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ABSTRACT 

I 

Cross sections, correct to second order, are derived for the photo- 

production of wide angle electron pairs in a spherical, static, nuclear 

charge distribution. For typical double coincidence experiments it is 

found to be sufficient to treat only the convection current of the 

electron. The results obtained are essential to the interpretation of 

asymmetric electron pair production and may also be applied to wide 

angle electron bremsstrahlung. For non-coincidence experiments in which 

one lepton is detected with most of the available energy, the higher 

Born corrections are shown to be identical with those of electron scat- 

tering. Numerical results are presented. The large asymmetries which 

have been reported for coincident pairs produced on a lead target are 

satisfactorily explained by the second Born contribution. The predicted 

asymmetry for pairs produced in carbon with invariant pair mass near the 

p" mass is small compared to the Compton contribution. 
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1. INTRODUCTION 

The comparison of theory and experiment in wide angle electron 

pair production has reached a new stage of sophistication. Now that 

the basic predictions1-3 of quantum electrodynamics have been vindi- 

cated by the high energy-symmetric pair experiments 475 , pair production 

has turned out to be an essential tool in the study of hadron processes, 

especially the nuclear Compton amplitude 67 . 

One of the uncertainties in comparing the theoretical cross section 

for wide-angle electron pair production with experimental measurements 

is the correction due to higher Born contributions. Such a correction 

would be expected to be important for experiments involving high Z 

targets or asymmetric detection kinematics for the electron and positron. 

The differential cross section for pair production in a Coulomb field was 
8 calculated without the use of Born approximation by Bethe and Maximon , 

but the wave functions used for evaluating matrix elements were only 

valid for small production angles (@+ N me/E+), and the effect of finite - - 

nuclear size was not considered. In this paper we calculate the dif- 

ferential cross section for high energy, wide angle electron pairs pro- 

duced in a static9, spherically symmetric 10 nuclear charge distribution, 

correct through second Born approximation (two photon exchange). Our 

calculations and results are analogous to those given by R. R. Lewis, Jr. 
11 

for the potential scattering of high energy electrons in second Born 

approximation. 

The higher Born corrections discussed in this paper turn out to be 

unimportant for the symmetric wide-angle pair production experiments 
12 

on carbon which have thus far established the validity of quantum electro- 
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4 dynamics for electron-positron invariant pair mass up to 550 MeV . In 

these experiments the electron and positron are detected by spectro- 

meters of symmetric acceptance, and contributions to the cross section 

which are odd in the nuclear charge Z, such as the interference of the 

first Born amplitude with the two photon exchange amplitude or the 

Compton contributions (see Fig. l), must vanish2. 

In experiments which are designed to detect the interference of 

the Compton and Bethe-Heitler amplitudes, the effect of higher Born 

contributions must be considered. 7 In the experiment of Asbury, et al. , -- 

coincidence measurements of near-symmetric wide-angle pairs have been 

used to determine the phase and magnitude of the virtual Compton ampli- 

tude at high energies on complex nuclei, and have verified the predic- 

tions of diffraction production of the p" vector meson 13 . This experi- 

ment determines quantities such as 

E(8) = N+(E) - N-(6) 
N+(8) + N (6) (1.1) 

where N+(6) is the production rate when the electron and positron are 

detected mirror-symmetrically in angle, but the positron has 6 less 

momentum than the electron, and N (6) is the corresponding rate when the 

electron has less momentum. The real part of both the Compton and even order 

Born amplitudes interfering with the first Born amplitude contribute to 

4%. The radiative corrections can be another source of asymmetry, 

but this contribution involves photon emission from the nucleus and is 

negligible. 

The second Born contribution to ~(6) is given in Section IV, and is 
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compared with experiment in Section VI. The calculations are based on a 

simplifying assumption that the correction to the pair production cross 

section due to higher Born contributions is independent of lepton spin 

to lowest order in the leptons' production angles. This assumption is 

justified in Section II where other applications of spin zero electro- 

dynamics to electron processes are also discussed. The results are given 

for a general spherical charge distribution in terms of a spectral repre- 

sentation and are evaluated explicitly for point and Yukawa nuclear 

charge distributions. Although we have not carried out extensive numeri- 

cal calculations, we find that the large asymmetries which have been 

reported' for pairs produced on a lead target are satisfactorily accounted 

for by the second Born contribution. On the other hand, the second Born 

asymmetry for carbon turns out to be small compared to the Compton con- 

tribution to the asymmetry, for electron pairs produced with invariant 

pair mass near the p" peak, and should not appreciably affect the recent 

determination7 of the phase of the Compton amplitude. 

