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I. INTRODUCTION 

Electron-proton inelastic scattering experiments are expected to yield infor- 

mation such as: 

1. The form factors associated with the -yNN* vertices f o r  various 

N*'s. 
1 2. The sum rules for y (off-shell) + P-hadrons. 

3, 
2 Test of PCAC theory near pion threshold, 

However, a casual glauce at the data from various laboratories3' 

these resonances and continuous hadronic states sit on top of very high radiative 

tails especially in the deep inelastic region as shown in Fig. 1, Obviously, no 

reliable information can be extracted from such experiments unless one ciui cal- 

culate these radiative tails accurately. For example , when the contribution of the 

radiative tail amounts to GO% of the cross section one might make a factor of tu-o 

mistakes in evaluating the hadronic cross section if  an e r r o r  of 20% is made in 

shows that 

4 

have used different appros- 3,5-11 estimating the racliative tail. Various people 

iination scheines to evaluate the radiative tail, These approsimntioiis essentially 

consist of various versions of peaking approxiinations which assume that the 

photons emitted a re  either along the direction of the incident electron o r  the 

scattered electron. It was shown by Masinion and IsalseIlel2 for the case of po- 

tential scattering that the peakiiig approximation can be wrong by as much as a 

factor of two in the very inelastic region. The purpose of this paper is to give a 

practical a i d  reliable recipe for  handling the problems associated wit11 radiative 

corrections. By practical we mean that the problem can be handled by a computer 

without straining its capacity; and by reliable we mean that the e r r o r  involved in 

our approximations will be small and its magnitude can be estimated. In any 
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practical application of the radiative corrections, the effect of electron strag- 

gling in the target has to be included. This is necessary because the internal 

bremsstrahlung has roughly the same effect as that given by two external radi- 

ators with one placed before and one after the scattering, each of thickness 
2 ti ,f - - 9 t i  2 - 1) radiation lengths. For example, if -q2 = 2 GeV2, these 

two  radiators will each have a thickness of t = 0.0276 radiation lengths. If 

the target has thickness 0.0552 radiation lengths, the effect due to straggling 

will be roughly equal to that clue to the radiative corrections. Hence when the 

i, f 

target thickness is comparable to t 

great care.  

we must treat  the straggling effect with i, f 

Throughout this paper we restrict  ourselves to one-photon exchange be- 

tween the electron current and hadron current and also ignore the emission of 

real photons by hadrons. Only when treating the radiative corrections to the 

elastic peak, have we included both the infrared divergent part of the two-photon 

exchange diagrams and also the ernjssion of real  photons by hadrons (see Section 

II). The order of magnitude of these effects can be estimated by comparing the 

Z and the Z terms with the Z terms given in Table I. 1. 2 0 

In this paper most of the basic formulae a re  given in the appendices. In 

the test we discuss how these formulae are to be used in practical applications. 

Appendix A discusses the straggling of the electrons in the target; in Appendix B 

we reproduce the formulae, first given by one of us  (Tsai) in Ref. 13, for  the 

exact treatment of bremsstrahlung in the lowest order Born approximation allowing 

for fo rm factors, recoil and inelastic excitation of the target system; Appendix C 

derives a peaking approsirnation formula based on the exact formulae given in 

Appendix B; and in Appendix D we give several practical considerations associated 

with programming some of our formulae for  a computer. In Section Il, we discuss 

the raclizitive corrections to the elastic peak with the straggling effect in the target 
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included. The numerical values from the formula of Tsai14 and that of Meister 

and Ycimie” for the radiative corrections to the elastic peak are compared. We 

found that at low incident energies the two formulae give practically identical 

answers, but at very high energies the results can differ by as much as 3 or 4% 

in the cross  section, The origins of the differences in these two formulae a re  

investigated. We also briefly mention how to do radiative corrections to muon 

scatterings. In Section III we calculate the elastic radiative tail using our exact 

formula[Eq. (B5)] and several versions of approximation formulae. We coiiclude 

that all different versions of approximation formulae are good near the peak bu.t 

predict result in e r ror  by 30 - 40% when the electron looses more than 1/3 of 

its energy through bremsstrahlung. Hence it is essential to use the exact formula 

to  calculate the elastic radiative tail, which is usually the most dominent 

background to the inelastic electron scattering. Fortunately, it is rather easy to 

apply the exact formula to calculate the elastic radiative tail. For the continuum 

part  of the spectrum, after elastic radiative tails have been subtracted, one is 

essentially forced to use an approximation formula. This is because our exact 

formula [Eq. (El6)lfor the continuous spectra can be used only if the t ~ o  inelastic 
2 form factors F(cl ,M$ and G(qz,M$ have been sepaatecl out of the data. This is 

impossible before one applies the radiative corrections to the data. However, we 

believe the approsirnation formula is quite adeqiratc: for handling the radiative 

corrections to the continuous p a r t  of the spectrum. This optimism. is based on 

the resu1.t~ given in Table III and Table IV in which we have compared the radiative 

tails of the elastic peL& aid the 3-3 resonance using both the exact formula and 

various approsirnation formulae. In Section IVY we treat  the radiative corrections 

to the continuous spectrum, using the 3-3 resonance as an esznlple. We first 

calculate the non-radiative 3-3 cross sectioii using the method clcscribed by 
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Dufner and Tsai" and then include the effects due to straggling and radiative 

corrections. We  give a procedure to extract the non-radiative cross  section 

from the experimental data. We emphasize that experiments have to be planned 

carefully before its execution so that the radiative corrections can be applied, 

We suggest several items which are useful fo r  the design of the experiments, 

In Section V, our results are discussed and summarized. 

The notations used in this paper (except in Section 11) are summarized below 

for easy reference. we use the convention h = c = 1. Energy and momentum are 

always in GeV. The metric used is such that p s = E E - pa 2- 
S P  - 

s = (Es, E) : four momentum of the incident electron 

p = (Ep, E) : four momenhiin of the outgoing electron 

= (M, 0 )  : four momentum of the target particle P i  

k = (a, kJ : four momentinn of the real photon emitted 

= s -+ p. - p - k : four momentum of the final hadronic system Pf 1 

u = (Uo, Ll) = s -E p i - p = p f + k  

(* ) 1" = ((pf 4- ~ c ) ~ ) ~ / ~  : missing inass 
2 2 2 q = (s - p - k) =(pf  - pi) 

M y  Mf, m,m , mT : masses of target particle, final hadronic 
P 

system, electron, muon and pion, respectively 

= 1.236 GcV, M = 0.938 GeV 
M33 P 

8 = scattering ang1.e of the electron 

dk = angle between E and 

6 = angle between and 
S 

= angle between 5 and p eP h) 

T : target thickness in unit of radiation length 

= initial and final target window thicknesses in  unit of radiation 

length 

tiw, tfw 
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Z = atomic number of the target nucleus 

A = atomic weight of the target nucleus 

N = 6.023 X = Avogadro's nuiiiber 

= 2.818 X cm, classical radius of the electron rO 

The reader is advised to read the appendices first before reading the text. 

11. RClDIATIVE CORRECTIONS TO THE ELASTIC PEAK 

Radiative corrections to the elastic peak is a very well-known subject, hence 

we shall cliscuss only those points which have practical interest. 

Schivinger'' first calculated the radiative corrections fo r  potential 

scattering and found that the measurcd cross section should be related to the 

lowest order cross  section by a factor (1 + 6 ) :  

do 
=(I+ 6) w( 

measured lowcst order cross  section 

where 

Here q is the four momentum transfer, E the energy of inciclent or  scattered elec- 

trons (in 

loss of the clectron o r  tlie niaximuin energy of the photon 

potential scattering they a r e  identical), and AI3 tlie niaximum energy 

allowccl by kincinatics 

(they axe identical in the potentid - scattering) 

AE-0, 6 in Eq. (II. 2) becomes negatively infinite, whereas on physical ground, 

d o  

iini measured 

photon emissions have been neglected and he conjectured that (1 + 6) in Eq. (51.1) 

should be replaced by e 

Schrvinger also noticed that when 

should go to zero as AE -0. This is due to the fact that the multiple 

6 if higher order radiative corrections am taken into 
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account. Later Yennie and Suura 18 and Yennie, Frautschi and Suura 19 proved 

that indeed the infrared divergent par t  of 6 in Eq. (It. 1) , 

should be exponentiated (i.e. , 1 + 6inf-e6inf). A s  f a r  as we know it is still illl 

- openquestionwhether or  not other contributions to 6, 6 vertex+ 6vac - 6 - Binf, sliould 

be exponentiated or  should assume some entirely different form such as 

However, for practical applications this is an academic question at the 

presently available energies because 6 and bvertex a r e  given by vac 

lr m 'vertex 

(11.4) 

(11.5) 

- - 
= 2,58 X 3 'vertex L C  

2 respectively. Even if -q2 = 20 GeV we have 

5.9 X He,nce ( 6  

to  this the exponentiation of Ginf is absolutely essential at high energies and at 

large niomentum transfers because AE must be taken small enough to avoid the 

)2  contrib~ites at; most; . 7  percent. In contrast vac+ 'vertex 

pion threshold, resulting in a magnitude for dinf very cIose to - 1. 

