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ABSTRACT
We have investigated and improved the reliability of
many formulae used in the radiative corrections to elastic
and inelastic electron scatterings when only the scattered elec-
trons are detected. The radiative corrections to muon scat-
tering are also investigated. A practical and reliable recipe

for handling the entire radiative corrections is given.
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I. INTRODUCTION

Electron~proton inelastic scattering experiments are expected to yield infor-
mation such as:

1. The form factors associated with the yNN* vertices for various

N*'s,

2., The sum rules1 for y (off-shell) + P —-hadrons.

3. Test of PCAC theory near pion threshold. 2
However, a casual glance at the data from various laboratoriess’4 shows that
these resonances and continuous hadronic states sit on top of very high radiative
tails especially in the deep inelastic region as shown4 in Fig. 1. Obviously, no
reliable information can be extracted from such experiments unless one can cal-
culate these radiative tdils accurately. For example, when the contribﬁtion of the
radiative tail amounts to 60% of the cross section one might make a factor of two
mistakes in evaluating the hadronic cross section if an error of 20% is made in

estimating the radiative tail. Various people 3,5-11

have used different approx-
imation schemes to evaluate the radiative tail. These approximations essentially
consist of various versions of peaking approximations which assume that the
photons emitted are either along the direction of the incident electron or the
scattered electron. It was shown by Maximon and IsaLbeHe12 for the case of po-
tential scattering that the peaking approximation can be wrong by ds much as a

factor of two in the very inelastic region. The purpose of this paper is to give a

practical and reliable recipe for handling the problems associated with radiative

corrections. By practical we mean that the problem can be handled by a computer
without straining its capacity; and by reliable we mean that the error involved in

our approximations will be small and its magnitude can be estimated. In any
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practical application of the radiative corrections, the effect of electron strag-

gling in the target has to be included. This is necessary because the internal

bremsstrahlung has roughly the same effect as that given by two external radi-

ators with one placed before and one after the scattering, each of thickness
3 o

2
t =3 2 =% _ 1) radiation lengths. For example, if -q° = 2 GeV>, these

two radiators will each have a thickness of ti,f = 0.0276 radiation lengths. 1If
the target has thickr;ess 0.0552 radiation lengths, the effect due to straggling
will be roughly equal to that due to the radiative corrections. Hence when the
target thickness is comparable to ti, g we must treat the straggling effect with
great care.

Throughout this paper we restrict ourselves to one-photon exchange be-
tween the electron current and hadron current and also ignore the emission of
real photons by hadrons. Only when treating the radiative corrections to the
elastic peak, have we included both the infrared divergent part of the two-photon
exchange diagrams and also the emission of real photons by hadrons (see Section
II). The order of magnitude of these effects can be estimated by comparing the
Z]' and the 22 terms with the ZO terms given in Table I.

In this paper most of the basic formulae are given in the appendices. In
the text we discuss how these formulae are to be used in practical applications.
Appendix A discusses the straggling of the electrons in the target; in Appendix B
we reproduce the formulae, first given by one of us (Tsai) inARef. 13, for the
exact treatment of bremsstrahlung in the lJowest order Born approximation allowing
for form factors, recoil and inelastic excitation of the target system; Appendix C
derivés a peaking approximation formula based on the exact formulae given in
Appendix B; and in Appendix D we gi\'e several practical considerations associated

with programming some of our formulae for a computer. In Section II, we discuss

the radiative corrections to the elastic peak with the straggling effect in the target
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included. The numerical values from the formula of Tsai14 and that of Meister
and Yenniel5 for the radiative corrections to the elastic peak are compared. We
found that at low incident energies the two formulae give practically identical
answers, but at very high energies the results can differ by as much as 3 or 4%
in the cross section. The origins of the differences in these two formulae are
investigated. We also briefly mention how to do radiative corrections to muon
scatterings. In Section III we calculate the elastic radiative tail u'sing our exact
formula[Eq. (BS)] and several versions of approximation formulae. We conclude
that all different versions of approximation formulae are good near the peak but
predict result in error by 30 ~ 40% when the electron looses more than 1/3 of

its energy through bremsstrahlung. Hence it is essential to use the exact formula
to calculate the elastic radiative tail, which is usually the most dominent
background to the inelastic electron scattering. IFortunately, it is rather easy to
apply the exact formula to calculate the elastic radiative tail. For the confinuum
part of the spectrum, after elastic radiative tails have been subtracted, one is
essentially forced to use an approximation formula. This is because our exact
formula [qu (B6)]for the continuous spéctra can be used only if the two inelastic
form factors F(qz,Mf?) and G(qZ,ME) have been separated ocut of the data. This is
impossible before one applies the radiative corrections to the data. However, we
believe the approximation formula is quite adequate for handling the radiative
corrections to the continuous part of the spectrum. This optimisni is based on
the results given in Table II and Table IV in which we have compared the radiative
tails of the elastic peak and the 3-3 resonance using both the exact formula and
various approximation formulae. In Section IV, we treat the radiative corrections
to the continuous spectrum, using the 3-3 resonance as an example. We first

calculate the non-radiative 3-3 cross section using the method described by
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Dufner and Tsai16 and then include the effects due to straggling and radiative
corrections. We give a procedure to extract the non-radiative cross section
from the experimental data. We emphasize that experiments have to be planned
carefully before its execution so that the radiative corrections can be applied.
We suggest several items which are useful for the design of the experiments.
In Section V, our results are discussed and summarized.

The notations used in this paper (except in Section II) are summarized below
for easy reference. We use the convention h =c¢ = 1. Energy and momentum are

always in GeV. The metric used is suchthatpss=E E _ -p-s.

sTp
s = (ES, 8) : four momentum of the incident electron
p = (Ep, R) : four momentum of the outgoing electron
p; = (M, 0) : four momentum of the target particle
k = (w, k) : four momentum of the real photon emitted

pp = S+tP; -P- k ; four momentum of the final hadronic system

u =(110,’L.1)'-::S+pi—p=pf+k
(‘42)1/2 = ((pf + k)2>1/ 2 : missing mass
2 2 2

Q= (s-p-k)"=(p;-p)

M, Mf, m,m“,mﬁ : masses of target particle, final hadronic

system, electron, muon and pion, respectively

M = 1,236 GeV, M =0.938 GeV
33 p
6 = scattering angle of the electron
6, = angle between u and k
GS = angle between u and §
6p = angle between u and p

T : target thickness in unit of radiation length

tiW’ tfw = initial and final target window thicknesses in unit of radiation

length



atomic number of the target nucleus

A = atomic weight of the target nucleus
N = 6.023 X 1023 = Avogadro's number
ry = 2.818 X 10_13 cm, classical radiusofthe electron

The reader is advised to read the appendices first before reading the text.
II. RADIATIVE CORRECTIONS TO THE ELASTIC PEAK

Radiative corrections to the elastic peak is a very well-known subject, hence
we shall discuss only those points which have practical interest,