We also discuss in this paper a second type of wide angle pair pro- 

duction experiment14 which is sensitive to Compton effects 6 , , and, be- 

cause it does not require a coincidence measurement, can be performed 

advantageously with linear accelerators. In this experiment one detects 

only one lepton (at a given angle and energy) and measures the difference 

in electron and positron production rates. The presence of higher Born 

amplitudes as well as the Compton amplitudes contributes to this dif- 

ference. In these experiments the detected lepton takes nearly all the 

incident photon energy. As a consequence, we demonstrate in Section III 

that the higher Born contributions for this experiment can be calculated 
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immediately from the corresponding contribution for ordinary electron or 

positron scattering, 

We have also considered the second Born corrections to wide-angle 

electron bremsstrahlung. The discussion is given in Section V. 

An alternative approach to the calculation of the higher Born cor- 

rections to pair production and bremsstrahlung could be based on dis- 

torted partial wave calculations in analogy with the treatment given by 

Yennie, Ravenhall, and Wilson 1546 for high energy electron scattering 

by nuclei. The second Born corrections given in Section IV for the coin- 

cidence experiments should be sufficiently accurate, however, when the 

production angles are small (e: << l), and the momentum transfer to the - 

nucleus is smaller than the inverse of the nuclear radius. For the single 

lepton experiments (discussed in Section III), the higher Born corrections 

can be taken from the electron scattering partial wave results and are 

not restricted to second Born approximation. 

We should emphasize that the calculation of Bethe and Maximon gives 

the total cross section for pair production to all orders in a Coulomb 

field, but because of the approximations which were used, their results 

are not appropriate for the wide angle differential cross section. In 

particular, the Coulomb field (point nucleus) and forward angle approxi- 

mations (f3, N - m/E,) lead to no charge asymmetry in the differential cross 

section. This can be understood by noting that at forward angles the 

Dirac equation for an electron in a Coulomb field can be effectively re- 

placed by a Schradinger equation for an electron (with its mass replaced 

by its energy) in a Coulomb field. Except for a phase, the pair produc- 

tion amplitude is then odd in ZC!, as can be seen from inspection of the 
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scattering solutions of the SchrGdinger equation. The charge asymmetric 

corrections to the differential cross section calculated in this paper 

are important at wide angles where the finite size of the nuclear charge 

distribution or the relativistic corrections to the potential in the 

equation of motion are important. 

II. FIRST BORN APPROXIMATION AND SPIN INDEPENDENCE 

Before proceeding to the calculation of the second Born corrections, 

we shall review the usual expressions for electron pair production in a 

static, spherically symmetric charge distribution. The Born approximation 

differential cross section for unpolarized electron pairs is 17 

do 
dEldE2dSlldJJ2 

(11.1) 

wherel' 

(k+2)2+ (k@*+ (E; f E’1 f pl.p2)Q2 m 2 rQ2+ 4E; Q*+ 4E; 
Wl = - 
-2 (k+l) bp2) -+ ?!-- l(k.pl)2 + (knp2)* (I'*') 

Here F(Q*) is the elastic nuclear charge form factor and S(h) is the 

energy spectrum of the incident bremsstrahlung. The electron, positron, 

and incident photon four-momentum are pl, p2 and k respectively, and the 

momentum transfer to the nucleus is Q’ = k'- P; - P& with Q" = 0. 

It is interesting to compare this result with the corresponding 

cross section for pairs of spin zero. This cross section is given by 
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(11.1) with W+ replaced by 

(k-p$-w2) + Q2ElE2 2 
2 

w. = - E2 
(k.pl)(k.p2) 

-m 
(Pl.k)2, * 

(11.3) 

We notice that 

Wl - a0 = - 
[k. (P,-P,)I*+ Q*[ (E~-E*)*- +(P,-~~)*] 

2 (k+ (k.p2) + Ob2L (II. 4) 

and hence for some kinematical conditions, electron pair production will 

be well-approximated by twice the spin zero result. In particular, this 

is true for the coincidence measurements of wide-angle electron pairs. 

For these experiments 

(11.5a) 

the Q2 term nearly always dominates (II.2)lp, and the electron mass can 

be ignored. Thus if 

(El- E2)* << E; f E; , (II-5’d 

the cross section for electron pairs is accurately given by twice 
20 the 

spin zero result 21 . 

Thus the presence of spin interactions turns out to be inessential 

to the Born cross section. The interpretation of this is that where the 

spin zero pair production is not dynamically suppressed, the presence of 

spin flip channels does not markedly affect the cross section. From this 
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standpoint, it is natural to assume that the correction to the Born 

cross section due to second and higher order Born contributions is in- 

dependent of lepton spin to lowest order in the lepton production angle. 

