POMERANCHON SU(3) ASSIGNMENT AND TOTAL CROSS SECTIONS*

M. Davier†

Stanford Linear Accelerator Center Stanford University, Stanford, California

To be submitted to Phys. Rev. Letters

^{*}Work supported by the U. S. Atomic Energy Commission

[†]On leave from the Laboratoire de l'Accélérateur Linéaire, Faculté des Sciences, Orsay, France.

The present analysis stems from the following experimental facts:

(1) The total cross sections πN and KN seem to converge to different asymptotic values, the difference being of the order of 3 mb.¹

(2) The total cross sections of πN and ρN are comparable, whereas ϕN is smaller by more than a factor of 2.²

(3) $\frac{\sigma(\gamma p - \phi p)}{\sigma(\gamma p - \rho p)}$ is smaller than the predicted SU(3) ratio by about a factor of 15;³ this discrepancy comes in fact from (2) as suggested by the vector mesons dominance of the electromagnetic current.

These facts can be partially explained by SU(3) breaking: for example, the quark model⁴ starts from (1) and explains (2) and (3).

 $\tau_{\rm c}$

In this letter the approach is different: SU(3) is assumed to be an exact symmetry for scattering amplitudes even at energies $10 \sim 20$ GeV; the high energy behavior is given by exchanges in the t channel, the main contribution coming from the Pomeranchon of which we want to determine the SU(3) assignment.

We make the general assumption that the Pomeranchon is a linear superposition of a singlet and an octet states with a mixing angle α :

$$|P\rangle = |P_1\rangle \cos \alpha + |P_8\rangle \sin \alpha$$

Consequently the contribution of P exchange to the forward elastic mesonnucleon scattering amplitudes is:

$$A_{p}^{\pi} = \left(\cos\alpha + \frac{1}{\sqrt{2}} \sin\alpha\right) A_{p}^{(0)}$$
$$A_{p}^{K} = \left(\cos\alpha - \frac{1}{2\sqrt{2}} \sin\alpha\right) A_{p}^{(0)}$$
$$A_{p}^{\rho} = A_{p}^{\omega} = \left(\cos\alpha + \frac{1}{\sqrt{2}} \sin\alpha\right) A_{p}^{(1)}$$

-1-

$$A_{p}^{\phi} = \left(\cos \alpha - \sqrt{2} \sin \alpha\right) A_{p}^{(1)}$$

where (0), (1) stands for 0^{-} , 1^{-} octets.

If we assume <u>universality</u> for the meson-meson-P coupling, we can derive the following conclusions that may be experimentally tested:

(1)
$$\lim_{S \to \infty} \left\{ \frac{\sigma_{T} (\pi p)}{\sigma_{T} (Kp)} \right\} = \frac{2\sqrt{2} + 2\tan\alpha}{2\sqrt{2} - \tan\alpha}$$

$$(2) \lim_{\mathbf{S} \to \infty} \left\{ \frac{\sigma_{\mathrm{T}} (\pi \mathrm{p})}{\sigma_{\mathrm{T}} (\rho \mathrm{p})} \right\} = 1$$

2

$$(3) \lim_{\mathbf{S} \to \infty} \left\{ \sigma_{\mathbf{T}} (\phi \mathbf{p}) \right\} = \lim_{\mathbf{S} \to \infty} \left\{ 2 \sigma_{\mathbf{T}} (\mathbf{K} \mathbf{p}) - \sigma_{\mathbf{T}} (\pi \mathbf{p}) \right\}$$

Let us now consider a finite s; in addition to P, one can exchange the $2^+ I = 0$ states f and f' (we consider only the t channel exchange of I = 0 C+ particles). In analogy with the 1⁻ octet, we suppose that f, f' are mixed with a mixing angle A tan $\left(\frac{1}{\sqrt{2}}\right)$ as suggested by the quark model, in agreement with the mass formula and the production of f' in π and K-p interactions; this mixing angle and the hypothesis of universality of 2^+ mesons couplings leads to the property that f' does not couple to π and nucleons: it therefore does not contribute to any $\sigma_{\rm T}$ (meson-N).

The meson-nucleon scattering amplitudes can then be written (I = 0 C + ex-changes):

$$A_{\pi} = \left(\cos \alpha + \frac{1}{\sqrt{2}} \sin \alpha\right) A_{p} + A_{f}$$
$$A_{K} = \left(\cos \alpha - \frac{1}{2\sqrt{2}} \sin \alpha\right) A_{p} + \frac{1}{2} A_{f}$$

$$A_{\rho} = A_{\omega} = A_{\pi}$$
$$A_{\phi} = \left(\cos \alpha - \sqrt{2} \sin \alpha\right) A_{p}$$

so that

$$A_{\phi} = 2A_{K} - A_{\pi}$$
 (5)

or

(4)
$$\sigma_{\rm T}(\phi_{\rm p}) = 2 \sigma_{\rm T} (\rm KN) - \sigma_{\rm T} (\pi p)$$

where

÷

$$4 \sigma_{\mathrm{T}} (\mathrm{KN}) = \sigma_{\mathrm{T}} (\mathrm{K}^{+}\mathrm{p}) + \sigma_{\mathrm{T}} (\mathrm{K}^{-}\mathrm{p}) + \sigma_{\mathrm{T}} (\mathrm{K}^{+}\mathrm{n}) + \sigma_{\mathrm{T}} (\mathrm{K}^{-}\mathrm{n})$$
$$2 \sigma_{\mathrm{T}} (\pi\mathrm{p}) = \sigma_{\mathrm{T}} (\pi^{+}\mathrm{p}) + \sigma_{\mathrm{T}} (\pi^{-}\mathrm{p})$$

We see that adding the assumptions of f - f' mixing angle and 2^+ universality has made our predictions (2) and (3) valid for any s (high enough so that s channel contributions are negligible); for (3), this fact is a pure accident since formula (3) is based only on P SU(3) assignment, and (4) on P and f SU(3) assignments.