Schwinger17 first calculated the radiative corrections for potential
scaltering and found that the measured cross section should be related to the

lowest order cross section by a factor (1+ 4d):

g—% =(1+6) $% (I1. 1)
measured lowest order cross section
where )
: 2
_z2ff E 18\ (0 o-q” G\, 17 £(6)
0= = (ﬁlAE f12)<ﬂ1m2 1’)+36+ 2 }
(1. 2)

_ 26 26 a2 8
£(6) = In <sm 2) Mm (oos 2> +d:< sin 2)
Here q is the four momentum transfer, E the energy of incident or scattered elec-

trons (in potential scattering they are identical), and AL the maximum energy

loss of the electron or the maximum energy of the photon  allowed by kinematics

(they are identical in the potential scattering). Schwinger also noticed that when

AE—0, § in Eq. (II.2) becomes negatively infinite, whereas on physical ground,
dg should go to zero as AE—0. This is due to the fact that the multiple
measured

photon emissions have been neglected and he conjectured that (1 + §) in Eq. (II.1)

should be replaced by e5 if higher order radiative corrections are taken into
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account. Later Yennie and Suura18 and Yennie, Frautschi and Suural9 proved

that indeed the infrared divergent part of § in Eq. (II.1),

2
e P S _E
f = Gm ])ﬁn = (II. 3)

should be exponentiated (i.e., 1+ 5inf—~e6mf). As far as we know it is still an

openquestion whether or not other contributionsto 6, Gver tex+ Gvac =§- Ginf’ should

be exponentiated or should assume some entirely different form such as

1+ 6 —1/(1- 5

+ - .
vertex 5vac vertex 5vac)

However, for practical applications this is an academic question at the

presently available energies because 5vac and § are given by

vertex
oa [-5 . 1, -q
6V21C i r-elies 3 n 5 and (I1. 4)
] m
[ 2
-2 4 4. 3 =9
Overtex = 14 4 n sz (11. 5)

. . 2 _ 2 . _ -2 _
respectively. Even if -¢~ = 20 GeV” we have Gvac =2,58 X 10 7, 6vertex =

5.9 X 10—2. Hence (6 + 6 2 contributes at most . 7percent. In contrast

vac vertex)
to this the exponentiation of 5i nf is absolutely essential at high energies and at
large momentum transfers because AE must be taken small enough to avoid the
pion threshold, resulting in a magnitude for Ginf very close to -1,

When the momentum transfer l—qzll/ 2 becomes larger than or comparable
to the mass of the target particle, we have to take into account both the kinematical
effect due to target recoil and the dynamical effect due to photon emission by the
target system. Neither of these effects is contained in Eq. (1. 2).

The expression for & containing these two effects was first given by Tsai14

(T) and later by Meister and Yennie15 (MY). Tsai's expression can be written
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(II. 6)

The last four Spence functions in the second curly bracket were ignored in the
original paper of Tsai14 because they are always small when Z = 1. These terms
are reinserted here so that the formula gives a correct limit when Z is large.

Meister and Yennie's formula is:

2

2p °p AR 2p4t p
ol 1" P3 3 13 1 P3\ 1,2 28
5’E£"<mz >‘1£“”<“E'3— + 5 2 g -3

2 4
. E AR
+Z}9 fn fn 77<-h:i> <——E—§-> —,8(2E1/M)+B(2E3/M) (L. 7)
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The notation used in both formulae is as follows: El’ E, and E 4 are energies of

3
incident electron, scattered electron and the recoil nucleus, respectively. m and
M are masses of the electron and the target particle, respectively. B is a step

function, defined by MY as §(x) = (fnzx) 8(1-x). B4 is the velocity of the recoil

particle in units of the velocity of light, = El/E3, and AE =AE3=E
14

3peak B3 min

as was shown in Fig. 1 of Tsai's paper. Z is the atomic number of the target

particle when the,incident particle is e and the sign of Z is changed when the inci-
. .+ -

dent particle is e , e.g., Z = 1 for e p scattering and Z = ~ 1 for e+p scattering.

&(x) is the Spence function20 defined by

X
sy = [ 2=t gy a.8)
0

In Table I and Table II, we compare the numerical values given by Egs. (II. 6)
and (II.7). We notice that for e p scattering; these two formulae give practically
identical results; but for e+p the difference in § can be as large as 4% at high
energies and 1arge4 momentum transfers. When Z is high, Eq. (II.6) gives a
reasonable answer, whereas Eq. (II.7) does not. Since there are some experi-
mentally detectable differences in the two formulae, it is important to know the
origins of these differences. They are as follows:

1. In MY all the Spence functions are approximated by logarithmic functions

using the following relations:zo

23 o |
$(9 =x+ G Ty et g e il <L
= 1.2 1) = - L g2
()= g ™ andg(-) = -g5 T .
2
N T
For x >1, &(x) == 5 MI" |x| + 3 ‘I’<x> .

1
Forx < -1, (x) =~ -é'ﬂnzlxl - lrs—- - (:,(_‘:l.) .



The Spence function &(x) was subsequently approximated by &(x) = 0 when

x| < 1, and &(x) = --é— !an Ix| when |x|] > 1. We regard this approximation as

id
3

e-p scattering for each Spence function used. Since there are more than a dozen

rather inadequate because it can cause an error of %— X (1,7, Zz) ~ 1% in
Spence functions involved in the problem, the resultant error is difficult to esti-
mate. We are unable to determine for the MY calculation how much this approx-
imation contributes to the difference in the numerical values gi;/en in Table I.

This approximation is especially bad when Z is large as can be seen from Table II
where we have calculated the radiative corrections to e + Ca48 elastic scattering.
In any large scale data analysis, one has to use a computer anyway and the Spence
function &(x) defined by Eq. (II.8) is no more difficult to obtain than the logarithmic
function when a computer is used.

2. Another source of the difference between T and MY is in the manner in
which the two-photon exchange diagrams are handled in the two papers. Neither
of these papers claims to have treated the two-photon exchange terms completely,
because the effects of strong interactions to these diagrams were ignored. These
authors were forced to consider these diagrams because they are needed to supply
terms to cancel the infrared divergence in real photon emission. In T only the
infrared terms were extracted from these diagrams, whereas in MY additional
terms called spin-convection terms were also extracted. In practice, the radia-
tive correction, &, is used for two purposes: (a) to obtain nucleon. form factors,
(b) to obtain the contribution of the real part of the two-photon exchangezl dia-
grams by comparing e+p and e p scatterings. Strictly speaking (b) has to be done
before (). But usually it is assumed that after applying the radiative corrections,
the remainder of the two-photon contribution is small. For the purpose of (a), one

method of extraction cannot be preferred over the other, because one does not
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know which method represents more- closely the bulk of two-photon exchange con-
tributions until the difference in e+p and e p cross sections are measured experi-
mentally. For the purpose of (b), the question of preference of one method over
the other is just a matter of convenience in the theoretical analysis. Suppose one
wants to use a certain theory of strong interactions to understand the two-photon
exchange process by comparing his theory to the difference in e p and e+p Ccross
sections. Then, whether the method of T or MY is used, one must restore the
part which each has subtracted from these diagrams before the comparison can