This can be explicitly checked in the extreme situation where one lepton 

has nearly all the available incident photon energy (see Section III); 

the second Born correction to pair production then turns out to be 

identical to that for electron or positron scattering and is the same 

as the spin zero result to lowest order in the lepton angle. We can also 

support the spin independence assumption by considering a model in which 

the effect of higher Born contributions is a perturbation on the static 

Born approximation potential V acting on the leptons: 

v-v(1+$6 s -i- + GA) for the electron 

(11.6) 

v+v(1++6 --+ S 8*) for the positron 

This model is especially well-adapted to represent the effect of the 

finite nuclear size in the higher Born terms 
16 and still retains the 

magnetic contribution at the incident vertex. We than recalculate the 

Born cross sections using the modified potentials, keeping terms linear 

in the perturbation, 

Wl -+W+(l i Ss) - EA 
*(E; + E; f pl.p2)(k.p2- k-PI) f (k-pl)*- (k.p2)2 

2 (k@ (k-p2) 

(II. 7) 

ao+ *‘&- + ‘S) - ‘A 
4ElE2ik+2- k-pi) 

(k p . l)(k-p2) 
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Thus to lowest order in C$, the higher Born contributions here are the - 

same for the spin $ cross section and for twice the spin 0 cross section 

if (El- E2)2 << E; f E;. Aside from the restriction to (m/E,)2 << 0: << 1, - - 

the ratio of higher Born to the first Born contributions is independent 

of spin regardless of the detection kinematics in this model. 

We thus have some assurance that our simplifying assumption of spin 

independence is correct, and probably is no more drastic than the approxi- 

mations one must make concerning the nuclear inelastic processes. It has 

the advantage, however, of markedly simplifying the integrations asso- 

ciated with Figure l(e), and enables us to write the pair production cross 

section through order Z 34 a in a reasonably compact form. The calculation 

of the second Born contribution to the charge asymmetry in spin zero pair 

production is presented in Section IV. 

III. THE SINGLE-ARM EXPERIMENTS 

In typical experiments14 where only one lepton is detected, the 

detected electron or positron has nearly all the available energy. We 

can then easily show that the higher Born corrections to pair production 

may be obtained simply from the higher Born corrections to electron or 

positron scattering. 
2 

We first note that for El >> E2 and % 
El 

<< 6: << 1, the Born approxi- 

mation spin $ cross section is given by (11.1) where now 
22 

E’1 Q* 2m2 E2 
w1 z - 1 -i- 
7 (k~pl)(k.p2) (k.p2)2 

(111.1) 
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Despite the appearance of the first term, this contribution comes en- 

tirely from the square of the matrix element of Fig. l(b) 23 . Simi- 

larly, the higher Born contributions are dominated by diagrams such as 

l(d) for which the lepton propagator is nearly on-shell: 

(k-p2)*- m2 
2 = 

El 
(111.2) 

The contribution of these diagrams is proportional to 24 

c Tr 
~~,W,-~V $2 b5*-m F Q $1 ["r &ml+ $11 

PO1 (k.p2)2 
= -4 Tr w r -4 Tr ksP2 (111.3) 

where I? is the entire electron-nucleus interaction for an electron to 

scatter from momentum cl -I- $ to G,; because of (111.2) we can neglect 

off-shell effects. 

Eq. (111.3) h s ows explicitly that the higher Born corrections for 

pair production are the same as those for electron scattering when 

El >> E2. Thus if@represents the higher Born corrections to an elec- 

tron scattering from momentum Gl -I- T$ to 6,: 

da elec-scatt = d$;;(l i-9) , 

then the cross section for pair production with only the electron de- 

tected is 

(111.4) 

if El >Y E2. 

(111-5) 
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Similarly, the cross section for positron detection is 

d"(+) = doBorn 
(pp)(l +&) 

if E2 >> El. Here & is obtained from@ by interchanging 5, with z2 

and Z with -Z: 

& = SC;, HG2, z ++-z) 

(111.6) 

(111.7) 

Lewis" has given@ in second Born approximation for an arbitrary 

spherical charge distribution. Distorted wave calculations suitable 

for high Z targets have been given by Yennie, Ravenhall and Wilson and 

others15. The second Born result for pair production in a pure Coulomb 

potential is 25 

da - da+ e n Za sin - 2 
dD + da = l- 1 -I- sin g 

where 8 is the laboratory angle of the detected lepton which is assumed 

to have nearly all the available energy. 