When the momentum transfer 1 -q2 11'2 becomes larger than or  comparable 

to the mass of the target particle, we have to take into account both the kinematical 

effect due to target recoil and the dynmical  effect due to photon emission by the 

target system. Neither of these effects is contained in Eq. (11.2). 
14 The expression for 6 containing these two effects was first given by Tsai 

(T) and later by Meister and Yennie15 ( M Y ) .  Tsai's expression can be written 
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as 

( D e  6) 

The last four Speiice functioiis in the second curly bracket were ignored in the 

original paper of Tsai" because they axe al~vvays sniall when Z = 1. These terms 

are reinserted here s o  that the foriiiula gives a correct limit when Z is large, 

Meister a i d  Yennie's formula is: 
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The notation used in both formulae is as follows: E 

'incident electron, scattered electron and the recoil nucleus, respectively. m and 

M are masses  of the electron and the target particle, respectively. p is a step 

function, defined by MY as p(x) = (In x) 8 (1 - x). P is the velocity of the recoil 

E3 and E4 a re  energies of 1' 

2 
4 

E3 min 
particle in units of the velocity of light, q = E /E and AE = AE3 = E3 peak- 1 3' 

as was shown in Fig. 1 of Tsai's paper. l4 Z is the atomic number of the target 

particle when the,inciclent particle is e- and the sign of Z is changed when the inci- 

dent particle is e , e.g. , 2 = I for e-p scattering and Z = - 1 for e p scattering. 

*(x) is the Spence function20 defined by 

+ + 

In Table I and Table II, we compare the numerical values given by Eys. (II. 6) 

and (II. 7). We notice that for e-p scatteringj these two formulae give practically 

identical results;  but for e p the difference in 6 can be as large as 4% at high 
3. 

energies and large momentum transfers,  When Z is high, Eq. (11.6) gives a 

reasonable answer, whereas Eq. (11.7) does not. Since there are  some experi- 

mentally detectable differences in the two formulae, it is important to know the 

origins of these differences. They a re  as follows: 

1. In MY all the Spence functions arc approsimated by logarithmic functions 
20 using the following re1 a t' ions: 

1 2  
6 12 

2 1 2  7r 
3 

2 

@(I) = - x and $j(-l) = -1 7r2 . 
For  x > 1, G(x) = -  5 h 1x1 -k - -@(:) . 

1 2  For x < -1, @(s) = - 5 h 1x1 - 7 - 
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The Spence function @(x) was subsequently approximated by @(x) = 0 when 
1 2  
2 1x1 < 1, and +(x) = - - h 1x1 when 1x1 > 1. We rcgard this approsirnation as 

x (1, Z, z2) M 1% in CY 7r2 rather inadequate because it can muse  an e r r o r  of 7 - 3 

e-p scattering for each Spence function used. Since there are more than a dozen 

Spence functions involved in the problem, the resultant e r r o r  is difficult to esti- 

mate. We a r e  unable to determine for the MY calculation how much this approx- 

imation contributes to the difference in the numerical values given in Table I. 

This approxiniatioii is especially bad when Z is large as c a i  be seen froni Table I1 

where we have calculated the radiative corrections to e -t Ca4' elastic scattering. 

In any large scale data analysis, one has to use a computer anyway and the Spence 

function @(x) defined by Eq, (II.8) is no more difficult to obtain t h a i  the logarithmic 

function when a computer is used. 

f 

2. Another source of the difierence between T and MY is in the manner in 

which the two-photon exchange diag-rams are handled in the two papers. Neither 

of these papers clnims to have treated the two-photon exchange te rms  completely, 

because the effects of strong interactions to these diagrams were ignored. These 

authors were forced to consider these diagrams because they are needed to supply 

te rms  to cancel the iirfrwed divergence in real photon emission. In T only the 

infrared terms were e'xtracted froin these diagrams, whereas in MY additional 

t e r m s  called spin-convection teriiis were also extracted. In practice, the radia- 

tive correction, 6, is used for two purposes: (a) to obtain nucleon form factors, 

(b) to obtain the contribution of the real  part of the two-photon exchange21 dia- 

grams by comparing e p and e-p scatterings. Strictly speaking (b) has to be done 

before (a). But usually it is assumed that after applying the radiative corrections, 

the remainder of the two-photon contribution is small, For the purpose of (a), one 

method of extraction cLmnot be preferred over the other, because one does not 

+ 
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know which method represents more closely the bulk of two-photon exchan, m e  con- 

tributions until the difference in e p and e-p cross  sections are measured experi- 

mentally. For the purpose of (b), the question of preference of one method over 

the other is just a matter of convenience in the theoretical analysis. Suppose one 

wants to use a certain theory of strong interactions to understand the two-photon 

exchange process by comparing his theory to the difference in e-p and e p cross  

sections. Then, whether the method of T or  MY is used, one must res tore  the 

part  which each has subtracted from these diagrams beiore the compa-ison can 

be made, The method of T is somewhat simpler than that of MY because in T only 

+ 

+. 

a simple , well-defined analytical function called 

was extracted from each diagram, whereas in hTY a 

[vrhere p =piy+(l-y)pj] 
Y 

more complicated procedure 

was used to extract the contribution from two-photon exchange diagrams (hence it 

requires more work to put back what MY have subtracted from these cli,a.grams). 

The reason T extracted only k(pi, p.)'s, from the two-photon exchange diagrams, 

was not only just a matter of simplicity, In addition it was found that, in the exact 

calculation of radiative corrections to e-e scattering, 22 

deed very small after the k(pi, p.)'s were subtracted (it, at most, contributes 

0.1% to the cross  section and is independent of energy in the C. M. system), It 

is a puzzle then why the spin convection terms do not make much of a contribution 

to the e-e scattering. The exact two-photon exchange contribution to ep scattering 

has been computed by Erickson. 23 The contributions 

J 

the remainder is in- 

J 

of these diagrams to the 

cross section after subtracting the k(p 

of Ericksonvs paper. 

p.)'s a r e  given in Eqs. (51) through (55) i' J 
23 It would be interesting to comp'xre Erickson's results with 

MY'S spin convection contributions. These remarks are important when one wants 
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+ 
to compare the difference in e p and e-p scatterings with some model of strong 

interaction in two-photon exchange interaction. 

The effect of straggling in the target system can be incorporated into the 

radiative corrections in the following way: 

6+6, 
e - do 

measured Kosenbluth 
- 

where 

(11.9) 

and T, tiw and tfLv are the target, the initial window and the final window thick- 

nesses,  respectively, in units of racliaticn lengih. b 

close to 4/3 and their exact numerical values depend upon Z of the material as 

given by Eq. (A. 4) in Appendix A.  

and b a r e  coefficients very 
W 

For elastic scattering of muons, 6, can be talien to be zero because the muon 
2 

bremsstrahlung in the target is reduced by a factor of (m /m ) N 1/40,000 coin- 
e P  

paired with electrons, If the muon inass is small compared with its energy and 

momentum transfer,  then the formulae given by T or  lClY may be used for 6 , pro- 

vided m is replaced by m and the vacuum polarization clue to the electron pxir  in 
P 

the bubble, Ey. (a, 4), is adcled to  the exvression, The order of magnitude of the 

ratio of inuon radiative corrections to the electron radiative corrections is rouglily 
2 2 

given by (. 3 - $/ti 5 - 1). It is equal to M 0.25 when -cl = 1 BeV 

This statement is also roughly correct for the radiative tails, as will be shomin in 

Section V and Fig. 5. 
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In, ELASTIC RADIATIVE TAIL AND VALIDITY O F  VARIOUS APPROXIMATION 

FORMULAE 

A. Radiative Tail from the Elastic Peak 

After the elastic form factors Ge(q ) and Gm(q2) are obtained from the exper- 

iments, one can calculate the radiative tail due to the elastic peak and immediately 

2 

subtract its contribution from the inelastic spectrum. We would like to emphasize 

that the pealring approximation to the radiative tail from the elastic peak can be in 

error by as much as 30 - 40% when the energy of the scattered electron is 

Hence the result of the exact calculation given in the Appendix B 1 

must be used. The formulae needed for calculating the radiative tail clue to the 

elastic peak, including straggling, are given by the sum of Eq. (A. 16) and Eq. (B.5): 

E < - E  p 3 pmax '  

where the first term is due to straggling in the target and its explicit 

(m* 1) 

expression is 

given by Eq. (A. 16), the second term is due to the internal bremsstralilung, and its 

exact expression is given by Ey. (B. 5) (our Go and F a r e  related to Ge and G by 

Eqs. (III. 2) and (III. 3)). If one wants just an order of magnitude estimate, then instead 

of using the exact formula, 

mation formula Eq. (C. 11) o r  simply add an equivalent radiator thickness, 

tr = cr/b.rr (hi 2s 0 p/m2 - l), to T/2 in Eq. (A. 16) and ignore the second te rm in the 

right hand side of Eq. (III. 1.). In Table III, we show that the equivalent radiator 

method actually gives a numerically better estimate than our peaking approximation 

when applied to the elastic radiative tail. 

0 m 

Eq. { B. 5) , one can either use the peaking approxi- 
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B. . Compxrisons of Various Versions of Peaking Approximations with the Exact 

Formula 

In contrast to the radiative tail from the elastic peak, it is not easy to apply 

the exact formula to calculate the radiative corrections to the continuous spectrum 

because the form factors F(q2, M:) and G (q2, Mf2) have to be separated out be- 

fore we can apply the exact formula, Eq. (B. 8). Hence one is cssential.ly forced 

to use an approximation formula (which requires only the knowledge of cross  sec- 

tions) to calculate the radiative corrections to the continuum part of the spectrum 

after the elastic radiative tail has been subtracted from the inelastic electron 

spectrum, Therefore, in this section, we investigate the reliability of various 

approximation formulae 

In Table 111, results are given for the radiative tail of the ep elastic peak 

calculated according to the exact formula Eq. (B. 5) and also several versions of 

approximations including our own Eq. (C. 11). In Table IV, results are given for 

the radiative tails from the 3-3 resonance using 

(b) our version of the peaking approsimation, Eq. (C. 11) , and (c) the method of 

equivalent radiators . 