be made. The method of T is somewhat simpler than that of MY because in T only

a simple, well-defined analytical function called

o2
k(p;» py) = (p " p)f 9% fn —% [where Py =Py +(1-9)p;]
Py

was extracted from each diagram, whereas in MY a more complicated procedure
was used to extract the contribution from two-photon exchange diagrams (hence it
requires more work to put back what MY have subtracted from these diagrams).
The reason T extracted only k(pi R pj)'s, from the two-photon exchange diagrams,
was not only just a matter of simplicity. In addition it was found that, in the exact
calculation of radiative corrections to e-e¢ scattering, 22 the remainder is in-
deed very small after the k(pi, pj)'s were subtracted (it, at most, contributes
0.1% to the cross section and is independent of energy in the C. M. system). It

is a puz;le then why the spin convection terms do not make much of a contribution
to the e-e scattering. The exact two-photon exchange contribution to ey scattering
has been computed by Erickson. 23 The contributions of these diagrams to the
cross section after subtracting the k(pi, pj)'s are given in Eqs. (51) through (55)
of Erickson's paper. 23 It would be interesting to compare Erickson's results with

MY's spin convection contributions. These remarks are important when one wants
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. .+ - : -
to compare the difference in e p and e p scatterings with some model of strong
interaction in two-photon exchange interaction.
The effect of straggling in the target system can be incorporated into the

radiative corrections in the following way:

do _do A
Ase measured &2 Rosenbluth
where
E E
_ T 1 Ty, 3
5t B l:(bwtiw +b 2) n 2 + (bwtfw+b 2) n AE] (IL. 9)

N AE

and T, tiw and t. are the target, the initial window and the final window thick-

fw
nesses, respectively, in units of radiaticn length. bW and b are coefficients very
close to 4/3 and their exact numerical values depend upon Z of the material as
given by Eq. (A.4) in Appendix A.

For elastic scattering of muons, 61; can be taken to be zero because the muon
bremsstrahlung in the target is reduced by a factor of (me/mM)2 ~ 1/40,000 com-
pared with electrons, If the muon mass is small compared with its energy and
momentum transfer, then the formulae given by T or MY may be used for & , pro-
vided m is replaced by m“ and the vacuum polarization due to the electron pair in

the bubble, Eq. (I.4), is added to the expression. The order of magnitude of the

ratio of muon radiative corrections to the electron radiative corrections is roughly

—g2 nl :
given by <!Zn -c—lg - >/<ﬁn —9-—2— - 1> It is equal to = 0.25 when —qz =1 BeVz.
m m
3

This statement is also roughly correct for the radiative tails, as will be shown in

Section V and Fig. 5.
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II. ELASTIC RADIATIVE TAIL AND VALIDITY OF VARIOUS APPROXIMATION
FORMULAE

A. Radiative Tail from the Elastic Peak

After the elastic form factors G e(qz) and Gm(qz) are obtained from the exper-
iments, one can calculate the radiative tail due to the elastic peak and immediately
subtract its contributioﬁ from the inelastic spect;'um. We would like to emphasize
that the peaking approximation to the radiative tail from the elastic peak can be in
error by as much as 30 ~ 40% when the energy of the scattered electron is

1

Ep< §E

must be used. The formulae needed for calculating the radiative tail due to the

p max’ Hence the result of the exact calculation given in the Appendix B

elastic peak, including straggling, are given by the sum of Eq. (A.16) and Eq. (B.5):

Aoy 4yp doy (B, E,T) doy (E,E)

a0dE, (B, E,T) = dHE + &HE, (II. 1)

where the first term is due to straggling in the target and its explicit expression is
given by Eq. (A.16), the second term is due to the internal bremsstrahlung, and its
exact expression is given by Eq. (B.5) (our G0 and FO are related to Ge and Gm by
Egs. (II.2) and (1[1.3)). If one wants just an order of magnitude estimate, then instead
of using the exact formula, Eq. (B.5), one can either use the peaking approxi-
mation formula Eq. (C.11) or simply add an equivalent radiator thickness,

t,= a/br (n 28+ p/mz -1),to T/2 in Eq. (A.16) and ignore the second term in the
right hand side of Eq. (III.1). In Table III, we show that the equivalent radiator
method actually gives a numerically better estimate than our peaking approximation

when applied to the elastic radiative tail,
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B.. Comparisons of Various Versions of Peaking Approximations with the Exact

Formula

In contrast to the radiative tail from the elastic peak, it is not easy to apply
the exact formula to calculate the radiative corrections to the continuous spectrum
because the form factors F(qz, Mf) and G (qz, Mfz) have to be separated out be-
fore we can apply the exact formula, Eq. (B.8). Hence one is essentially forced
to use an approximation formula (which requires only the knowledge of cross sec-
tions) to calculate the radiative corrections to the continuum part of the spectrum
after the elastic radiative tail has been subtracted from the inelastic electron
spectrum. Therefore, in this section, we investigate the reliability of various
~ approximation formulae,

In Table III, results are given for the radiative tail of the ep elastic peak
calculated according to the exact formula Eq. (B.5) and also several versions of
approximations including our own Eq. (C.11). In Table IV, results are given for
the radiative tails from the 3-3 resonance using (a) the exact formula Eq. (B.5),
(b) our version of the peaking approximation, Eq. (C.11), and (c) the method of
equivalent radiators.

The elastic form factors of the profon used in the calculation are [see Eq.
(52 o 42+ r6?)

+ T

Fo(q )= -——-1*—"-—— . (I[I.2)

2

Golah = ~a"62, (IIL. 3)

2
= s a,ncl24

4M2
P
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-2

G 2
G = 5oie = <1 - —9~—§> . (IIL. 4)
.71 GeV

For the form factors associated with e + p—e + N* (1236 MeV) a convenient

parametrization, valid in the range 0.1 GeV2 < —q2

< 2.4 GeVz, has been given by
Dufner and Tsai16 assuming a pure M1 transition. In terms of our F(qz, Mfz) and
G(qz, M?) defined by Eq. (B.1), Eq. (3.14) of Ref, 16 can be written as

2G
2 2 2 2 2
F(@® Mp) =3~ (@ Mp) (. 5)
1Y

2 2, _ 2 2
G(a"y Mp) = 2M G, (@, M) (1. €

E*+M
f Q* 202( 2) i p
z 3'd M

(IIL. 7)

2
(22 2 -2
Q —-(Mf—q Mp) (2M) ™ -q

2 2.2, 2
*< =
Q= MoQ7/My
2 2 2

_ f+Mp-q

1 i ,
2Mg

E

M33 =1.236 GeV,

* 3
0.85 —9-—>
m

T

(M) = .1293 GeV 5 (1. 8)
p*
1+ (0.85 )
\ m

T




2 6.3 @(

2
2 2
[03(q )M[;, = 2.05 1+9.0 V—q ), and v (OI.9)
where energy is in GeV.
In this Section we are interested only in investigating the validity of various

versions of the approximationi methods, hence we shall ignore the width [ and

replace the Breit-Wigner formula in Eq. (III.7) by a 6 function (we restore

the width in the next section)