IV. THE SECOND BORN CALCULATION 

(111.8) 

As has been discussed in Section II, electron pair production is 

well-approximated by spin zero pair production (multiplied by a phase 

space factor of two) for the usual experimental kinematics of the 

double coincidence experiments. The spin zero pair production Feynman 

diagrams are shown in Fig. (2). 
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The matrix elements corresponding to Fig. (2) may be written down 

directly from the Feynman rules; the results for the static nucleus 

are then obtained by passing to the limit M -+w. Taking crossed and 

uncrossed diagrams together, the surviving contributions correspond to 

multiple Coulomb exchange with no energy transfer. Alternatively, one 

can obtain the matrix elements from propagator perturbation theory for 

the Klein-Gordon equation for a potential-scattered spin zero particle 

interacting once with the radiation field. 

If we cancel out common factors from the nuclear phase space and 

the matrix elements, the cross section through second Born approximation 

is 

do Z2C13 

dQldfi2dEldE2 = s I;11 1G2[ S(R) c I$')+ Za ,(*) 2 
'R PO1 

where the first Born contribution is 

(IV.1) 

(IV.2a) 

Here 

MC21 =MsfMB (IV.*b) 

where we have grouped the second Born contributions from diagrams (*d) 

and (2e) into MS and the remainder into 3-i. Here 

MS = 2n 
E'Pl e-P* 

-q+B,p, 
F(;2)g.(l&;t2) d3c 

(W3 'i* @a* 
(33~. 34 
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ElE2e.(~l+ q) 1 1 
k-(Plf q) (PI+ q)*- m* - (pl+ q-k)2- m2 II 

and q. E 0. The amplitudes MS and s are separately invariant with 

respect to gauge changes for the incident photon. They are also appro- 

priately odd under interchange of electron and positron four-momenta. 

If the nuclear charge distribution has a Yukawa structure, F(G*) = 

P2iG2f P2 >J then the second Born ma t rix elements will involve 

F(;;;: 
+2 
q1 

11 
=3-t2- 

41 92 

I 

+2 
q1 f- P2 

111 --- 
+-2 +2 +2 2 
q2 92 q1 -t- I-1 

(1v.4) 

We shall define s(p171i2) and Ms(ul,~2) from Eq. (IV.3) by replacing 

(IV.4) with 

1 1 
+2 
91 -I- i-J: 

-+2 2; 
q2 + I-I2 

the final results for the Yukawa distribution are then obtained by suc- 

cessively replacing the photon "masses" pl and p2 by p or 0 according to 
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My = M(O,O) - M(1-110) - M(O+) +-M(wJ) (IV.5) 

More general distributions can be represented by a superposition 

of Yukawa forms or a spectral representation such as that given by Lewis 
11 . 

The amplitude MS is-readily evaluated: 

(IV.6) 

for a Yukawa charge distribution this yields 

E'Pl e*p2 1 --.---I----- 
k+ 1 I 7 

k*p2 2161 
g- 

I 
(IV.7) 

One can recognize Ms as the amplitude corresponding to the - V* term in 

the Klein-Gordon equation for a spin zero electron in the static poten- 

tial V(r). 

For the case of a point charge distribution (CL -+m),Ms is finite 

and we shall show that the real, interfering, part of MB vanishes. 

(This also follows from our discussion in Section I, since MB corresponds 

to the second Born corrections to the Schrodinger equation.) 

The interference of second and first Born amplitudes in the point 

nucleus limit is then 

do int 34 = z am 
dfildQ2dEldE2 8x I % 

(E~-E~:)Q~+ 2E2k.j$- 2Elk.pl 

k+ k-p2 1 I (1~8) 
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where we have averaged over the initial photon polarization and neglected 

the lepton mass. The correction to Born approximation is 

@',-El)Q2+ 2E2k.p2- 2Elk.pl 

E1E2Q2 + (k~pl)(kd?2) 1 + o(za)’ 
W-9) 

(spin zero , point nucleus) 

It is interesting to apply (IV.9) to the case where one lepton has 

most of the available energy. Even though (1v.8) and (11.3) are then 

poor approximations to the spin $ cross sections, the ratio (IV.9) gives 

the same result for second Born corrections to lowest order in 8 as the 

spin * results (111.5)-(111.8). As noted in Section II, this is an indi- 

cation that the spin zero calculations give a very good estimate of the 

correction factor due to higher Born terms, even when condition (II.%) 

is not satisfied and even though the spin zero and spin -$ cross sections 

are quite different. 

The reader should note that the point distribution results may not 

be accurate even if G2 << p2, where 6/p2 is the mean square nuclear 

radius. As will be evident from our results (IV.25) for MB, the finite 
2 26 size effects are modified if k.pl or k.p2 is comparable with ~1 . 