(a) the exact formula Eq, (B. 5 ) ,  

The elastic forin factors of the proton used in the calculation are [see Eq. 

(III. 2) 

24 2 

4M2 
P 

T = - -  -' , and 
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-2 
Ge=-=( l -  Gm qz 2) . 

.71 GeV 2.703 

For the form factors associated with e + p -e + N* (1236 MeV) a convenient 
2 2 parametrization, valid in the range 0.1 GeV < -q < 2.4 GeV2, has been given by 

2 2  Dufner and Tsai" assuming a pure M1 transition. In terms of our F(q , Mf) and 

G(q2, Mf) defined by Eq. (B. l), Eq. (3.14) of Ref. 16 can be written as 2 

5 )  
2 2  

F(q 9 Mf) =- M P 

where 

2 2 2  2 
Q2 = (Mf - q - M i )  (2Mp)-2 - q  , 

2 2 2  2 Q* = M  Q /Mf , P 

2 2 2  M f + M  - q  
ET = 

2Mf 
¶ 

M33 = 1.236 GcV, 

r(Mf2) = .1293 GeV 

(0.85 -@-{ m 
7r 

\ 

¶ (III. 8) 
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[c,(s2) MJ 5= 2.052 J";;"(l + 9.0 q), and (III. 9) 

where energy is in GeV. 

In this Section we are interested only in investigating the validity of various 

versions of the approximation methods, hence we shall ignore the width and 

replace the Breit-Wigner foimula in Eq. (III. 7) by a 6 function (we restore  

the width in the next section) 

6 @If"- Mi3)  + 

-1 
rM33= 

L (M:- +r 2 2  M~~ 
(III. 10) 

Since the width of the N* is neglected we can use Eq. (B. 5) for  the exact calculation 

o€ the radiative tail from the 3-3 resoncance and Eqs. (C. ll), (C.  8) and (B. 3) for its 

2 pedcing approximation. In the zero width approsimation, the form factors F.(y ) 

and G.(q ) which appear in Ecjs. (E. 5) and (B. 3) can now be written as 
3 

2 
J 

(III. 11) 2 4  2 2 2  
P 

Fj(q ) = 5 h'133(Er f M ) Q* C3(q ) 

In Table III we give numerical examples of the radiative tails from the elastic 

ped< at e = 5', E = 20, 5 and 1 GeV. The third col.uinn labeled "exact" is based 

on Eq. (B. 5). The fourth column labeled "Mo and Tsai'' is based on our own peaking 

approximation, Eq. (C. 11) of Appendix C. The fifth column labeled Wand" is based 

on the peaking approximation €ormula of L. Hand, 25 which in the notation of our 

S 

Appendix C [see Eqs. (C. 7), ( C .  8) and ( C .  ll)] can be written 

( 1 - x  )2  4E2 

2 
2s * p S , P  

m 

as : 

(Hand) (nI. 12) 

- 1 6  - 

.. . 



The sixth column labeled "Allton and Bjorlren" is based on the peaking approxi- 
7 8 mation formula of Allton and Bjorken, which in our notation can be written as: 

14- x; t = -  a! 9 (Allton and Bjorken) 
m S t P  71 2 

(El. 13) 

The seventh column labeled "Equivalent Radiators" is based on a semiempirical 

forinula obtained by assuming that the effect of the internal bremsstrahlung on the 

elastic o r  inelastic electron scattering is equivalent to placing one radiator before 

the scattering and another radiator of the same thickness after the scattering. The 

thickness of each radiator is equal to 

(In. 14j 

where b is a number very close to  4/3 as  given by Eq. (A. 4) 

and (A. 19) with Eqs. (III. 14) and(C. ll), and remeinbering the fact that in this sub- 

section we are ignoring the multiple photon emission (hence [i?n (E,/E)lbt in Eq. 

(A.3)  must he set equal to 1 just fo r  the discussion in this section), we obtain 

Compuing Eqs. (A. 16) 

(Equivalent Radiators) - (a 15) 
m S, P S, P 

In Table I V  we give numerical examples of the radiative tails from the 3-3 

resonance (zero width approximation) under the identical experiiiiental conditions 

as those of Table III. We give at the top of Tables 111 and IV the peak energy Ep 

the non-radiative elastic c ross  sections dag/da,  and do /do for  the 3-3 excit R t' ion, 
33 

From Table XI1 and I V  we observe the following: 

1. All approximation forniulae given above are very good near the pedis;  

they are accurate to within 1% compared with the exact formula when (E p Max - Ep)/ 

< 0,05. The approximation seems to  Work better at low rather than at Ep max 

high incident energies, 
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2. At Z o m d  E - 1/2 Ep m;U( the approximation formulae can have e r r o r s  
P 

of more than 30% compared with the exact formulae for the radiative tails from 

the elastic peak. Hence when the inelastic spectnim is dominated by the radiative 

tail of the elastic peak, the exact formula must be used. 

3.  The r i se  of the radiative tail near the lower energy end of the spectrum 

is very prominent for the elastic radiative tail but not s o  prominent for the 3-3 

radiative tail. The reason for the r i se  of the elastic radiative tail is due to the 

fact that the electron energy becomes very snial l  after a high energy photon is 

emitted by the incident electron along its direction of motion. The resulting low 

energy electron is then scattered by the nucleus with a large cross  section. For 

the 3-3 resonance, there is the so-called threshold factor [Q*2 in Ecl. (III. II)] 

which nialtes the rise in the c ross  section at low incident energy relatjvely mild 

compared with the elastic scattering. If this is true for all other inelastic events, 

then we have a happy situation that the radiative tail from an inelastic event affects 

only i ts  iiiiinediate iieighborhood v~here the approxjmation formulae work very well. 

Anothcr comforting feature is that the pcaliing approsiniation seeins to woi-k better 

for the 3-3 radiative tail than for the elastic radiative tail. Of course we cai always 

check whether these nice features of the 3-3 resonance radiative tail are sliaredgby 

other inelastic events after the inelastic forin factors have been obtained (see 

Section IV, part D). 

4. It is hard to judge which version of the approximations is best for the 

treatment of the inelastic spectrum because the e r r o r  in the appro.uinlation seems 

to depend upon the behavior of the form factors. For example, for  the elastic 

radiative tail the method. of equivalent radiators seeins to give the best overall 

agreement with the esxct formula, whereas for the 3-3 radiative tail our version 
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of the peaking approximation seems to  give a better result. However, their dif- 

ference is small, especially near the peak. 

IV. RADIATIVE CORRECTIONS TO CONTINUOUS SPECTRA 

After the elastic radiative tail has been subtracted from the inelastic spectrum, 

the next thing to do is to apply the radiative corrections to the continuous part  of 

the spectrum. We use the 3-3 resonance formulae, Eqs. (III. 5) through (mag), 

to  illustrate this procedure. Let us first consider a reverse  problem, namely, 

given a non-radiative cross  section dcr/dQclE for the 3-3 resonance, what is the 

resultant c ross  section clot+ ./dQdE when the straggling and the radiative cor- 

rections are included? In Section IV, part  B we consider a more practical problem, 

namely, given a set  of values for the experimental c ross  section, da t+r  
what should one do to obtain the non-radiative c ross  section do/dQdE ? 

A. Change of 3-3 Resonance Curve Due to Radiative Corrections 

The non-radiative cross  section for the 3-3 resonance is given by Eq. (B. 1) 

P 

P 

/dC2dEp, 

P 

with fo rm factors given by Eqs. (ID. 5) through (El. 9). Then as a result  of the 

straggling of the electron in the target and the radiative corrections, the measured 

spectrum would be given by 

(IV. 1) 
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where 

(E , E ) = the non-radiative cross section [see Eqs. (B. 11, 
dQdE S P  P 

(ID. 5) through (III .9)] . 

- .( y) -.(y)] [see Eq. (B.7)], 

T = target thickness in radiation lengths, 

t. and tfw -- initial and final window thicknesses in radiation lengths, 
1 w  

b and bw = values of b for  the target and window materials given by Eq. ( A .  4), 

E 
x = -  , x = J ,  

Es P E; 

t = - -  I. CY (Jn q - 1) 
m 1: b n  [see Eqo (DI. 14)] , 

1 1 
r w iw 2 P r w fw 2 f s = b t  + b  t + - b T  , f = b t  + b  t + - b T  , 

[see Eqs, (C. 8) and (III. Is)] 
m - x  S, P 1 

m n +  2 2111 m + 2M E 
P n  P [see Eq. (A.18)] Esrnin(Ep) = 2M - 2E (1 - cos 0; 

P P 

2 

E p r n a ~ ( ~ s )  = 2i\lp -b 2Es (1" - cos 8)  
P 

7r 2M Es - 2M nin - m 
[see Ecl. (A.19)] . 
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The effect due to multiple photon emissions in  the internal bremsstrahlung has been 

approximated by the inclusion of the te rm t in f and f and also the exponentiation 

of 6 in the first term of Eq. (IV. 1). Also, the factors in front of the integrals, ($7 
and (4' , have been replaced by their square roots. This will reduce the error 

introduced by neglecting regionIV as shown in Fig. 3 .  In addition, it will mxke 

r s  P 

r 

Eq. (IV. 1) relatively insensitive to different choices of A (see discussion at the 

end of Appendix A) .  