-1
I'M_ .«
5<Mf2- M§3> - 22 . (L. 10)
(Mz— Mz> + 22
£~ My 33

Since the width of the N* is neglected we can use Eq. (B.5) for the exact calculation
of the radiative tail from the 3-3 reso;'xance and Egs. (C.11),(C.8) and (B.3) for its
peaking approximation, In the zero width approximation, the form factors Fj(qz)
and Gj(qz) which appear in Egs. (B.5) and (B.3) can now be written as

2
2 2 : N 2.2 2
Gi(a) = Mg <Q*§> Fia) = %1\133(Ei- + M) Q'2C3(q ) . (III. 11)

-q
In Table OI we give numerical examples of the radiative tails from the elastic
peak at 8 = 50, Es =20, 5 and 1 GeV. The third column labeled "exact" is based
on Eq. (B.5). The fourth column labeled '""Mo and Tsai' is based on our own peaking
approximation, Eq. (C.11) of Appendix C. The {ifth column labeled "Hand" is based
on the peaking approximation formula of L. Hand, 25 which in the notation of our

Appendix C [see Egs, (C.T), (C.8) and (C.11)] can be written as:

) 2

, (1-x_ )2 4E
t =% 0x  (mZiR ) 4 S:P gn 5P| (Hang) (L. 12)
s,p T | S,p m? 2 2
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The sixth column labeled "Allton and Bjorken' is based on the peaking approxi-

mation formula of Allton7 and Bjorken,8 which in our notation can be written as:
2

1+x
a S, ZS ] .
ts,p =2 —3 2P én 24) - 1> (Allton and Bjorken) (1. 13)

The seventh column labeled "Equivalent Radiators" is based on a semiempirical
formula obtained by assuming that the effect of the internal bremsstrahlung on the
elastic or inelastic electron scattering is equivalent to placing one radiator befort;
the scattering and another radiator of the same thickness after the scattering. The

thickness of each radiator is equal to

__19_1/ 28 p .
tr—-EW\itn " —1> , (1. 14)

where b is a number very close to 4/3 as given by Eq. (A.4). Comparing Egs. (A.16)
and (A.19) with Egs. (III. 14) and(C.11), and remembering the fact that in this sub-
section we are ignoring the multiple photon emission (hence [ﬂ.n (E 0/'E)]bt in Eq.

(A.3) must be set equal to 1 just for the discussion in this section), we obtain

op ™ - [xs,p +% (1—xs’p)2] <!2n foz-ﬂl - 1> (Equivalent Radiators) -  (II. 15)

In Table IV we give numeri_c al examples of the radiative tails from the 3-3
resonance (zero width approximation) under the identical experimental conditions
as those of Table III. We give at the top of Tables III and IV the peak energy Ep max’
the non-radiative elastic cross sections dUO/dQ, and d033/d§2 for the 3-3 excitation.,

From Table IOI and IV we observe the following:

1. All approximation formulae given above are very good near the peaks;
they are accurate to within 1% compared with the exact formula when ,(Ep max Ep) /
Ep max < 0,05. The approximation seems to work better at low rather than at

high incident energies.
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2, At around Ep ~1/2 Ep ax the approximation formulae can have errors

m

of more than 30% compared with the exact formulae for the radiative tails from

the elastic peak. Hence when the inelastic spectrum is dominated by the radiative

tail of the elastic peak, the exact formula must be used.

3. The rise of the radiative tail near the lower energy end of the spectrum
' is very prominent for the elastic radiative tail but not so prominent for the 3-3
radiative tail. The reason for the rise of the elastic radiative tail is due to the
fact that the electron energy becomes very small after a high energy photon is
emitted by the incident electron along its direction of motion. The resulting low
energy electron is then scattered by the nucleus with a large cross section. For
the 3-3 resonance, there is the so-called threshold factor [Q*z in Eq. (II.11)]
which makes the rise in the cross section at low incident energy relatively mild
compared with the elastic scattering. If this is true for all other inelastic events,
then we have a happy situation that the radiative tail from an inelastic event affects
only its immediate neighborhood where the appfoxi.mation formulae work very well,
Another comforting feature is that‘ the peaking approximation seems to work better
for the 3~3 radiative tail than for the elastic radiative tail. Of course we can always
check whether these nice features of the 3-3 resonance radiative tail are shared by
other inelastic events after the inelastic form factors have been obtained (see
Section 1V, part D). |
4. It is hard to judge which version of the approximations is best for the
treatment of the inelastic spectrum because the error in the approximation seems
to depend upon the behavior of the form factors. For example, for the elastic
radiative tail the method of equivalent radiators seems to give the best overall

agreement with the exact formula, whereas for the 3-3 radiative tail our version
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of the peaking approximation seems to give a better result. However, their dif-

ference is small, especially near the peak.
IV. RADIATIVE CORRECTIONS TO CONTINUOUS SPECTRA

After the elastic radiative tail has been subtracted from the inelastic spectrum,
the next thing to do is to apply the radiativ'e corrections to the continuous part of
the spectrum. We use the 3-3 resonance formulae, Egs. (II.5) through (Id.9),
to illustrate this procedure. Let us first consider a reverse problem, namely,
given a non-radiative cross section do/ deEp for the 3-3 resonance, what is the
resultant cross section dort + r/deEp when the straggling and the radiative cor-
rections are included? In Section IV, part B we consider a more practical problem,
namely, given a set of values for the experimental cross section, do /dSZdEp
what should onedoto obtain the non~radiative cross section do/ deEp ?

A. Change of 3-3 Resonance Curve Due to Radiative Corrections

The non-radiative cross section for the 3-3 resonance is given by Eq. (B. 1)
with form factors given by Eqs. (IIl.5) through (II. 9). Then as a result of the
straggling of the electron in the target and the radiative corrections, the measured

spectrum would be given by

t+r(Es Ep} . _da E ,E) eét+ 6r
dQ4aE andE. FsrFp
p P
. 1 E -A f
= f 5 dE! : s
A \27p S ! _3_<_)2] 1 do Vo
* <Lp> f ES—E;’ gts+<bwtiw"§bT> [Xs+4 . s mxs deEp (Es’Ep)
Esmin(Ep)

p
E +A
P
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where

do (s .
deEp (ES, Ep) = the non-radiative cross section [see Egs. (B.1),

(IT1. 5)through (III. 9}] .