For the calculation of % it is convenient to use the radiation 

gauge: eO = 0, z.': = 0. We introduce a Feynman parameter x to combine 

the photon propagators and, for the third line of (IV.jb), use another 

parameter X to combine the two lepton propagators. We then obtain 
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2 
cap25 

k+ p2 
I I 

+2 +2 
q --p1 [(&:xl)2+ -L212 

-t- 
22.; E E 12 

(;2-E;)2[(T;-:x,)2+ ~'1~ 1 
where we have defined 

-t 
r XX = x[;l-(l-h)iil - (l-x)[g2- XIfkl 

= x Sxl I- (1-x)fxo 

+- 
r xl = $I -I- (l-x)4 

(IV.11) 
; = x0 - 5, -x; 

T2 = x pf I- (l-x) $ +.2 I- x(1-x) Q 

E; = [X El-(1-h)E212 

and we have shifted the integration variable '; by - G2, - s,.. and 

- $,+(1-X)$ in the three terms of s respectively. The electron mass 

has been ignored in the definition of Ez. 

The momentum integration can now be done using differentiated forms 

of the basic integral 27,28 

d3q . 2 T-irEI- il;l 

[(Z-f)'+ T2][G2- E2- ig] = 5 log T-i I&'(+ i,[:[ I 
(IV.12) 
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where the contour prescription is determined by the Feynman propagator 

for the electron. Thus 53 becomes 

2 2 

e'plE2 
1 e'p2El 1 2ElE2". [xpl- (l-x)p21 

~(P,,P~) = 57 - - - - - -- - k.p 
1 

k.p2 7a [(?-ilEX\)T:z]2 1 (IV. 13a) 

where 

a = (r-iEl)2 + [(l-x)$ + zl12 

(IV.13b) 

b = (T+iE2)2 -t- [x G + ;,I 2 

The denominator of the last term in s is linear in 1: 

ha -t (1-X)b 

d E (T-iiE,02 I- fxh2 

A. >, E2/(El+ E2) 

= 
la* f (l-X)b* 1 < @(El+ Eel 

and hence the X integral in (IV.13) can be done simply: 

where the coefficient aE2 -I- bEl c xg f (1-x)h is real: 

2 
g = 2Elk.pl + (El+ E2h5 

h = 2E2k.p2 + (El+ E2)$ 

(IV. 14) 

(W-15) 

(1~1.6) 

For the remaining integration we shall apply a series of variable 

changes used by Lewis for an integral of a similar form 27. . 
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1) Let z = p1x/p2(l-x) 

2) Then let u2 = z l(z + z2)/(z+zl) where 

e-E 
zl= 2 , 75 = 1, 

3) Finally let v =& (u-&)/(A- u). We then obtain 

2 
~h+ci2) 1 c.p2El 1 = - 2 

av2+ 2@v -I- y 
k.p2 N 2 yv + 2iv + G 

(IV. 17) 

- 2ElE2 
E2 l- El 

av2+ 2p.? -I- y ;v2+ 2iv + is 

where 

N(v) = p2E.pl(l+2fv) - pli.p2(2fv+v2) 

D(v) = I.12g(l+2fv) f plh(2fv+v2) 

a = vlbE - 2Q2E2)/f 

Y = P,($ - 2iplE2 + 2k.pl)/f 

B = PEPS&+ P,) f 21r2kapl- iE2y2/f2 

f2 = (,*2)-l = 1541612+ b-y- ii2j21 

(rv.18) 

N N 

and z, B, y are obtained from a, @, ;r;respectively,by the interchange 
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P1 -P2* The amplitude Iv$ is then odd under pl ++p2 with v -l/v 

and i~-~ +-+p2. After some rearrangement, Eq. (IV.17) may also be 

written as 

00 b> 36 1.5, P,) E2F = - 2ElE2 
av2+ 2Bv I- y 

; - (P1 HP27 yv2) 1 (Iv. 18a) 

where 

E-P1 E'P2 
F= 

Elk-p1 + E2kep2 1 plh(v2+ 2fv) 

(Iv. 18b) 

f ‘J.~P~(“~+ E2) ,‘;p,’ * 
1'1 1 

The second term in (IV.18a) is obtained from the first term by inter- 

changing the lepton four-momentum , i~-~ with p2, and changing the inte- 

gration variable v to l/v. The v integration is of the form 

cc 

/ dv (v-v 
F(v) 

F(y) 1% (l/y) 

O l)( - 2)(v-v3)‘v-v4) 
= -I- 

v v (vl-v,)(v,-v,)(v,-v4) 

(IV. 19) 

0~~) 1% (l/v2) F(v3) 1% (l/v?) Fk4) log (1/v4) 
(:o I- ~7-T3J7G3-v2) (v3-v4) I- (v4-VI) (v4-v2) (“4-v3) v2-v1 

where the roots v 1 . ..v 4 are non-positive, non-degenerate and F(v) is a 

second order polynomial. 
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We shall not restrict our attention to the real (interfering) 

part of MR. It may then be verified that the factor 

E2 E1 
Re 

av2+ 2Bv -!- y 
-!- -2 yv I- 2gv I- 6 I 

in Eq. (IV.17) vanishes at the two roots of D 29 . The roots that do con- 

tribute to Re 9x are 

v1,2 = [-B k iR]/a 

or 

(1x20) 

G l,2 = [-5 rf: ii]/? 