Three curves are shown in Fig. 2a through 2c. They represent, respectively: 

1. do/dQdE = non-radiative cross  section using Eqs. (B. 1) and 

(III. 5) through (In. 9). 

do /dSldE = radiative cross  section, Eq. (IV. l), neglecting 

= 0, the straggling, i.e., T = tiw = 

/dSldE = radiative c ross  section, Ey. (IV. l), with 

T =0.02 r e l o ,  tiw = t .  iw =0.005 ro l . ,  a n d b = b l v = 4 / 3 .  

P 

2. 
r P 

tfw 

3* dot+, P 

All three curves are calculated for the incident electron energy of Es = 20 GeV 

and 8 = 5 , We have used various values of A in our calculation aid found that 0 

the answers axe quite insensitive to the choices of A.  For example, when the inissiiig 

mass  is equal to 1.236 GeV, for  A equal. to  10  and 15 MeV, the values of the cross  

section are 5.18 x and 5.15 x cm /sr/GeV, respectively. If we had 

used Eq. (A. 21) instead of Eq. (A .  22), the diflcrence between these two cross  

sections would have been 3%. 

2 

B. Procedure for  Unfolding the ExTeriinental Data 

In the previous section, we have demonstrated how to  calculate the radiative 

cross section from the non-radiative c ross  section, However, the reverse  pro- 

cedure of extracting the non-radiative cross section da/dS2dE from the measured 

c r o s s  section d o  /dOclE is what one wants to have. A procedure for doing this 
P 

t+ r P 
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can be inferred from Eq. (IV. 1). To show this, we rewrite Eq. (IV. 1) in the 

following form: 

-bt-  br 
- e  

-6& 
- e  

E + A  
P 

(IV, 2) 
where 

This equation implies that if  thc non-rncliative cross  sections o(E' E' ) a r e  
s' P 

known for  EL < (Es - A) at constant E and E' > (E 3 A) at coiist'mt Es, then the 

non-radiative cross section n(Es, E ) can be obtained inimecliately froin the moas- 

ured cross  section, at+, (E  , E  ). The cross  sections CJ EL > Esmiu(EP), EP) 

and 5 Es, E' c Ep max(D)) are equal to  zero if  the elastic radiative tails have 

already been subtracted from the measured cross  section. Hence one can obtain 

the non-radiative cross  section in the neighborhood of the pion threshold along the 

P P P 

( 
P 

P 

( P  

line ab in Fig. 3. Knowing the cross  sections on this strip,  we c m  calculate the 

c ross  section fo r  the next strip and so forth until we unfold the cross sections wit.hin 

the entire area abc in Fig. 3, There is no essential difficulty involved in the pro- 

cedure, The only thing one needs is an efficient coniputer program to hmdle the 

1 



entire unfolding automatically. The best way to test the efficiency of this program 

is to  do a reverse  calculation of the previous section: namely, starting out with 

(E , Ep) obtained from the previous section, t r y  to re-obtain the original 't+r s 
cross section D ( E  

cations. It enables one to perfect the program for doing the radiative corrections 

. This exercise is extremely important in practical appli- s' 

without waiting for the experimental data. One can also get some feeling about the 

number of points one is required to measure inside the area abc in Fig. 3 in 

order to car ry  out the radiative corrections reliably, If one practices with enough 

examples of a similar nature, one may even be able to make an intelli.gent g m s s  

about the non-radiative cross  section by just looking at the experimental data. 

C. Some Pract.ica1 Considerations - 

The most important thing the exqxrimentalists have to do is to plan the experi- 

ment from the beginning s o  that Ihe radiative corrections can be carried out. We 

list several itcnis in the following to assist such planning: 

1. The puspose of the experiment is to obtain F Mf2)and G(q2, M"> as 
2 2 2 

functions of y and N~ e When the racliative process is ignored, g and ~ , 2  can 

be written as 

(IV. 3) - q  2 = 2 s . p = + 4 E  E sin2 e and 
S P  2 

(IV. 4) 
2 2 2 Mf = u 2 = M  + % M ( E s - E ) i q  , 

P 

from which we have 
I n 

il; 

2 

2(1 -cos 0) 
q (IV. 5) 

Mf2 - M2 - q2 ](MF - M2 - y") 
- --I_-- + 

1 G M 2  4M 

2 
2 

- q (IV. 6) 
MfZ - M 2  - q2 /(N: - &I2 - g2) 

4M 16M2 Z( 1 - cos e) -I- - 
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2 Hence for fixed q and M2 we can choose two values of 0 and obtain two sets of 

values for  (Es, E ) from Eqs. (IV. 5) and (IV. 6). 

f '  
Let us  denote them by 

P 

factors ~ ( q  , M i )  and G(q2, Mf2) can be separated out from the knowledge of the 

non-radiative c ross  sections at these two sets  of kinematical conditions by solving 

two simultaneous linear eyuatioiis using Eq. (E. 1): 

where X is the cross  section divided by the kinematical factor in front of the brack- 

et in Eq. (B. 1). 

2, In order to  do radiative corrections, one necds to take data at many dif-  

ferent incident energies at one angle. The values of the cross sections at different 

angles a re  not required to perform the racliative corrections. The iiurnbcr - of points 

measured inside the shaded area ahc in Fig. 3 must - be densc enough so that inter- 

polation between points can be carried out. In the shaded 'area of FiE. 3 ,  the lines 

parallel to ab represent the "equjiiiissing mass liiics"; for example, line ab 

represents u = (bl + n ~ ~ ) ~ ,  the missing mass corresponding to the pion tlxeshold, 

and the next line represents, say, u2 = (1236 MeV) , etc. The point c has the 

highest missing mass 

sent the "ecluimomeiit~~m transfer lines. I '  2s p is minimum at poiiit "arr whereas 

it is masimum at point 'W'.  Let 11s suppose an esperimentalist wants to iiieasure 

cross sections at 'an angle 8 within the range of E: and E' s h o m  by the shaded 

area of Fig. 3,  The kinematic region indicated by the shaclccl area is uniquely 

determined by the angle 6' and the position of poiiit c y  which we will denote by 

- 

2 
P 

2 

The lines intersecting the "equimissing n n s s  lines" repre- 

P 
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( Emin, 6) we can map the shaded area 
S ' P  

plane. This area is bounded by the fol- 

, e). For any given c E 
P 

of Fig. 3 onto an area in the 

lowing inequalities : 

max min (M+mT)2 5 Mf" ,< M2 3. 2M(Emax 6 - Emin) P - ZEs E P ( i - c o s e )  (1v.9) 

and 
2 2 '  min Mf - M  +2ME 

2 E F  (1-cos e)  p- 
2M - 2Enlin( 1 - cos 6 )  P 

Equation (IV. 9) gives the range of the 

rnax M 2 2  -Mf+2MEs 
max - C 2s. p 5 2Es (I.-cos 6) 

2M-t 2~:=(1- COS e )  

(IV. 10) 

missing mass covered by the experiment and 
r) 

Eq. (IV. 10) gives the range of momentum transfer for each value of Mf". The area 

bounded by Eqs. (IV. 9) and (IV. 10) is a triangle in the ( n T f ,  2s p plane. Hence ) 
each shaded area in Fig. 3 can be mapped onto a triangle in the (M2 2s f '  
In order to determine the form factors from Eqs. (IV. 7) and (IV. S), one has to 

measure another set of c ross  sections at a different angle. The latter set of data 

must also consist of points which are  represented by a shaded area shown in Fig. 

3 in order to do radiative corrections. Let us again represent this area by the 

position of point c'in Fig. 3 and denote it by c' hs , This new kine- 
( ,ma ' ,  

matical region can again be mapped onto a triangle in the 

obvious that only in the regions where two triangles overlap can one determine thc 

form factors F(q2, h?f)and G(q2, 4). In Fig. 4 we have plotted three triangles 

corresponding to three sets  of c's: c(17.5 GeV, 3 GeV, 2O), ~ ' ( 1 7 . 5  GeV, 3 GeV, 4') 

and c"(17.5 GeV, 3 GeV, So).  The points a, b and c in Fig. 3 have the same kine- 

matical significance as points a, b and c in Fig. 4. From the overlapping region 

of the two triangles a'b'c' and arrbr'c'' we see, for  excmiple, that the separation of 

2 form factors for the 3-3 resonances at 1'I; = (1.236) = 1 . 5 3  GeV2, is possible in 
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2 2 the range 0,2 GeV < 2s - p < 1.41 GeV The measurements are assumed to  be 

made at 4' and So, with incident energies of up to 17.5 GeV. All  the spectra are 

assumed to be measured down to 3 GeV. 

D. Final Check of Reliability of Approximate Formulae 

After the inelastic form factors have been obtained, we can use them to cal- 

culate the radiative tail using the exact formula, Eq. (B. 6). The results, can then 

be utilized to check the reliability of the original approsimations made to  obtain 

these forin factors. 

V. DISCUSSIONS AND SUhllMARY 

In Fig. 5, we plotted five curves: 

1, Elastic radiative tail from ep scattering using our exact formula Eq. 

(B. 5) (see col.umn 3 ol  Table III) . . 
2. A curve siinilax to the above but using the method of equivalent radiators, 

using Eqs. (III. E), (C.  ll), (B. 3), (III. 2), (III.3) (see column 7 of Table In) .  

3. The 3-3 resonaiice with radiatjve correctjons (see Fig. 2a) and its radja- 

tive tail using the method of ccpivalcnt radiators (sec coluiiin 5 of Table IV). 

4. The racliative tail from the 3-3 resonance using our exact formula, Ecl. 

(B.5), with the zero width approxiination for the 3-3 peak [Eq. (IJI. 11.) , and see 

column 3 of Table IV]. 