E E
- - bT) oy 8 bT\,, .
5, [(bwtiw + 2) In—= + <bwtfw+ 5 ),Qn A] [see Eq. (A.21)],

| E E
ﬁzzﬂﬁ_ﬁmagm+@_hm_Q@z@ﬂ_g

T e ) 6 2 A A 2
m m
ES—E ES—E
_(I,___E_:___E>_q,—-E——P [see Eq. (B.7)],
P S

T = target thickness in radiation lengths,

tiw and tfw = initial and final window thicknesses in radiation lengths,

b and bW = values of b for the target and window materials given by Eq. (A.4),

*TE 0 HTE
S p
_ o 2s .

t.=§ = (Qn ———92 - 1> [see Eq. (mI.14)] ,
m

f = bt +b t +le f = Dbt +b t +_]:_brl\

s r wiw 2 } r “wiw 2 ’

1+ x2
= _a. — l S’ 9 2 S * -

-ts,p p. [ 2 in _L'R)-mz Xs,p} [see Egs. (C.8)and (HI.15)] ,
m;zr + 2Mpm7T+ :2.MpEp

Es min(Ep) = 2Mp _ 2Ep (1-cosB) [see Eq. (A.18)],

2ZM E -2M m —m2
E (E S p T

pmax‘Fs) = 2N+ 2E_ (1= cos 6) [see Eq. (A.19)] .
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The effect due to multiple photon emissions in the internal bremsstrahlung has been

approximated by the inclusion of the term tr in fs and f andalso the exponentiation

Ep

S
and <-Eé—> , have been replaced by their square roots. This will reduce the error
S,

introduced by neglecting regionlV as shown in Fig. 3. In addition, it will make

f
of 61- inthefirstterm of Eq. {IV.1). Also, thefactorsinfront of the integrals, <——4-> p

Eq. (IV.1) relatively insensitive to different choices of A (see discussion at the
end of Appendix A).
Three curves are shown in Fig. 2a through 2c. They represent, respectively:
1. da/deEp = non-radiative cross section using Egs. (B.1) and
(TI. 5) through (1. 9).
2. d()‘r/deEp = radiative cross section, Eq. (IV.1), neglecting
the straggling, i.e., T = tiw = tfw =0,
3. d0t+r/deEp = radiative cross section, Eq. (IV.1), with
T=0.02 r.lo, t, =t = 0.005 r.1., and b = bW =4/3,
All three curves are calculated for the incident electron energy of ES = 20 GeV
and @ =5°. We have used various values of A in our calculation and found that
the aﬁswers are quite insensitive. to the choices of A. For example, whenthe missing
mass is equal to 1.236 GeV, for A equal to 10 and 15 MeV, the values of the cross

section are 5.18 X 10 °2

and 5,15 x 1072 omz/sr/GeV, respectively. If we had
used Eq. (A.21) instead of Eq. (A.22), the difference between these two cross
sections would have been 3%.

B. Procedure for Unfolding the Experimental Data

In the previous section, we have demonstrated how to calculate the radiative
cross section from the non-radiative cross section. However, the reverse pro-
cedure of extracting the non-radiative cross section do/dQdE_ from the measured

cross section do£+r/dQc1Ep is what one wants to have. A procedure for doing this
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can be inferred from Eq. (IV.1). To show this, we rewrite Eq. (IV.1) in the

following form:

(E l5) -(6,+8.)
Tod (BB = e
s’ 7p d§2dE
p p
£ Eg-a
- — 1
ch)’c 51' A p/2 dEs . do '
- e (“") E - Y09 qaaE. Fer B
p/ S 5 p
smin(Ep)
E LE)
~8,-6, | p\s/2 £PTES g o
- (“E‘) / e *0) anan (Be B
s p P P P
E +A
P
(IV.2)
where

f

lp(x {LS—L< W iw %br ) [XS+ % (1 ~XS)Z]} (& l/xs) °
-
Rk

4’(7* t +< - bT> [xp+% (1—xp>2]}(f;n 1/Xp)fp

This equation implies that if the non-radiative cross sections O’(E'S, E') are
known for E’s <(E - &) at constant Ep and E;) > (Ep + 4) at constant E, then the
non-radiative cross section O‘(ES, Ep) can be obtained immediately from the meas-~

. ~ 3 t ]
ured cross section, ot+r(Es’Ep)' The cross sections O(ES >E

smin(Ep)’ Ep)
and O'(E ,E' < E (E)) are equal to zero if the elastic radiative tails have

s’ p pmax
already been subtracted from the measured cross section. Hence one can obtain
the non-radiative cross section in the neighborhood of the pion threshold along the
line ab in Fig. 3. Knowing the cross sections on this strip, we can calculate the
cross section for the next strip and so forth until we unfold the cross sections within

the entire area abc in Fig. 3. There is no essential difficulty involved in the pro-

cedure. The only thing one needs is an efficient computer program to handle the



entire unfolding automatically. The best way to test the efficiency of this program
is to do a reverse calculation of the previous section: namely, starting out with -
g, +r(Es’ Ep) obtained from the previous section, try to re-obtain the original
cross section U(Es, Ep). This exercise is extremely important in practical appli-
cations. It enables one to perfect the program for doing the radiative corrections
without waiting for the experimental data. One can also get some feeling about the
number of points one is required to measure inside the area abc. in F1g 3in
order to carry out the radiative corrections reliably. If one practices with enough
examples of a similar nature, one may even be able to make an intelligent guess
about the non-radiative cross section by just looking at the experimental data.

C. Some Practical Considerations

The most important thing the experimentalists have to do is to plan the experi-
ment from the beginning so that the radiative corrections can be carried out. We
list several items in the following to assist such planning:

1. The purpose of the experiment is to obtain F(qz, Mf)and G(qz, Mf) as

functions of qz and Mfz . When the radiative process is ignored, q2 and Mfz can

be written as

2 3 2 g
-q —23-p—+4ESEp sin™ 3 and (IV.3)
MZ =u® =M%+ 2M (E “E)+q> (IV. 4)
s”p
from which we have
2
T Mf2~Mz-q2 (M?— Mz-qz)' 2
/| = q
Es<q ,Mf,B) - + 5 o (1V.5)
! 16M {(1-cos6)
2 2 2 2 .2 22
- M7 -M%-q <Mf-M -q) .2
Ep(q ’Mf’9> TTTT M i Leni2 “Hi-coss 40
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Hence for fixed q2 and M?, we can choose two values of @ and obtain two sets of
values for (ES, Ep) from Egs. (IV.5) and (IV.6). Let us denote them by

2 2 2 .2 .
(ES(Bl), E(67) a0 M )and (ES( 6.+ E(6,), 4, M ), respectively. The form
factors F< 2, Mf) and G(qz, M?) can be separated out from the knowledge of the
non-radiative cross sections at these two sets of kinematical conditions by solving

two simultaneous linear eguations using Eq. (B.1):

F(a% M) + -l tan? 2L ol )= x[E0p, B0, < ME| v
F(qZ,M:f2>'+ —Nfz— tan’ %2- G<q2,Mf2)= X[ES(BZ), E (6,), qz,Mfz] (IV.8)

where X is the cross section divided by the kinematical factor in front of the brack-
et in Eq. (B.1).