2- 2 NN -2 
where R =ay - p and E2 = CX y - B can be shown to be real and positive. 

Performing the final integration, we obtain 

Re 5$1~~,ii~) = 
E2e'p1 

k.p plE2h I2 
1 

I- 'Fip2 - ~~ 
'2 3 

-!- 
(ElfE2)e.pl 

I 
22 

k.pl - eo E2i-Llp2 I1 

(IV.2la) 

-[ 

(El+E2)e.p2 1 2 
k.p2 - eo ElE2p21-ll I2 

- (PI -P2Y !-5+--+~2) 
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where 

I = Re 
Nnbl) r’inb2 > 

n 1‘-wg - log v2 -m 

(n = 1,2) (IV.2lb) 

Nib) = l-l- 2fv 

N2(v) = v2 -!- 2fv 

We have used the gauge-invariance of (IV.jb) to rewrite our result in 

the Lorentz gauge. 

For a general nuclear charge distribution one must make a spectral 

sum over ~1 1 and 1-1~ in M f Re S MR and substitute the result into Eq. (IV.l) 

to obtain the cross sections through second Born approximation. For a 

Yukawa charge distributions we require the substitutions indicated in l 

’ \’ 

Eq. (IV.?). The limits pl, u2 -+O must be taken with care. We find 

ReMR(O,O) = 0, (IV.22a) 

ReMR(OJP) + ReI$(cl,O) = - 
E2e.pl Ele.p2 

k,p +- (IV.22b) 
1 

k,p 
2 

- E. G 1 
ReM&4 = 

E2e.pl Ele.p2 
k,p 

1 
1- k*P2 - E. c 1 

i- 
(El+E2)e.~l 

k.pl - eo 1 B1 
-[ (El'-E2)e.p2 

k.p2 - eo I B2 

(IV.224 
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where 

C = p{E2h12 - Elgy2) 

B1 = p3(E211 f E&E2 

(IV. 23) 
B2 = p3(E212 f E&E, 

and ?n is obtained from In by the interchange of four vectors p1 and 

p2. The parameters, a, B, Y, f, g, h, v 1' v2 are defined in Eqs. 

(IV. 18,20) but now ~1 = 1 l-5 = I-1. Also, in this limit 

B2 = !$\2[E;l;j2 f 4~~s; + p4 f 2k.-p,p2] - (Iv. 24) 

which can be shown to be positive definite. 

The cross section through second Born approximation for spin zero 

pairs produced in a nucleus with a Yukawa form factor F(Q2) = p2/(]h12+ p2) 

is30 

da z2a3 
dEldE2dRldfi2 = &?-- I II $1 

5, S(k) (-A) 
I k k.Plk,p2 

(IV.23a) 

where 

A= fiQ2) [(k.pl)(k.p2) I- Q2E1E2] -+ 2Za UQ2) 

Iat4 1612 
A' + O(Za)2 (N+25b) 
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and 

A' = [Q2(~2-E1) + 2E2k.p2- 

+ (C + G)[(k+l)!k+2) I- Q2E1E21 

+ $ Bl [(Eli- E2)Q2+ PElk.pl- 2E2k.p2 1 El' 2k.plk+p2 

-- : B2 (Elf E2)Q2+ 2E2k.p2- =lk.~l E2+ 2-k.plk.p2 

The corresponding cross section for spin -$ pairs is twice this result 

(IV. 2%) 

if conditions (II.?) hold. The electron positron asymmetry for a Yukawa 

nuclear charge distribution for spin zero pairs is then 

A' 

F(Q2) (k-pl)(k.p2) + Q2ElE2 
I- o(za)? (IV.25) 

which reduces to (IV.9) when ~1 -+a~. As we have discussed in Section II, 

the result (1v.26) may also be used for electron (spin 4) pair production. 
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V. SECOND BORN CORRECTIONS TO WIDE-ANGLE ELECTRON BREMSSTMHLUNG 

