, 

-ayLQ 

(PoAoAi) Q2 

aA 
(*()*i) Q, -=&Q2 

(A;Ai) Q2 (A. 2) 

The + refer to M$? and MF{ respectively. - 

Given these equations, they can be disentangled into the following relations. 

QoA1-0 

Q2A2 - 2iPPy FL(t) 

2 QA -0 3 

QoA4 -0 

3 aA 
QoA5 + Q~ as -O 

Q2A6- 2iPPyF2(t) 

a2A 
Q4 4-0 

av 

Q2A, ---s(t) 

Q2A 8 - s(t) 

aA 
Q2 2-0 

aA 
Q2 -&--0 

3 aA 
&o av 

--0 
3 aA 

&o a6 --O 

3 aA 
Q. av 

--0 

aA 
Q2 -+o 

aA 
Q2 -+O, 

aA 
Q2 2-0 

aA 
Q2 G-0 

Q; 2-O 

a2A6 
Q4 -- 

as2 
0 

aA aA 

6; 2-Q; -$ 
3 aA, 

Q, maF-0 

3 aA 3 aA -- Qo av O 
-- 

Q. a6 
0 
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QoAg - 0 

A 10 - - s(t) 

aA 

Q2 G-O 
aA 

Q2 G-0 

aA aA 
Q2 -GJ$ + Q4 2 -- 2if@@ F:(t) 

aA aA -Q2 -$+Q4 x------ 2iPPy F;(t) (A.3) 

Finally, calculation of the limit for Mij gives a few additional results: 

aA 
t *oPiQj) Q2 d-0 

QOA5P) -0 

aA 
Q2 2-0 

t6ij) Q, 

[ 

AloW + s(t) 1 -0 
t GijpO) 

(6ij*O) 

aAlo 
Q2 ay-- 2cif@‘Y F!(t) 

aA 
Q2 $---- 2c@‘y F;(t) 

(A-4) 

These, combined with (A. 3)) give equations (3.lOa) and (3. lob). 
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