2., In order to do radiative corrections, one needs to ta.ke data at many dif-
ferent incident energies at one angle. The values of the cross sections at different

angles are not required to perform the radiative corrections. The number of points

measured inside the shaded area abc in Fig. 3 must be dense enough so that inter-

polation between points can be carried out. In the shaded area of Fig. 3, the lines

parallel to ab represent the "equimissing mass lines'; for example, line ab
represents uz = (Mp+ mw)z, the missing mass corresponding to the pion threshold,
and the next line represents, say, u2 =(1236 MeV)2, etc. The point ¢ has the
highest missing mass. The lines intersecting the "equimissing mass lines' repre-
sent the "equimomentum transfer lines.'" 2s- p is minimum at point "a'" whereas
it is maximum at point "b". Let us suppose an experimentalist wants to measure
cross sections at an angle 8 within the range of EVs and E;) shown by the shaded
area of Fig. 3. The kinematic region indicated by the shaded area is uniquely

determined by the angle 6 and the position of point ¢, which we will denote by
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C(Ersnax’ Egun, 9). For any given c(E;naX, E;nm, 9) we can map the shaded area

of Fig. 3 onto an area in the <Mf, 25-p> plane. This area is bounded by the fol-

lowing inequalities:

(M+ mﬂ)?‘ < Mf <M+ 21vx<Ersnax - E;nm) - 2E Eg‘m (L-cos@)  (IV.9)
and
i M - M2+ oMEPD o M7~ Mp+ 2MET %
9E™™ (1 -cos 6) — P <o2s.pg 2B (1~ cos ) —
2M - 2Ep (1-cos ) ' 2M+2E_ " (1~cos )
(IV. 10)

Equation (IV.9) gives the range of the missing mass covered by the experiment and
Eq. (IV.10) gives the range of momentum transfer for each value of Mf . The area
bounded by Egs. (IV.9) and (IV.10) is a triangle in the (Mz, 25+ p) plane, Hence
each shaded area in Fig. 3 can be mapped onto a triangle in the (Mfz, 28 » p) plane,
In order to determine the form factors from Egs. (IV.7) and (IV.8), one has to
measure another set of cross sections at a different angle. The latter set of data
must also consist of points which are represented by a shaded area shown in Fig.

3 in order to do radiative corrections. Let us again represent this area by the
position of point ¢'in Fig. 3 and denote it by C,<E1;nax', Egnin', 6')., . This new kine-
matical region can again be mapped onto a triangle in the (Mfz, 2s » p) plane. It is
obvious that only in the regions where two triangles overlap can one determine the
form factors F(qz, M? > and G(qz, M?) In Fig. 4 we have plotted three triangles
corresponding to three sets of c's: ¢(17.5 GeV, 3 GeV, 20), c'(17.5 GeV, 3 GeV, 40)
and ¢''(17.5 GeV, 3 GeV, 80). The points a, b and ¢ in Fig. 3 have the same kine-

matical significance as points a, b and ¢ in Fig. 4. From the overlapping region

of the two triangles a'b'c' and a"b""c" we see, for example, that the separation of

form factors for the 3-3 resonances at M2 = )2

: =1.53 GeV?, is possible in

(1. 236
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the range 0.2 GeVz < 2s5.p < 1.41 GeVz, The measurements are assumed to be
made at 4° and 80, with incident energies of up to 17.5 GeV. All the spectra are
assumed to be measured down to 3 GeV.

D. Final Check of Reliability of Approximate Formulae

After the inelastic form factors have been obtained, we can use them to cal-
culate the radiative tail using the exact formula, Eq. (B.6). The results can then

be utilized to check the reliability of the original approximations made to obtain

these form factors.

V. DISCUSSIONS AND SUMMARY

In Fig. 5, we plotted five curves:

1. Elastic radiative tail from ep scattering using our exact formula Eq.
(B.5) (see column 3 of Table II).,

2. A curve similar to the above but using the method of equivalent radiators,
using Eqs. (IOI.15), (C.11), (B.3), (OI.2), (III.3) (see column 7 of Table IL).

3. The 3-3 resonance with radiative corrections (see Fig. 2a) and its radia~
tive tail using the method of equivalent radiators (see column 5 of Table IV).

4, The radiative tail from the 3-3 resonance using our exact formula, Eq.
(B.5), with the zero width approximation for the 3-3 peak [E¢. (ITI.11) , and see
column 3 of Table IV].

5. The radiative tail from pp elastic scattering using Eq. (B 5).

All five curves are calculated for an incident energy Es = 20 GeV, scattering
angle = 50, and with the straggling effect in the target ignored. These curves
illustrate the over-all behavior of the radiative tails from elastic ep and pp scat-
terings and e+p—e+N*, They also illustrate the reliability of the approximation
formula »usedw We should notice that at this incident energy and scattering angle,
the elastic cross section and the 3-3 resonant cross section are comparable in
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. 1n—32 - 2
magnitude (2.2 X 10°°7 and 1.61x 10 "~ em”/sr, respectively). However, the

radiative tail from the elastic peak is much more prominent than that from the
3-3 resonance except in the neighborhood of the 3-3 peak. The order of magnitude

m m
. We have investigated and improved the reliability of many formulae used in

of the ratio of the up to ep radiative tail is roughly given by (!Zn-ziQR— 1) / (!Lngsﬁéz— 1).

calculating radiative corrections to elastic and inelastic electron scatterings when
only the scattered electrons are detected. The uncertainties still left are the con-
tributions from: (a) multiple photon exchange between the hadron current and

the electron current, and (b) the effect of the real photon emissions from the
hadronic system. These two effects have to be freated together in order to achieve
cancellation of the infrared divergences. Except in the infrared limit, both ofthese
effects depend upon the detailed structure of the strong interactions, which are hard
to calculate. In the formula for the radiative corrections to the elastic peak, these
two effects have been calculated in the infrared limit and are given by the terms
proportionalto Zland 22 in Table I. The terms proportionalto erepresent two
photon exchange contributions and the interference terms between the electron
bremsstrahlung and the hadron bremsstrahlung diagrams. The terms proportional
to Z2 come from the square of the hadron bremsstrahlung matrix elements. It is
reasonable to assume that the ratios of Z1 terms to ZO terms, and Zz terms to

Z0 terms, from the elastic radiative corrections roughly give the order of magni-
tude of the corresponding contributions from the inelastic excitation of the hadronic
system. When positrons are used Z1 terms change sign., We notice also from

1 and Zz terms are comparable in magnitude. Hence, the most

Table I that Z
practical way to determine the significance of the above mentioned two effects is
to make some spot comparisions of the experimental inelastic spectra' for positron

scattering with those for electron scattering. If the difference is small, these two

effects are probably negligible; if not, then one can start worrying about it.
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In summary let us sketch an ideal procedure for doing radiative corrections:

1. Perform e+p and e p elastic scatterings at various energies and angles.
Compare the experimental results with formulae givén by T and MY (see Section
) and select the version which gives a better agreement with the experimental
results. Perform the radiative corrections using Eq. (II.9) and obtain elastic
form factors Ge(qz) and Gm(qz).

2. Use Fig. 3 and Fig. 4 to determine the desirable ranges of momentum
transfer q2 and missing mass Mfz to be investigated by the experiment. Take
data at two angles; the data at each angle must consist of many incident energies
so that interpolation between points inside the shaded area shown in Fig. 3 is
possible.