In Born approximation the bremsstrahlung cross section for an electron 

scattering on a static spherical nucleus (see Fig. 3) is 

du . _ Z2cx3 F Q2) 121 I;'1 @RI 
dkdfi'dSLk 2f12 A- 

& E 2 w 1) 

where Wi g" can be obtained from the pair production result of Eq. (11.1) 

by a crossing relation3 

BR Wl =-w, 
F ," (P,'P', p2-+-p, k j-k). oJ.2) 

If the electron had spin zero, the cross section would be given by 

Eq. (V.1) with 1 WBR BR replaced by W : 
7 0 

e = I- 2WF (pl+p', p2+-p, k 3-k) w. 3) 

where WE' is given by Eq. (11.3). We now notice that 

wy - $” = - [k*(p-p')12 -+ Q2[(E-E')2- &(p-~')~] 
k.p k.p' -I- O(m2) (v. 4) 

2 

Thus if (E-E')2 << E2, [k*(p-p')12 << (k*p)2+ (k*p')2 and pep' << E2, 

then the spin zero cross section is a very good approximation to the 
31 

actual electron spin -$ expression. The spin zero cross section through 

order Z3CX4 can be obtained immediately from the results of Section IV: 

dc Z2Q3 jiij@l ABR 
dkdnkdR' = z E k.pk.p' (V-54 
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where 

ABR = 2App(pl+p', p2+-p', k 3-k) (V. 5b > 

and App is defined in Eq, (Iv.25~). 

The ratio of the second and first Born contributions can again be 

taken to be independent of spin to lowest order in 8' if (E-E')~ << E2, 

using arguments similar to those given for pair production in Section II. 

On the other hand, if the emitted photon has large energy, the amplitude 

corresponding to Fig. 3(a) will usually dominate and the higher Born 

corrections are then the same as those for a (nearly on-shell) electron 

scattering from momentum G to $ - 6. 

VI. NUMERICAL RESULTS FOR WIDE-ANGLE PAIR PRODUCTION 

The results of Section IV for the second Born corrections to large 

angle asymmetric electron pair production are applicable to the coin- 

cidence measurements performed by Asbury, et al., at DESY7. In this 

experiment, counts were binned according to differences in electron and 

positron angle, energy, or transverse momentum for pairs with invariant 

pair mass m(e"e-) = 770 + 50 MeV (the region of the p") produced on a 

carbon target, and for 300 < m(e+e-) < 550 MeV on lead. For the latter 

region, previous measurements 4 have shown that the production rate for 

symmetric pairs agrees with the QED predictions. 

In Fig. (4) we have shown a comparison of our result (IV-Z?) for 

e(8), defined in Eq. (I.l), and the carbon experimental results, binned 

according to the electron and positron energy difference. The dotted 

line shows (for reference only) the ratio of differential cross sections 
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for coplanar, mirror symmetric pairs, with 6 = El- E2 and *(El+ E2) = Eo. 

A Yukawa charge distribution is used, with p adjusted to the nuclear 

electromagnetic radius. The solid curve is obtained by averaging the 

cross sections over an angular acceptance of Gl 2 = Q. 2 .07 8 32 . 
Y 0 

This is only a first approximation to the experimental acceptance 

("window"). A detailed comparison with experiment would require inte- 

gration over the coplanarity acceptance, the bremsstrahlung distribution, 

as well as the actual angular acceptance dependence on 6, and finally 

an averaging over the bin size. Despite these qualifications, Fig. (3) 

shows that the second Born corrections are small for the carbon data. 

On the other hand, the contribution of the Compton diagram corresponding 

to virtual p" diffraction production does fit the data and within a 

phase angle of cp = 15' -I 25' is consistent with a purely absorptive 

('p = 0') Compton emplitude7. The inclusion of second Born corrections 

should make only a minor correction to this analysis. 

The effect of the p" Compton amplitude for the lead data is very 

small (see Fig. 3a of Ref. 7) since the invariant pair mass is well 

below the p" region. In Fig. (5) we have shown the contribution to ~(6) 

from the inferference of second Born approximation, again assuming a 

Yukawa nuclear charge distribution, coplanarity, and spin zero electro- 

dynamics. The solid curve is obtained from averaging over the lepton 

angular region 8 0 + .07 8 32 
0' Even with this rough approximation to the 

acceptance window, and the expected importance of higher Born corrections, 

the results are in qualitative agreement with the experimental results. 

Agreement with the 161 < 300 MeV data would be improved further if the 

finite bin size and exact experimental acceptance were taken into account. 
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We have also evaluated the asymmetry E for lead as a function of 

el- e2. Appreciable asymmetries for the differential cross section are 

obtained, but they are reduced typically by a factor of 5 when the large 

energy acceptance (EC * 500 MeV) is averaged over. Our results thus 

account for the negligible asymmetry for this case noted by the experi- 

7 mentalists . We have not compared our results for asymmetries binned 

to transverse momentum difference since the analysis depends very CC.- 

tically on the detailed experimental acceptance. 