In Fig. 1 our results are compared with the experimental data; the assumption of universality is in good agreement with the experiment since $\sigma_{\rm T}(\rho p)$ is equal to $\sigma_{\rm T}(\pi p)$ within the experimental error (even at the relatively low energy where $\sigma_{\rm T}(\rho p)$ has been measured), while $\sigma_{\rm T}(\phi p)$ seems to agree quite well with the combination $\left\{ 2 \sigma_{\rm T} ({\rm KN}) - \sigma_{\rm T}(\pi p) \right\}$ which is shown to be constant with energy. Figure 1 also shows the prediction of the quark model for $\sigma_{\rm T}(\phi p)$ which should increase with energy (in this latter case the errors are smaller since the model involves only K[±] p cross sections and not the less accurate K[±] n cross sections).⁶

A sufficiently accurate measurement of $\sigma_{\rm T}(\phi p)$ in function of energy could choose between unbroken or broken SU(3) scattering theory; but experimentally this seems very difficult. Another important test would be to measure accurately the K[±]-proton and neutron cross sections.

To make quantitative predictions, one should assume an asymptotic behavior: using the Regge poles model, we can fit the experimental data on $\sigma_{\rm T}^{(\pi p)}$, $\sigma_{\rm T}^{(\rm KN)}$ and the real part of the (πp) elastic amplitude. In the familiar notation:

$$\sigma_{\rm T} (\pi p) = A_{\rm p}^{\pi} + A_{\rm f} \left(\frac{\rm E}{\rm E_0}\right)^{\alpha_{\rm f}}^{-1}$$

$$\sigma_{\rm T}({\rm KN}) = {\rm A}_{\rm p}^{\rm K} + \frac{1}{2} {\rm A}_{\rm f} \left(\frac{{\rm E}}{{\rm E}_0}\right)^{\alpha_{\rm f}} - 1$$

$$\begin{bmatrix} \frac{\operatorname{Re}(\pi p)}{\operatorname{Im}(\pi p)} \end{bmatrix}_{t=0} = \frac{-A_{f} \left(\frac{E}{E_{0}}\right)^{\alpha_{f}-1}}{\left[A_{p} + A_{f} \left(\frac{E}{E_{0}}\right)^{\alpha_{f}-1}\right] \tan \frac{\pi \alpha_{f}}{2}}$$
$$E_{0} = 1 \text{ GeV}$$

The results of the fitting are shown in Fig. 2 and Table I. We present two fits: In fit 1, α is taken equal to 0 (P unitary singlet) and the 3 parameters A_p , A_f , α_f are deduced; fit 2 investigates the possibility of (P₁, P₈) mixing by fitting 4 parameters: A_p^{π} , A_f^{K} , A_f , α_f° . The results strongly favor different asymptotic limits for $\sigma_T(\pi p)$ and $\sigma_T(KN)$ with a mixing angle $\alpha = (10.5 \pm 2.0)^{\circ}$. Obviously this value is dependent on the assumed Regge asymptotic behavior.

The author would like to thank Professor A. Blanc-Lapierre for his support and Professors W. K. H. Panofsky and R. F. Mozley for their hospitality at SLAC.

REFERENCES

1.	W. Galbraith et al., Phys. Rev. 138, B913 (1965);
	K. J. Foley et al., Phys Rev. Letters 19, 330 (1967).
2.	J. G. Asbury et al., Phys Rev. Letters 19, 865 (1967);
	S. Ting, Communication at APS Meeting, Chicago, February 1968.
3.	DESY Bubble Chamber Group, Communication at the Photon and Electron
	Conference, SLAC, September 1967.
4.	H. J. Lipkin, Phys. Rev. Letters 16, 1015 (1966).
	H. Joos, Phys. Letters 24B, 103 (1967).
	K. Kajantie, J. S. Trefil, Phys. Letters <u>24B</u> , 106 (1967).
5.	The fact that only P contributes to ϕp elastic scattering has been noticed
	first by P. G. O. Freund, Nuovo Cimento XLVIIIA, 2013 (1967).
6.	In the quark model (Sec. (4)) $\sigma_{T}(\phi \mathrm{p})$ is given by the combination
	$2\sigma_{\mathrm{T}}(\mathrm{K}^{+}\mathrm{p}) + \sigma_{\mathrm{T}}(\pi^{-}\mathrm{p}) - 2\sigma_{\mathrm{T}}(\pi^{+}\mathrm{p}).$

7. K. J. Foley et al., preprint (1967).

ł

5

TABLE I

l

200

The experimental data used in these fits are: $\sigma_{\rm T}(\pi p)$ from 8 to 22 GeV by Foley <u>et al.</u>¹; $\sigma_{\rm T}(KN)$ from 8 to 18 GeV by Galbraith <u>et al.</u>¹; Re (πp) from 8 to 20 GeV by Foley <u>et al.</u>⁷

	A_{p}^{π} (mb)	A ^K _{p (mb)}	α (d°)	A _{f (mb)}	$\alpha_{\mathbf{f}}$	χ^2
Fit 1 $\alpha = 0$	11.8 ± .5	11.8 ± .5	0	21.0 ± .4	.83 ±.01	31.7 DF = 18
Fit 2 $\alpha \neq 0$	19.8±.4	16.4±.4	10.5 ± 2.0	15.1 ± .5	.60 ± .02	5.9 DF = 17

 $(A_{i})_{i\in I}$

Fig. 2