3. Calculate the radiative tail from the elastic peak using Eq. (III.1) and
subtract its contribution from each inelastic spectrum. It should be emphasized
that our exact formula, Eq. (B.5), must be used for this purpose.

4, 7Perfect the procedure for doing radiative corrections to inelastic spectra
by carrying out the exercise mentioned in Section IV. First: starting out with a

given non-radiative 3~3 resonance cross section, calculate the radiative cross

section using Eq. (IV.1). Then perform a reverse calculation using Eq. (IV.2)
to see if one can get the original non-radiative cross section. This exercise not
 only enables one to perfect the procedure for performing the radiative corrections
before the data become available but also can tell one how many data points need
to be taken within the shaded area of Fig. 3 in order to carry out the radiative
correction satisfactorily.

5. Apply the radiative corrections to inelastic spectra using the procedure
obtained in Section IV. Obtain inelastic form factors F(qz,Mfz) and G(qz,M? )

using Egs. (IV.7) and (IV.S8).
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6. Take the data on e p inelastic scattering at a few points and compare the
results. with those on e p scattering. The difference between the two cross sec-

tions represents the uncertainty due to multiple photon exchange and the brems-

strahlung by the hadronic system.

ACKNOWLEDGEMENTS

The authors would like to thank A. J. Dufner and D, Tompkins fortheir

careful reading of the manuscript and useful suggestions.

- 929 -



APPENDIX A

STRAGGLING EFFECT

As mentioned in the introduction, the straggling effect of the electron in the
target is very similar to the radiative corrections, and thé magnitude of the two
effects are often comparable in most of the experimental conditions. Hence the
effect of straggling must be treated with as much care as the radiative correc-

tions, In the literature, the straggling formula given by Bethe and Heitler26

t
E\mZ
1 (E Et)=—-1—(ﬂn_1§—> A1
e O’ b EO 1—-.<_L> ( . )
\In2

has often been used to calculate the straggling effects., Ie(EO, E,t) dE represents
the probability of finding an electron in the energy interval dE after an electron,
initially with energy E 0’ travelled a distance t (in units of radiation length) in the
target. Equation (A.1) is adequate for an order of magnitude estimate, but is not
accurate enough when an accuracy of better than 20% (in evaluating the siraggling
effect) is required. In most of the experiments, the target thickness is less than
0.05 radiation lengths; and as will be shown léter, in actual applications, the
straggling effect can be approximated by assuming that the target is divided in half,
and that one of the halves is placed before the scattering and one aftelr, Hence t

in Eq. (A.1) is less than 0.025 radiation lengfhs and [ (x) for émall X can always
be replaced by xﬁl. We are also interested in E0 and E both larger than 1 GeV,
hence the only electron energy attenuation of importance is that due to bremsstrah-
lung (we can ignore ionization). For the same recason we can use the bremsstrah-
lung cross section with complete screening except near the bremsstrahlung tip

(k ~ EO or E—0). The deviation from the complete screening formula occurs

- 30 -



only when the minimum momentum transfer to the target is larger than, or com-
parable to the inverse of the atomic radius, hence the complete screening formula

is correct as long as we disregard the region

E _ k 137m N _
-]?_‘,?)_—1_}3 < 173 ~0,03forz=1, E

0 27 E0+137m

0 =1BeV. (A.2)

Under the conditions specified above, we propose that Eq. (A.1) should be replaced

LB Bt obt L £+§1E9;E2mﬂ)b.t A3
olBor Bty =t 5= 15+ \7F E| (A.3)
0 0 0
where
4 17Z2+1 1
b==1+% - ) (A.4)
3[ 9Z+¢ Qn(183zlf3)]
and

—2/3)

o= in (14407

— . (A.5)
inf183 Z 1/3)
We believe Eq. (A.3) is accurate to within 1% in the range 0.5 F_.0 < EX< EO and
within 2% in the range 0.05 EO < E<O0.5 E0 by the following reasoning:
26-28

1) It was first shown by Bethe and Heitler that if the cross section for

the bremsstrahlung were given by

do _ bhA 1

dE T XN E (A.6)
R oY
0" E
then Ie(E 0’ E,t) would be given rigorously by
' bt-1
(=)
- Y B/
I(EqE,f) = T 755 , (A7)

where A is atomic weight, N is Avogadro's number, and X0 is the unit radiation
length in gm/cmz. The actual form of the cross section is quite different from
Ed. (A.6), especially when E < 0.35 EO as can be seen from Fig. 6.
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2. From Eq. (A.6) and Eq. (A.7) we notice that when bt is small, Eq. (A.T)

can be written as

E bt
I AT
1(EqEst) = <A X, t dE) <m T) . (A.8)
If the electron encounters the atoms in the target at most once, then one would
have obtained only the first factor on the right hand side of Eq. (A.8).
Hence the term (In EO/ E)bt can be regarded as a correction due to the multiple
encounters. Now all we have to do is to insert a correct expression for do/dE
into (A.8) instead of using Eq. (A.6) and show that the correction factor (In E O/ E)bt
is relatively insensitive to the fact that Eq. (A. 6) is a bad approximation when
E < 0.35 EO'

3. The correct expression for do/dE corresponding to one-photon emission

and complete screening is given by29

B, -EV
do_ 1 A4 1 _ _F;+§<0 > {1+ E_2Z+1 1 } (A.9)
dE X, N3 E-E |E, " 24\ E, SE, Z+E (153 2"1/3)

where X0 is the unit radiation 1ength given by Bethe and Ashkin2®

ol Z(Z+E) m(lss z'1/3> . (A.10)

Comparison of Eqs. (A.9) and (A. 6) shows if b is chosen to be that given by Eq. (A.4),
then the two expressions agree completely in the infrared limit (E——EO), and Eq. (A.9)
is only 1% less than Eq. (A.6) when E = ,98 EO. In Fig. 6 we compare numevrical
values of Eq. (A.6) and Eq. (A.9). It is seen that Eq. (A.6) and Eq. (A.9) agree

numerically within 10% up to E = 0.35 E_, but differ drastically for E < 0.35 E

0’ 0°

4. The shape of the bremsstrahlung spectrum at a high photon energy

k= EO - E) should not affect the correction factor (In EO/E)blE for high E, because
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if a hard photon is emitted, E will no longer be high. Since Eq. (A.9) agrees with
Eq. (A.6) to within 10% in the range 0.35 E0 <EK EO, the correction factor

(In EO/ E)bt must be substantially correct in this energy range. This factor is less
than one when E > 0,37 E0 and greater than one when E < 0.37 EO.

overall effect of this factor is to deplete the number of high energy electrons and

Hence the

to increase the number of low energy electrons, indeed a very intuitively plausible
effect. Since the number of electrons removed from the high energy side of the
spectrum are roughly the same in two cases, we expect that the number of elec-
trons moved into the low energy side must be roughly the same in two cases be-
cause of the conservation of leptons. In the region E < 0,35 E 0 the spectrum
given by Eg. (A.6) is less than that given by Eq. (A.9), hence we expect the cor-
rection factor for Eq. (A.9) must be less than that for Eq. (A.6). But the cor-
rection factor for Eq. (A.6) is only slightly larger than unity in this region. For
4/3t

~ 1,03 for E =0.05 E0 and t = 0,02, Even if this factor

is totally wrong, the error is at most 3% at this energy. In reality the error is

example (fn EO/E)

probably less than 2%. We will not consider the region where E < 0.05 EO because
of our use of the complete soreeriing formula which is unreliable near the brems-
strahlung tip.