5. 

All  five curves are calculated for an incident energy E = 20 GeV, scattering 

angle B = 5 , and with the straggling effect in the target ignored. These curves 

illustrate the over-all behavior of the raclintivc tails from elastic ep a i d  pp scat- 

terings ,and et- p --et N*, They also illustrate the reliability of the approximation 

forinula used. We should notice that at this incident eiiergy and scattering angle, 

the  elastic cross  section and the 3-3 resonant c ross  section are coinparable in 

The radiative tail from pp elastic scattering using Eq. (B. 5). 

S 
0 
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2 magnitude (2.2 X and 1 . 6 1  X c m  /sr, respectively). However, the 

radiative tail f rom the elastic peak is much more prominent than that from the 

3-3 resonance except in the neighborhood of the 3-3 peak. The order of magnitude 

of the ratio of the pp to ep radiative tail is roughly given by In5- 1 / In%- . ( ni2 CL i ( m2 l) 
We have investigated and improved the reliability of many formulae used in 

calculating radiative corrections to elastic and inelastic electron scatterings when 

only the scattered electrons are detected. The uncertainties still left are the con- 

tributions from: (a) multiple photon exclmige between the hadron 

the electron current, and (b) the effect of the real  photon emissions from the 

hadronic system. These two effects have to be treated together in order to achieve 

cancellation of the infrared divergences. Except in the infrared limit, both ofthese 

effects depend upon the detailed structure of the strong interactions, which are hard 

to calculate. In the formula for the radiative corrections to the elastic pe'ak, these 

two effects have been calculated in the infrared liinit and are given by the terms 
1 2 1 proportionalto Z and Z in Table I. The te rms  proportional to  Z represent two 

photon exchange contributions and the interference ternis behvccn the electron 

bremsstrahlung and the hadron bremsstrahlung diagrams. The terms proportional 

to z 

reasonable t o  assume that the ratios of z terms to Z terms,  axel Z terms to 

Z terms,  from the elastic radiative corrections roughly give the Qrder of magmi- 

current and 

2 come from the square of the hadron brcnisstrdilung matrix elements. It is 

1 0 2 

0 

tude of the corresponding contributions from the -- inelwtic excitation of the hadronic 
1 system. When positrons are used Z terms change sign. We notice also from 

Table I that Z and Z te rms  a r e  comparable in magiiitude. Hence, the  most 

practical way to determine the significance of the above mentioned two effects is 

1 2 

to make some spot coinparisions of the esperiniental inelastic spectra for positron 

scattering with those for electron scattering. If the difference is small, these two 

effects a r e  probably negligible; if not, then one can s tar t  worrying about it. 
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In summary let us  sketch an ideal procedure for  doing radiative corrections: 

1. Perform e p and e-p elastic scatterings at various energies and angles. 

Compare the experimental results with forniulae given by T and MY (see Section 

II) and select the version which gives a better agreement with the experimental 

4- 

results. Perform the radiative corrections using Eq. (11.9) and obtain elastic 

form factors Ge(q ) and Gmiq ). 2 2 

2. U s e  Fig. 3 and Fig. 4 to determine the desirable ranges of momentum 
2 transfer q and missing mass Mf2 to be investigated by the experiment. Take 

data at two angles; the &ata at each angle must consist of many incident energies 

so  that interpolation between points inside the shaded area shown in Fig, 3 is 

possible. 

3. Calculate the radiative tail from the elastic peak using Eq, (III. 1) and 

subtract its contribution from each inelastic spectrum. It  should be emphasized 

that our exact formula, Eq. (B. 5 ) ,  must be used for this purpose. 

4. Perfect the procedure for doing radiative corrections to inelastic spectra 

by carrying out the exercise mentioned in Section IV. First: starting out with a 

given non-radiative 3-3 resonance cross  section, calculate the radiative c ross  

section using Eq. (IV. 1). Then perform a reverse  calculation using Eq. (IV. 2) 

to see if one can get the original non-radiative cross  section. This exercise not 

only enables one to perfect the procedure for performing the radiative corrections 

before the data become available but also can tell one how many data points need 

to  be taken within the shaded area of Fig. 3 in order to car ry  out the racliative 

correction satisfactorily . 
5. Apply the radiative corrections to inelastic spectra using the procedure 

2 2  2 2  obtained in Section IV. Obtain inelastic form factors F(q , M f ) and G(q , Mf ) 

using Eys. (IV. 7) a.nd (IV. 8). 
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6. Take the data on eTp inelastic scattering at a few points and compare the 

results. with those on e-p scattering. The difference between the two cross sec- 

tions represents the uncertainty due to multiple photon exchange and the brems- 

strahlung by the hadronic system, 
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APPENDM A 

STRAGGLING EFFECT 

As mentioned in the introduction, the straggling effect of the electron in the 

target is very similar to the radiative corrections, and the magnitude of the two 

effects a re  often comparable in iiiost of the experimental conditions. Hence the 

effect of straggling must be treated with as  much care as the radiative correc- 

tions. In the literature, the straggling formula given by Bethe and Heitler 26 

has ofterl been used to calculate the straggling effects. I (E  , E,t) dE represents e 0  

the probability of finding an electron in the energy interval dE after an  electron, 

initially with energy Eo, travelled a distance t (in units of radiation length) in the 

target. Equation (A.  1) is adequate for an order of inagnit~ide estimate, but is not 

accurate enoughwhen an accuracy of better than 20% (in evaluating the straggling 

effect) is required. In most of the experiments, the target thickness is less  than 

0.05 radiation lengths; and as will be shown later,  in actual applications, the 

straggling effect can be approxiniated by assuming that the target is divided in half, 

and that one of the halves is placed before the scattering and one after. Hence t 

in Eq. (A. 1) is less  than 0.025 radiation lengths and T ( x )  for small x can always 

be replaced by x-', We are  also interested in Eo and E, both larger than 1 GeV, 

hence the only electron energy attenuation of iniportance is that due to breinsstrah- 

lung (we can ignore ionization). For the same reason we can use the bremsstrah- 

lung cross  section with complete screening except near the bremsstrahlung tip 

(k - Eo or  E - 0). The deviation from the complete screening formula occurs 
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only when the minimum momentum transfer to the target is larger than, o r  com- 

parable to the inverse of the atomic radius, hence the complete screening formula 

is correct as long as we disregard the region 

= 0.03 for Z = 1, Eo = 1 Rev. 13 7m - -  -I-- k <  E 
EO Eo 22 1'3 Eo f 137 m 

Under the conditions specified above, we propose that Eq. (A. 1) should be replaced 

bY 

1 [ E  +: ( E O - E ) 2 ] (  f0)bt Ie(Eo,E,t) = bt - - - h- 
EO E o - E  Eo 

where 

and 
h (I440 Z - 2/3) 

5 =  - 1/31 lq(183 Z 

We believe. Eq. (A.  3) is accurate to within 1% in the range 0.5 E < E < E and 0 0 

within 2% in the range 0.05 E < E < 0.5 E by the following reasoning: 0 0 

1) It was first shown by Betlie and Heitler2G-28 that if the c ross  section for  

the bremsstrahlung were given by 

da - bA 1 - - -  
EO 

EOb E 
dE XON 

then I (E  , E, t) u7ould be given rigorously by e 0  

1 
¶ r (bt) 

I (E , E , t ) = -  - 
EO e 0  

where A is atomic weight, N is Avogadro's number, and X o  is the unit radiation 

length in gm/cm ., The actual form of the cross  section is quite different f rom 

Eq. (A.  6), especially when E < 0,35 Eo as can be seen from Fig. 6. 

2 
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2. From Eq, (A. 6) and Eq. (A. 7) we notice that when bt is small, Eq. (A. 7) 

can be written. as 

If the electron encounters the atonis hi the target at most once, then one would 

have obtained only the first 

Hence the t e r m  (h Eo/E)bt can be regarded as a correction due to  the niultiple 

encounters. Now all we have to do is to insert a correct expression for do/dE 

into (A. 8) instead of using Eq. (A. 6) and show that the correction factor (hi EO/E) 

is relatively insensitive to the fact that Eq. (A. 6) is a bad approximation when 

E < 0.35 Eo. 

factor on the right hand side of Eq. (A. 8). 

bt 

3 The correct expression for du/dE corresponding to one-photon emission 
29 and complete screening is given by 

where Xo is the unit radiation length given by Bethe and Ashkin” 

(A.  10) 

Comparison of Eqs. (A.9) and (A. 6) shows if b is chosen to be that given by Eq. ( A . 4 ) ,  

then the two expressions agree conipletely in the infrared limit (E-Eo), and Eq. (A. 9) 

is only 1% less than Eq. (A. 6) when E = .9S Eo’ In Fig. 6 we conipapov numerical 

values of Eq. (A. 6) and Eq. (A. 9). It is seen that Eq, (&4.6) and Eq. (A .  9) agree 

numerically within 10% up to E = 0.35 E but differ drastically for E < 0.35 Eo. 0’ 

4. The shape of the bremsstrahlung spectrum at a high photon energy 
bt k(k = Eo - E) should not affect the correction factor (an EO/E) for high E ,  because 
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if a hard photon is emitted, E will no longer be high. Since Eq. (A. 9) agrees with 

Eq. (A. 6) to within 10% in the range 0.35 Eo < E < Eo, the correction factor 

(Qn Eo/E)bt must be substantially correct in this energy range. This factor is less 

than one when E > 0.37 Eo and greater than one when E < 0 . 3 7  E 

overall effect of this factor is to deplete the number of high energy electrons and 

to increase the number of low energy electrons, indeed a very intuitively plausible 

effect. Since the number of electrons removed from the high energy side of the 

spectrum are roughly the same in two cases,  we expect that the number of elec- 

trons moved into the low energy side must be roughly the same in two cases be- 

cause of the conservation of leptons. In the region E < 0.35 Eo the spectrum 

given by Eq. (A. 6) is less  than that given by Eq. (A. 9), hence we expect the cor- 

rection factor for  Eq. (A. 9) must be less  than that for Eq. (A.  6 ) .  