Thus despite the many approximations made in our analysis, the sign 

and magnitude of the asymmetry in the lead results has been explained. We 

summarize here the limits and approximations used in our calculation 

(in addition to the estimates of the experimental acceptance): Spin 

zero electrodynamics, zero electron mass, and a one parameter Yukawa 

nuclear charge distribution were employed. Compton contributions, terms 

higher. than second order in the potential, and radiative corrections 

were not included. Finally, it was assumed that the asymmetric cor- 

rections to the inelastic contribution to the cross section scaled the 

same as the elastic contributions. Even with these approximations, our 

results are reliable enough to satisfactorily explain the large asym- 

metries in the lead data, and to provide the experimentalist with a 

reliable estimate of the importance of second Born effects in pair 
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[i?- ($ - ei) + (V - E)](P = 0 

[ 2. ($ - ex) + (V - E)]x = 0 

The free , positive energy solutions for the decoupled wave functions 

cp and x have positive and negative helicity respectively. Propagator 

perturbation theory can be developed (to first order in i = z e ijk.; 
3 

all orders in the static potential V) from the equation of motion 

[($ - eX)2- (E-V)2 - e Ue 'f&X- i S*+ V]Cp = 0. 
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For convenience we use the Lorentz gauge, but this result is in- 

dependent of gauge because the magnetic current interaction with 

the photon dominates the cross section here. For spin 0 pairs, one 
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the y matrices in P. 

The corresponding correction to electron scattering was first given 

by W. A. McKinley and H. Feshbach, Phys. Rev. 2, 1759 (1949), and 

R. H. Dalitz, Proc. Roy. Sot. (London) ~206, 509 (1951). 

We would like to thank Dr. D. R. Yennie for discussions on this point. 

See Ref. 11, Appendix I. As usual we must discard the imaginary in- 

frared divergent contributions which correspond to the first order 

term in the expansion of the infinite Coulomb phase. 

Note that (IV.12) is an even function of E and can be analytically 

continued for positive E into the upper half plane. 
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32. We have also reduced E by a factor 1 + ~~ -in the integrated curves 

to account for the second Born contribution to the denominator of (1.1). 
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at 15’, 625 MeV. (R. Simon& , private communication.) 
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FIGURE CAPTIONS 

1. Feynman diagrams for electron pair production. Figures (a) through 

(e) give the Bethe-Heitler amplitude through second order in the 

electromagnetic interaction with the nucleus. Diagram (f) repre- 

sents the virtual Compton contribution to pair production and in- 

cludes contributions from the nuclear pole terms, nucleon and 

nuclear excitations, and neutral vector meson production. 

2. Feynman diagrams for pair production of spin zero particles in a 

static electromagnetic field. Figure (a),(b),(c) correspond to 

first Born approximation. Figures (d) and (e) are 'seagull" graphs 

and lead to the matrix element MS in Eq. (IV.3) of the text. 

Figures (f) through (j) give the remainder of the second Born ampli- 

tude MR for spin zero pair production. The amplitudes corresponding 

to Figures (i) and (j) vanish in the radiation gauge. 

3* Born approximation diagrams for electron bremsstrahlung. 

4. Electron-positron asymmetry in pair production on carbon for invariant 

pair mass m(e+e-) = 770 5 50 MeV (the PO-dominated region). The de- 

finition of e(8) is given in Section I. The experimental points are 

the binned results of Ref. 7. The dotted curve is the second Born 

spin zero result given in Section IV for mirror symmetric (except 

for energy, 6 = El- E2) pairs produced in a Yukawa charge distri- 

bution with p = 204 MeV chosen to fit the carbon rms radius. The 

solid curve is obtained by averaging the cross sections over lepton 

angles in order to approximate the experimental acceptance, as dis- 

cussed in the text. 
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Electron-positron asymmetry in pair production on lead for invariant 

pair mass in the interval 300 < m(e'e-) < 550 MeV. The experimental 

points are from Ref. 7. The dotted curve is the predicted dif- 

ferential cross section for mirror symmetric (except for E - E, = 6) 

pairs produced in a Yukawa charge distribution with p = 89.5 MeV 

chosen to fit the electromagnetic rms radius of lead. The solid 

curve is obtained from an average over lepton angles to provide a 

first approximation to the experimental acceptance (see text). The 

asymmetry for 181 < 300 MeV will be reduced when the theoretical pre- 

diction is averaged over the finite binning size and the actual ex- 

perimental acceptance. 
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