EXPERIMENTAL LIMIT ON ϕ MESON PHOTOPRODUCTION

FROM HYDROGEN AT 15 GeV*

A. Boyarski, F. Bulos, W. Busza, R. Diebold, S. Ecklund, G. Fischer and B. Richter

Stanford Linear Accelerator Center Stanford University, Stanford, California

The results of several experiments¹⁻⁵ have shown a dominant diffractivelike mechanism for ρ^{0} photoproduction in the region from 2 to 6 GeV. Such a mechanism is expected in the vector dominance model; assuming SU(3) symmetry and the SU(6) $\omega\phi$ mixing angle, this model predicts that at high energies the photoproduction cross sections should be in the ratio $\rho^{0}/\omega/\phi = 9/1/2$.⁶ Although the hydrogen bubble chamber data^{7,8} on ω production seems consistent with this prediction, the ϕ cross section is measured to be $0.2 \pm 0.1 \mu$ barn (averaged over the region 3.5 to 6 GeV)⁹ giving $\phi/\rho \approx 0.012 \pm 0.006$, more than an order of magnitude below that predicted by the simple model. The quark model has been used to introduce symmetry breaking and to partially alleviate this discrepancy.^{10,11}

It is clearly of great interest to extend the experimental information to higher energies where the theoretical models can be applied with a greater certainty. One speculation, for example, might be that the ϕ is anomalously suppressed at the intermediate energies thus far studied, but that at high energies the ϕ/ρ ratio will approach the symmetry value of 2/9.

Tsai, et al., ¹² have obtained a limit on ϕ photoproduction at high energies by measuring the 5.5 GeV/c K⁻ flux produced near 0⁰ by a 16-GeV electron beam in a 1.8-radiation length beryllium target. Any ϕ 's contributing to this K flux

(Submitted to Phys. Rev. Letters)

- 1 -

Work supported by the U.S. Atomic Energy Commission

are kinematically constrained to have an energy between 9 and 15 GeV. Unfortunately, the analysis relating the production from beryllium to that from hydrogen is not unambiguous. Assuming the ϕ scattering from beryllium to have the same t distribution as p-beryllium scattering^{13, 14} and that the elastic cross sections are in the ratio $\phi p/\phi Be = pp/pBe$ they obtained an upper limit of $0.9 \pm 0.3 \mu$ barn (the error reflects only the 30% systematic uncertainty in the K flux measurements).

In this paper we examine the momentum dependence of the π and K fluxes produced by a bremsstrahlung beam in a <u>hydrogen</u> target. The SLAC 20-GeV/c spectrometer system¹⁵ was used to measure the fluxes of particles produced at a lab angle of 1.45[°] by bremsstrahlung with end points of 14 and 16 GeV. The difference of the yields at the two energies was subtracted to give an effective photon beam of energy 15 ± 1 GeV.

As a check of the method we first consider results for the π yields, shown in Fig. 1a as a function of laboratory momentum. Also shown in the figure is the result of a calculation made with the Tsai-Whitis computer program¹⁶ for the pion yield coming from ρ^{0} decay, assuming that ρ^{0} photoproduction at 15 GeV is similar to that observed^{2,3} in the region 3 to 6 GeV. The data indicates that roughly half the π^{-} yield comes from ρ^{0} decay. This seems qualitatively reasonable in that we do observe enough π 's to account for the ρ^{0} cross section expected in the diffraction model and that this process contributes a sizeable fraction of the π yield.

The K⁻ yields are shown as a function of lab momentum in Fig. 1b. The Tsai-Whitis¹⁶ computer program was used to calculate the K⁻ flux coming from ϕ decay under the assumptions that

 $\frac{\mathrm{d}\sigma}{\mathrm{d}t} \; (\gamma \mathrm{p} - \phi \mathrm{p}) \propto \, \mathrm{e}^{-\mathrm{A}t} \; , \label{eq:phi}$

- 2 -

with A = 3 or 7 (GeV)⁻², a total ϕ cross section of 1.0 µbarn, ϕ helicity = ± 1, and $(\phi \rightarrow K^{+}K^{-})/(\phi \rightarrow all) = 0.48$; the results of the program are also shown in Fig. 1b.