Hence the 0" 

Rut the cor- 

rection factor fo r  Eq, (A.  6) is only slightly larger than unity in this region, For 

example (in EO/E)4'3 1.03 for E = 0.05 Eo and t r- 0.02. Even if this factor 

is totally wrong, the  e r r o r  is at most 3% at this energy. In reality the e r r o r  is 

probably less  than 2% We will not consider the region where E < 0,05 Eo because 

of our use of the complete screening formula which is unreliable near the'brems- 

strahlung tip. 

From Eq. (A.3) the fraction of electrons, initially with energy Eo, to have 

an energy in the range E 

t is given by 

-A 2 E 5 E 0 0 
after passing through a target of thickness 

1 E O  

E o - A  -bt h Eo/A 
= e  = l - b t h E O / A  + 

(A. 11) 

Suppose an electron suffers a single l u g e  angle (8 >> m/Eo) scattering in a 
do  

target of thickness T with a cross  section d.ndE, (E;, E' , 8) = o(EL, E ' ) ,  then P P P 
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because of straggling, the measured c ross  section would be given by 

(Es' Ep' T) 
Ot(Es'Ep,T) = dot 

where E s min S 

o(EL, E ' )  when E' = E and E 

EL. We shall use Eq. (A.  12) to calculate three things. 

(Ep) is the mininium value of E' allowed by the kinematics of 

(EL) is the maximum value of E' for a given 
P P P  Pm= P 

a) Effect of straggling on the elastic peak radiative corrections. For elastic 

scattering we have 

(A.  13) 

where 

? = I +  ELM-l(l-cos8) =1-t-EsM-1(l-cos8) (A. 14) 

Substituting (A. 13) into (A. 12) and integrating the result  with respect to E from 

E 
P 

- AE to Epmax' we obtain p max 

- AE Ep niax 

where 

<< 1 andbT<< 1. The 
Pm= Equation (A .  15) c a i  be deriveduuder the assumptions AE/E 

detail is straightforward but messy. Equation (A. 15) is used in Eq. (11.9). 
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b) Effect of straggling on the radiative tail of the elastic peak. This is simi- 

1a.r to a) except now we are interested in the value of E P not very close to E p Maxo 

In this case we have from Eq. (A.12): 

(A. 16) 

where 
1 

1 - E  M - l ( l  - cos 8) 
fll  = 

P 

-1 
q2 = 1 + EsM (1 -  COS^) , 

and Ie is given by Eq. (A. 3) .  

c) Effect of straggling on the radiative correction to the continuum state, Let 

u s  assume that the clastic radiative tail has been subtracted from the inelastic 

spectrum already. Then the limits of integration Es min(Ep) and Ep 112ax (E;) in 

Eq. (A. 12) are given by the kinematics of the electro-pion production at the thres- 

hold; namely 

(M+inT)2=h!12+2M(Eb-Eb)  - 2E’E1(1-cos6) S P  e (A. 17) 

Hence 

and  

2 

Esmin(Ep) = 2M-2E P ( l -cosO)p 

mT+ 2M mT+ 2ME 

2 2MEL - 2Mn1, - mT 
Eprnax(Ek)= 2M + 2Ek(l  - cos@ 

(A. 18) 

(A. 19) 

The region of integration in Eq. (A. 12) is shown by the shaded area in Fig. 3.  In 

order to avoid the singularities of the integrand at E = E’ and E = E’ it is a good 

idea to separate the region of integration into four regions as shown in Fig. 3 ,  The 
s s  P P  
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c r o s s  section o(Eb, E' ) is smooth compared with Ie(Es, E;, t) and Ie(E' P' E P , T - t) 

For simplicity let us  suppose A is chosen such that bt ln Es/A < 0.2 and 

bt J?II E /A < 0.2, then from Eq. (A. 11) we e q e c t  that region I would contribute 

more than 64%, region I1 more than 16%, region III more than IS%, and region I V  

less than 4% to the integration. If we ignore region IVY we obtain [using Eq. (A. ll)] 

P 

P 

I;(Es,EL, %) o(EL, E P S  ) dE' 

We have assumed that the variation of the c ross  section is negligible when E S 

and E a r e  changed by a sinall amount A. Since the widths OT the resonances are 

typically 100 - 150 MeV, A should be taken less than N 15 MeV. When Es = 20 GeV 

and bT/2 = 0.03 r.l., we have 1/2 bT .Dn(Es/A) > 0.2. Hence neglect of region IV  

P 
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and t e rms  proportional to [ 1/2 bT h(ES/A)l2 causes an error of 4%. This is 

somewhat undesirable. We remedy this defect using the following criteria: , 

1. We insist on ignoring region I V  in Fig. 3 to save computation time, 

2. The expression must be accurate up to  te rms  of the order of 

[ 1/2 bT h ( E s ,  t/h)]*2 compued with the correct  expression when 

the c ross  section is constant. 

The expression must be relatively insensitive to the choice of A 3. 

when the c ross  section is constant. 

Using these cri teria,  we propose the following expression as a substitute for 

Eq. (A.21) 

6 + 6  
dE "Oi; dSt (E s , E  p ,TI = e P C T ( E , , E ~ )  

P 

(A. 22) 

When the c ross  section is constant we expect that the right hand side must be equal 

to the left hcmd side of Eq. (A.  22). Expanding the right hand side of (A. 22) in power 

series of 6, 

t e rms  of order 62 . Hence the criterion 2 is satisfied. Again if  we assume 
s, P 

that the cross section is constant and differentiate the right hand side of (A.  22) 

we see that the left hand side is equal to the right hand side up to 
3P 
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with respect to A, we see that the resultant expression is equal to zero up to the 

te rms  of the order 62 

accomplished is essentially the nearly complete elimination of the e r r o r  introduced 

by neglecting region IV. Furthermore, we have made our expression relatively 

insensitive to the choice of A [see discussions after Eq. (IV. 1) in Section IV]. We 

shall refer  to the approximation in which region I V  in Fig. 3 is neglected as the 

s t r ip  approximation 

e Hence the criterion 3 is satisfied. What we have 
Sa P 
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APPENDIX B 

EXACT CALCULATION O F  RADIATIVE TAILS 

It was shown by Tsai13 that the radiative tails f rom an arbitrary unpolarized 

target system and arbitrary hadronic final state can be calculated exactly in the 

lowest order of Q! if (1) the onephoton exchange mechaiism is assumed, (2) the 

interference te rms  between the electron bremsstrahlung and the hadron brems- 

strahlung a r e  igxored and (3) only the scattered electrons a re  detected. 

The reason why this can be done is that in the one-photon exchange model, the 

non-radiative cross section (see Fig. 7 )  depends upon two form factors and the radiative 

cross section (see Fig. 8) also depends upon the same two form factors. We shall repro- 

duce here the formulae given in Ref. 13 for completeness. Let us normalize these form 

factors by the non-radiative cross  section (only the scattered electron is detected): 

n n  

where Es and E a r e  energies of the incident and scattered electrons, respectively, 

M and Mf axe masses of the initial and final hadronic system, Ois the scattering 

angle and 

P 

q2 = -4E E sin2 e 2 '  
S P  

M ; = M  2 + 2 M ( E s - E p ) + q  2 e 

2 
J i n e n  the mass of the final hadronic system is discrete, M i  = M.,  we shall nor- 

malize the two forin factors such that 

(E.2a) 

. 

- 39 - 

1 



G(q2, Mi)= Gj(q2) 6(Mf2 - MB) , (B. 2b) 

where j denotes the jth discrete level, and j = 0 corresponds to the elastic scat- 

tering. Substituting Eq, (B.2) into Eq. (B. 1) and integrating both sides with 

respect to dp, we obtain the cross  section 

' 2 2  do. a E 
3 x 2  1 

COS' e [Fj(q2) + % tan2 e 2 1  G.(q 
M 2 

q4 1 -+ E~M-'(I -cos  8) 

2 2 F.(q ) and G.(q ) for elastic ep scattering are given in Eqs. (III.2) and (111.3), and 
J J 

those for  the narrow width approxjination to the 3-3 resonance a r e  given in Ey. 

(III. 11) in the text, An example of the form factors F(q2,hMf2) aid G(2,M;)for 

continuous Mf2 is given by Eq. (D.I. 5) ald (III. 6) for the 3-3 resonance. 

In the following we first give the forniula to calculate the radiative tail from 

a discrete level and then give a formula for calculating the radiative corrections 

to  continuum states. 

1. Radiative Tail from - a Discrete Final IIadronic State 

The expression for the radiative tail clue to the jth level is [see Eq. (11) of 

Ref. 131 

-1 



where 
2 

s k) 
2E (E -0) +$-I - 2  2 2E (E +u)+%]-( 2 m  [ 

P S  B WJ T P V  = MzF,(g.,[ (P - m 2  k) [ 2 

2 
+ - 1 12(E E + EsW’ E2) + 5 - (S P) - m 

(P k) S P  P ,  

and 
2 q = momentum transfer to proton target squared 

We have chosen a coordinate system such that the z-ax; is along the%-dir :tion 

and the electron momenta, E and p, in the x-z plane. In this coordinate system 

the quantities q and Mf are independent of the photon azimuthal angle @k, only 

(p k) and (s k) are dependent upon @ k’ Hence the integration over 4, in Eq. (B. 4) 

can be readily carr ied out with the help of the following three integration formulae: 

M 

2 

k ’  , where x = cos @ (a) /2‘ 2% = 2n 

a + b x  Ja2_b2 
0 
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The integrated result  is given as the following: 

- w)+-  - 4 ~  q2 2 1 

2 2 2  m (2m + y ) + 8n 

(S p) ( s  p - 21n 2 ) 

where 
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b1 = - 0 l s i  sin 8, sin ok y 
m 

Ok = angle between & and z, 
=angle between p and u , 

*wI .w.- 

and 
eS = angle between s and s. 

+a4 

2. The Radiative Corrections to L e  Cont,;luuin State 

Let us  assume that the radiative tail due to the elastic peak has been subtracted 

from the inelastic spectrum already. The exact formula to lowest order in Q! (ignoring 

the radiative correetions to the hadron current) is given by Eq. (15) of Ref. 13. The 

radiative cross section (ignoring the straggling) can be written as 

(a > 4 (B* 6) _I_ do  dar 
d a d p  (Es,Ep) = dsldp (Es'Ep) [I' 6r(A)] '. ds2clp 

where d u / & l p  (Es9 EP) is the continuum non-radiative c ros s  section, 

a(x) is the Spence function, 
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and 

2n 

d$)k - 51 d (cos Ok) 4 CLV CLV 

1 
(W > A) = - dar 

dsldp 2n MEs 
-1 A 

(B* 8) 
2 2 BC T is the same as B T 

replaced by F(q2, Mf2) and G(q2, Mf2) respectively. 0 is the energy of the photon 

in Eq. (B.4) except that F.(q ) and G.(q ) are 
CLV P V  P V  IJV J J 

2 
k and is a function of Mf and cos 6' 

u 2 2  - M f  

2(u0 - 121 cos ek) 
o =  

(cos Ok) is the value f o r  o at the pion threshold 

2 2 u - ( M  + m J  

O r n u  

(B. 10) 

Let us  sketch briefly the derivation of Eqs . (B. 6), (El. 7), and (B. 8). The continuv.m 

mass state can be regarded as a summation of many discrete levels. Hence in 

order to obtain the radiative tail due to  continuous mass states, we have to  integrate 

Ey. (B.4) with respect to Mf . Equivalently all we need to do is to make the replace- 

ment 

2 

2 and a similar one for  G.(y ) in Eq. (B.4). We have used Eq. (B. 9) to change the vari- 

able of integration. Substituting Ey. (13.11) into Eq. (B .4 ) ,  we notice that the integrand 
3 

diverges at o = 0 (the well-known infrared divergence). Hence we divide the integration 

into two parts, one from o = 0 lo  A aucl the other from A to o (cos Ok). The integra- 

tion from A to  cos ek) is given by Eq. (73.8). The integrntion from o = 0 to A PIUS 

the vacuum polarization a d  the vertex correction is given by Eq. (B. 7), which cnn be 

in ax 
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obtained from the Zo t e rms  of Eq. (11.6). It should be noted that A is chosen here 

to be independent of angle whereas in Eq. (Il. 6) AE is the maximum energy loss 

of the detected electron. When AE is fixed, the maximum energy of photons which 

can be emitted along the directionof the incident electron is 7 AE whereas in the 

2 direction of the scattered electron it is AE. Hence instead of [Qn(Es/q AE) + 

2 

as in Eq. (II. 6), we have to use [h(Es/A) + l.n 

The integration with respect to 4, in Eq. (B. 8) is of course identical to that 

in Eq. (B. 5). Equation (13.8) is practically useless as it stands, because we have 

to  know F (q2' Mf") and G(q2' Mf2) for certain range of q and M: before we can 

apply radiative corrections 

Eq. (B. 8) using peaking approximations in  Appendix C. A possible use of Eq. (€3.8) 

2 

We shall derive an approximate expression for  

is in making the final consistency check on the data after F q M and G q M ( 2, ( 2, 3 
were extracted, by using peaking approximation method. 
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APPENDIX C 

PEAKlNG APPROXIMATIONS 

30 Schiff was the first one to use the so-called peaking approximation to inte- 

grate the Bethe-Heitler” formula for bremsstrahlung. Our Eqs. (B.4) and (B. 6) 

are essentially the Bethe-Heitlcr forniula with modifications clue to the spin, recoil 

and excitation of the target system. 32 Many people 3 y  ‘-I1 have written domi vari- 

ous versions of the peaking approximations. In the following we shall derive our 

own version based on Eqs. (B.4) and (33.8). Fioires  9a through 9c show some 

examples of the integrands of Eq. (B. 5 )  for the radiative tail from the elastic peak 

in ep scattering, for E = 20 GeV, 8 = 5’, and E = 18,  1 2  and 6 GeV. The inter- 

esting feztures shown in these plots are:  
S P 

1. The integrand in Eq. (B. 5) is indeed very sharply peaked when Bk is 

equal to 

rection of either the incident or  the scat-tered electron. The widths of the pedcs 

are roughly given by (m/Es)1/2 and (m/E )‘I2, respectively. This is to be com- 

pared with 6 = m/Es which is the angular spread of the breiiisstralilung wlien the 

direction of the scattered electron is intcgrated out. We shall call these two peaks 

the s peak and the p peali, respectively. 
2 

or 8 ; namely, most of the photons are emitted along the di- 
P 

P - 

2. Because 1q I decreases monotonically with increasing cos 8 and the 

G (y ), we see that the s peak is more 
k 

-4 2 2 
P 

integrand is roughly proportional to q 

prominent th,m the p peak. 
2 When E is small, there occurs a third peak near cos 8 = 1, where lq I 

becomes minimum. Since this third peak is never taken into account in the usual 

peaking approAuiniatioii, we can unclerst,uld why the peaking approximation becomes 

unreliable at the low energy end of the scattered electron spectrum. 

3. P k 
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In Fig. 9d through 9f, some examples of the integrand in Eq. (B.5) a r e  shown 

for the radiative tail from the elastic peak in pp scattering with Es = 20 GeV, 

8 = 5 O ,  E = 18.3, 1 2 , 5 ,  and 6 GeV. We observe that there are hardly any peaks 

in this case. However, it is interesting to notice that if we blindly apply our peak- 

ing approximation formula, Eq, (C. ll), to the calculation of the elastic radiative 

tail of pp scattering, the answer is foun'd to be correct to within 10% near the 

P 

elastic peak, and within a factor of two in the deep inelastic region. 

The detailed procedure of our peaking approximation is as iollows: 

1. Terms with (s k)-2 and (s k)-' in Eq. (B.4) a r e  assumed to contribute 

and (p k)-l  a r e  assumed to con- only to the s peak, whereas ternis with (p 0 

tribute only to the p peak. 

2. Terms which do not have (p k) o r  (s k) in the denominator, such as -2 

and 4 in Eq. (B.4), are made to contribute half to the s ped<, and half to the p peak. 

The most important terms are those with (p k) (s  k) in the denominator. 3.  

We first ignore the Ok dependence of photon energy, w ,  and integrate this t e r m  

with respect to the solid angle 

where p, = (1-x)p + xs. 
27r 1 * 2(s*  p] 
u 2  ( s *  P) 

We then give - 2n - !a to  the s ped< and - - 2 
P ( s  P) 111 

to the p peak, where us and w are the photon energy along the incident (6,= Os) 

and outgoing (e = e ) electron directions respectively, and a r e  given explicitly 
P 

k P  
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bY 

and 

2 2  u - M .  

L 1 

u2 - M2 
=.j + E s ( l - c o s  6 )  

4. Using a technique similar to  the above, we obtain 

2 2 
dSZk = 4n/o f (pmk)2 P 9  

2Es 47r an-. 
(S 0 k) O E m s s  

The coefficients associated with these terms in the integrand are evaluated at the 

peaks. For  example, for the s peak o is replaced by o 2 2 q and Mf a re  replaced 
5’ 

by 

q2 = - 2(Es- os) E (1-cos 8) (C 0 3) 
S P 

2 2  
M~~ = u - 20 S ( L I ~  - I U I  m COS es) 

2 and fo r  the p peali o is replaced by o and q and Mf2 are replaced by 
P’ 

2 qp = - 2Es (E + 0 ) ( 1 - C O S  0) 
P P  

(C.4) 



With these approximations, Eq. (B. 8) can be written as 

where 

2 terms obtained by interchanges Es-E , ws--+-w P and q:yq . P  in Eq. (C. Ga)} . ( C .  6b) 
P 

5. We have gotten r id  of one integration by the above approximation, however, 

Eq. (C. 6) is still not in a desirable form because it still implies that F(q2, Mi) and 

2 G y , M  

and M before one can apply radiative corrections. It is desirable to  make a fur- f 
ther approximation such that the integrands in Eqs. (C. Ga) and (C. Gb) contain only 

the cross  sections o(Es - us, E ) and o(Es, E + w ) respectively. Comparison of 
P P P  

have to be separated out from the cross section for certain ranges of q 
( 2  2 3 
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Eq. (C. 6) with Eq. (B. 1) shows that somehow we have to make the ratio of the 

coefficient of G.(q ) to that of F.(q ) in Eq. (C.  6) equal to  2M-2 tan2 $ in order 

to achieve this purpose. We can do this by ignoring a: in the non-logarithmic 

t e rm and changing 

approximations, Eq. (C. 5 )  can be written as 

2 2 
1 J 

2 2  2 
4Es/m into J?n 2(s 0 p)/m in Eq. (C. Sa). After these 

d(J (E‘s, EP) 
ES-A dE’ 

S 
-E; ts dnz J Es 

(w > A) = dS2 dp 

( C .  9a) 

( C .  9b) 

(E ) and Epmax (Es) are given by Eqs. (A.  18) and (A. 19). 
and Esmin  p 

When &I is discrete, Mf = Mj, do/dndp in Eq. (C.  7) contains a 6 func- f 
tion 

da . 
dS2dp’ do (EL, E;)=+& (EL) [2X+ 2Ek (1 - C O S  pi- P ’ ) ~  - Mf] (C 10) 

Substituting Eq. (C.  10) into Eq. (C 7) , we obtain the espression for  the radiative 

tail f rom a discrete hadronic mass state &If = M. in the peaking approximation: 

do. M+ (Es - as) (1 -cos  0) do. 
J 

do. 
- & (Es - os) + ‘l/”p’ tp (Es) dS2dp (Es, EP) = ( l / w s )  ts RII-E P ( i - c o s  8) 

( C .  11) 

where w and C,J =e given by Eqs. (CQ 1) and (C. 2) respectively. 
S P 
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APPENDIX D 

REMARKS ON PROGRAMMING 

In this Appendix, a few remarks concerning the numerical calculations of 

radiative corrections will be given. 