The ϕ cannot contribute to the K yield at 10 GeV/c and the yield at this momentum is a measure of the background from other processes such as the Drell mechanism, ¹⁷ Y* decay, etc. The yield from these background processes might be expected to increase as the momentum is lowered. Indeed, a straight line can be drawn through the points and the data do not show a need for a peak in the distribution corresponding to ϕ production. If, however, we assume that the K⁻ yield from other processes at 8 GeV/c is just that given by the point at 10 GeV/c, a total $\gamma p \rightarrow \phi p$ cross section of (0.38 ± 0.18) µbarn is obtained if the ϕ 's are produced with an e^{-7t} distribution; this becomes (0.52 ± 0.25) µbarn for e^{-3t}. If the K⁻ yield from the other processes falls off rapidly going from 10 to 8 GeV/c, then an upper limit for $\gamma p \rightarrow \phi p$ can be obtained by assuming that all the K⁻ yield at 8 GeV/c comes from ϕ decay; this drastic assumption results in upper limits (95% confidence) of 1.0 and 1.4 µbarns for e^{-7t} and e^{-3t} distributions, respectively.

ACKNOWLEDGMENTS

We wish to thank Dr. J. Rees for valuable contributions during the initial operation of the 20-GeV spectrometer and Dr. B. Gittelman for assistance in the data taking.

REFERENCES

1.	L. J. Lanzerotti, et al., Phys. Rev. Letters 15, 210 (1965).
2.	H. R. Crouch, et al., Phys. Rev. 146, 994 (1966).
3.	R. Erbe, et al., Nuovo Cimento <u>48A</u> , 262 (1967).
4.	J. G. Asbury, et al., Phys. Rev. Letters 19, 865 (1967);
	Phys. Rev. Letters 20, 227 (1968).
5.	H. Blechschmidt, et al., Nuovo Cimento 52A, 1348 (1967).
6.	P.G.O. Freund, Nuovo Cimento <u>44A</u> , 411 (1966).
7.	H. R. Crouch, et al., Phys. Rev. 155, 1468 (1967).
8.	R. Erbe, et al., Nuovo Cimento <u>46A</u> , 795 (1966).
9.	E. Lohrmann, report to the International Symposium on Electron and Photon
	Interactions at High Energies, Stanford Linear Accelerator Center, Stanford
	University, Stanford, California (1967), DESY 67/40.
10.	H. Joos, Phys. Letters <u>24B</u> , 103 (1967).
11.	K. Kajantie and J. S. Trefil, Phys. Letters 24B, 106 (1967).
12.	Y. S. Tsai, et al., Phys. Rev. Letters 19, 915 (1967).
13.	G. Bellettini, <u>et al</u> ., Nucl. Phys. <u>79</u> , 609 (1966).
14.	This assumption on the t distribution leads to roughly 40% of the ϕ 's being
	coherently produced from the beryllium nucleus and 60% from the individual
	nucleons.
15.	The experimental apparatus is briefly described in the report by B. Richter
	to the International Symposium on Electron and Photon Interactions at High
÷	Energies, Stanford Linear Accelerator Center, Stanford University, Stanford,
	California (1967), SLAC-PUB 353.
16.	Y. S. Tsai and Van Whitis, SLAC Users Handbook, Stanford Linear Accelerator

- Center, Stanford University, Stanford, California; Section D.3 and D.4.
- 17. S. D. Drell, Phys. Rev. Letters <u>5</u>, 278 (1960).

- The differences of 1.45° yields obtained from hydrogen with bremsstrahlung beams of end point energies 16 and 14 GeV. The error bars indicate the statistical and monitoring uncertainties; not shown is the 10% overall systematic uncertainty.
 - a. π^{-} yields. The curve gives the π^{-} yield expected from $\gamma p \longrightarrow \rho^{0} p$ assuming a t dependence for ρ^{0} production of e^{-7t} , a total ρ^{0} cross section of 16 µbarns and ρ helicity ± 1 (see Refs. 2 and 3).
 - b. K yields. The curves give the K yields expected from $\gamma p \rightarrow \phi p$ assuming a t dependence for ϕ production of e^{-3t} or e^{-7t} , a total ϕ photoproduction cross section of 1 µbarn and ϕ helicity ± 1.

ند ډ

.