First, it should be noted that in calculating the racliative tail from the elastic 

peak, the integraud in Eq. (B. 5) has a n  uncertainty of zero divided by zero when 

a'b = ab'. This happens just because of the particular factorization used in the 

$k-integration and there is nothing w o r g  with it. It occurs at an  angle given by 

which corresponds to the position of the minimum between the s and the p peaks. 

To facilitate the numerical calculation, an ex+remely small a r ea  near this point 

should be ignored in the numerical integration. The e r r o r  thus introcluced is 

negligible 

Secondly, in calculating the radiative corrections in the inelastic region, 

two small regions near point a and b as  shown in Fig. 3 should be ignored in the 

integration. This will avoid troubles caused by round-off e r r o r  in a computer. 

Again, the e r r o r  thus introduced is beyond detection, because typically the de- 

leted region is only a few MeV wide. 

W e  have performed all the calculations discussed in this paper on the IBM 

360/75 computer at SLAC. Double precision has been used all through the cal- 

culations in order to retain 14 significant digits. Typically, we found the fol- 

lowing information which may be of some use to the experimentalists: 

1, It taJtes 0,74 minutes to compute 200 different values of the 

Spence function with an accuracy of 10-60 
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P 
2. It takes - 0,6 minutes to compute 10  different values of d 

for ep elastic scattering using Tsai's formula, while 

- 0.5 minutes for the same number of points using the for- 

mula given by Meister and Yennie. 

It takes 1 , 5  minutes to calculate 100 points for  the radia- 

tive corrections on the 3-3 resonance peak with an accuracy 

of better than 

It takes 4.2 minutes to  calculate 175 points on the radiative 

tail from the ep elastic peak with an accuracy of better 

than 10 

3. 

using the peaking approximation method. 

4. 

-3 , using the exact formula. 
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TABLE 111 

Radiative Tails from Elastic e + p  Scatterings 

E =20GeV,  8=5",  Epmax = 18.499 GeV, doo/dQ = 22 X crn 2 /sr 
s 

2 cm /GeV/sr 

Allton Equivalent 
Radiators 

Missing mass 
Exact Mo and Tsai  Hand B.orken 

- GcV u GeV 
18.4 1.040 15.85 15.85 15.85 15.85 15.85 
17.5 1.705 1.884 1.860 18-61 18.60 1.862 
16.5 2.222 1.246 1.176 1.179 1.175 1.179 
10.0 4.257 5.011 3.562 3.863 3.518 3.835 

5.0 5.317 42.70 34.59 44.16 33.34 42.03 
1.5 5.947 581.9 506.5 788.2 474.7 676.5 

=4.901 GeV, d o  /dQ =29.6 x cm 2 / S r  

P I-naX 0 Es=5 GeV, e =50, E 

2 

E Missing mass Allton Equivalent Exact Mo and Tsa i  Hand B.orlien Radiators 

cm /GeV/sr 

GeV p P  u GeV 
4.8 1.036 17.26 17.26 17.26 17.26 17.26 

4.5 1.283 4.533 4.523 4.532 4.522 4.526 
2.225 2.236 4.0 1.614 2.250 

2.5 2.340 1.665 1.561 1.732 1.536 1.615 
1.0 2.889 5.69 4.918 6.967 4.656 5.226 

2.228 2.252 

d o  /dSl=l.38x10-27crn 2 /sr 
0 =. 996 GeV, 

P 
E s = l  GeV, e =50, E 

cm2/GeV /s r 
E Missing mass Allton Equivalent Exact Mo and Tsai  Hand Bjorken Radiators 

I_c G& P G e V  

.98 0.954 3.733 3.733 3.733 3.733 3.733 

,90 1.030 0.6244 0.6233 0.6255 0,6239 0.6239 

- 7 0  1.199 0.2275 0.222s 0.2322 0.2213 0.2247 

.50 L347 0.1934 0.1806 0.20'i9 0.1765 0.1846 

,30 1,480 0.3048 0,2655 0.3672 0.2516 0.3080 

0.7304 0.4292 0.5612 - 2 0  1.543 0.5435 0.4636 

1 



TABLE I V  
Radiative Tails from 33 Resonance (zero width approximation) 

= 2 0  ~ e v ,  e = 5O, E~~~~ = 18.17 GeV, do33/dQ = 16.1 x 10-33cm 2 /sr 
ES 

10-33cm 2 /GeV/s r  

Missing Mass Exact Mo and Tsai Equivalent 
P- u Gev Radiators 

EP 
GeV 
17.5 1.705 1.941 1.934 1.934 
16.5 2.222 1.032 1.012 1.011 
10.0 4.257 2.373 2.269 2.329 

5 .0  5.317 8.916 9.396 10.25 
1.5 5. 947 17.15 18.03 19.39 

0 
= 4,560 GeV, doQ3/dS1 = 8.59 X 10-30cm 2 /sr E = 5 ~ ~ 7 ,  e =  5 , E~~~~ 

S 

10-30cn~2/GeV/sr 
E Mis s h g  hgas s Exact Mo and Tsai Equivalent 

GeV P u Gev Radiators 

4.5 1.283 8.246 8.249 8.250 

4 .0  1.614 .8624 ,8642 .8664 

P 

2.5 2.340 

1.0 2.889 
-2229 .2243 .2341 

e1182 ,1158 .1332 
- - -.- 

= ,650 GeV , do /do  = 1.97 X 10-30~n?/sr = 1 ~ e v ,  e = 5' , E~~~~ 33 

Exact Mo and Tsai Equivaleii t E Missing Mass 
P 

GeV 0 GeV Radiators 

0.6 1.275 15.17 15.24 15.28 
0.5 1.347 4.264 4.308 4.370 

1.441 0.3 1.480 1.307 1.325 

0.2 1.543 0.8596 0.8752 1.015 

.. . 
1 



FIGURE CAPTIONS 

Fig, 1 

Fig. 2 

Fig. 3 

Fig. 4 

Fig. 5 

Fig. 6 

Fig. 7 

Fig. 8 

Fig. 9 

A typical spectrum of inelastic ep scattering and the radiative corrections. 

Both of these curves a re  taken directly from Brasse,  et &, , (Ref, 4). 

Change of the 3-3 resonance curve due to radiative corrections and strag- 

gling. Elastic radiative tails are also shown. The calculations were done 

for (a) Es =20 GeV, b = 5 ; (b) Es = 5 GeV, B = 23.9'; and (c) Es = 3 GeV, 

8 = 52.6 The momentum transfer squared, q , was chosen to be nearly 
2 the same in all three cases, equal to  - 2.77 (GeV/c) . These curves indi- 

cate that the elastic radiative tail is relatively unimportant near the 3-3 

peak, especially at higher mergies,  for  the particular value of q considered 

here. 

Kinematic regions necessary for  radiative corrections t o  inelastic electron 

scattering. E' is the incident electron energy, E' the scattered electron 

energy. 

Examples of overlap in the 2 s p, 14 

(Ema2;(8), Ep (8)  represented by point c in Fig. 3 at t h e e  angles 

el, 8, and 03. The sepnat ion of forin factors is possible only when two 

0 

0 2 

2 

S P' 

plane for three values of ( 9 
S nlin ) 

triangles overlap. 

Examples of radiative tails from ep aid ,up elastic scattering. Also shown 

is the radiative tail from 3-3 resonance. The iqcident energy is 20 GeV, and 
0 the scattering angle is 5 . 

Comparison of Eq. (A. 6) with Ey. (A.9) fol: Z = 1. The curves plotted repre- 

sent (dCJ/dE)X,NA-l(E,-E). F1 corresponds to Ey. (A. 9) and F2 corresponds 

to Eq. (A. 6). 

Feyiinan diagram for non-radiative ep inelastic scattering. 

Feynrrian diagrams for  radiative ep inelastic scattering. 

Integands in Eq, (B.5). The curves plotted a re  for Es = 20 GeV, 8 = 5' and 

(a) Ep = 18 GeV, (b) E = 1 2  GeV, and (c) E = 6 GeV, for e + p-e + P +  y ;  and P P 
(d) Ep = 18.3 GeV, (e) E = 12.5 GeV, and (f) E = 6 GeV for p + p-p  -t- p + y. 

P P 
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