From Eq. (A.3) the fraction of electrons, initially with energy EO’ to have

an energy in the range EO -A<EX< EO after passing through a target of thickness

t is given by

Ey

/ dE I (E,E,t) = (A/Eo)bt for (AMEp) « 1
Eg-A ~bt fn E /A
=e S = 1-BtmE/A + ..

(A.11)

Suppose an electron suffers a single large angle (8 > m/ EO) scattering in a

. . . do
target of thickness T with a cross section m‘&ﬁ; (Eé, E;), 6) = U(E's, E;)), then
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because of straggling, the measured cross section would be given by

dot
ot(ES’Ep’T) - deE (ES’ Ep’ T)
T E E (EY
dt S . p max p :
= — H t 1
T dE] dE;J Ie(ES,Es,t)o(E's,Ep)Ie(Ep,Ep,T—t)

0 (E)

. E
Smint P Tp (A.12)

where E__ . (E ) is the minimum value of E! allowed by the kinematics of
Smin' " p s
O(E',E'Yy when E' =E_and E (E!) is the maximum value of E! for a given
5 p P p pmax’ 8 p
E’S We shall use Eq. (A.12) to calculate three things.

a) Effect of straggling on the elastic peak radiative corrections. For elastic

scattering we have

OE,E) = —L_ (E',E') = %% E') 716 <E' -E! -E'E' M X(1-cos §))
s’ p deEé s’ p T (B s “p “sp
(A.13)
where
n=1+ELM (1-cos ) ~ 1+ EM '(1-cose) (A.14)

Substituting (A.13) into (A.12) and integrating the result with respect to Ep from

E - AE to E , we obtain
p max pmax
PR (E,E,T)AE. = (AE/E bT/2 (AE 2/E )bT/2 icig(E (A.15
Oi;( S’ p, ) p ( pmax) n s ds‘z S) ° )
E -AE
pmax
where
Es -1
E .= =En .
pmax S

1+ ESM'l(l - cos 6)

Equation (A.15) canbe derived under the assumptions AE/Ep max < landbT<«1l. The

detail is straightforward but messy. Equation (A.15) is used in Eq. (II.9).



b) Effect of straggling on the radiative tail of the elastic peak. This is simi-

lar to a) except now we are interested in the value of Ep not very close to Ep max

In this case we have from Eq. (A.12):

do do ' do
%, ¢ ~ T).2 “% -1 m\%%
deEp(E BTy =1 (E Eny ) 173 By T 1, (E My E ’z) a0 (B
(A.16)
where
_ 1
0

1- EpM_l(l - cos 6)

-1
n2=1+ESM (1 -cosby ,

ahd Ie is given by Eq. (A.3).

c¢) Effect of straggling on the radiative correction to the continuum state. Let

us assume that the elastic radiative taii has been subtracted from the inelastic

spectrum already. Then the limits of integration E _ . (E ) and E (E') in
smin' p pmax' s

Eq. (A.12) are given by the kinematics of the electro-pion production at the thres-
hold; namely

2_ 2
(M +m.)” = M”+ 2M(E{ - E) - 2E{F'(1-cos6) . (A.17)

Hence : 2
m _+2Mm_+2ME
T T D

Esmin®p) = 57 2E (1- 005 0) (A.18)
and 9
2'VIE’ -2Mm -m_
Epmax( s~ 2M + ZE' 1= cosQ) (A.19)

The region of integration in Eq. (A.12) is shown by the shaded area in Fig. 3. In
order to avoid the singularities of the integrand at ES = E'S and Ep = E;) it is a good

idea to separate the region of integration into four regions as shown in Fig. 3. The
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cross section o(EL, E;)) is smooth compared withI (E_, E‘s,t) and Ie(E‘p, Ep, T -t).
For simplicity let us suppose A is chosen such that bt fn ES/A < 0,2 and

bt fn Ep/A < 0.2, then from Eq. (A.11) we expect that region I would contribute
more than 64%, region II more than 16%, region III more than 16%, and region IV

less than 4% to the integration. If we ignore region IV, we obtain [using Eq. (A.11)]

T

bt . b(T -t
do dt A A
aE_aq (Eg Ep’ T =_[ T (TE_—> (f—> o(Eg; Ep)
P ) s/ \p

BT -t) oS |
+ (ﬁ) f 1(Eg ELY o(EL,E ) dE!
P E (B

smin'"p

bt pmax s

I1(E',E ,T~t)o(E ,E!) dE! A.20
o(Ep B s T-)0(E, EY) dE! (A.20)

\

E E
__121‘ __s__._ _Dp
(1 {n zf.nA> O(E, E)

"E_~A

S
4 ! z ! !
T 1fEeEn 3) omln an
(E)

Es min*"p

(E)

E
pmax' s

+f
E +A
p

T .
1 (E',E, <) o(E_,E")dE' . Al
By By 3) oE B By (4.21)
We have assumed that the variation of the cross section is negligible when Es
and Ep are changed by a small amount A. Since the widths of the resonances are

typically 100 ~ 150 MeV, A should be taken less than ~ 15 MeV. When ES = 20 GeV

and bT/2 = 0.03 r.1., we have 1/2 bT ﬁn(ES/A) > 0.2. Hence neglect of region IV
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and terms proportional to [1/2 bT !Ln(ES/A) 2 causes an error of ~4%. This is
somewhat undesirable, We remedy this defect using the following criteria:
1. We insist on ignoring region IV in Fig. 3 to save computation time.
2. The expression must be accurate up to terms of the order of
1/2 bT !Zn(ES’t/A) 2 compared with the correct expression when
the cross section is constant,
3. The expression must be relatively insensitive to the choice of A
when the cross section is constant.

Using these criteria, we propose the following expression as a substitute for

Eq. (A.21)
do 6+6
t s p
——-———dEde(ES, Ep,T) =e o(Eg E )
8 /2./’Es—A - ' '
e Ie<Es,Es, -2~) o(Es,Ep) dEs (A.22)
E . (E)
smin'p
5./2 E (E))
s pmax' s ' I.) ' '
+e f Ie(Ep,Ep, 5) O(Eg EL) dE!
E +A
p
where
pT T
6 i adhad m ___S._’..E
S, P 2 A *

When the cross section is constant we expect that the right hand side must be equal
to the left hand side of Eq. (A.22). Expanding the right hand side of (A.22) in power

series of 55 D’ we sec that the left hand side is equal to the right hand side up to
3

terms of order GS o’ Hence the criterion 2 is satisfied. Again if we agsume

H

that the cross section is constant and differentiate the right hand side of (A. 22)
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with respect to A, we see that the resultant expression is equal to zero up to the

terms of the order bg p* Hence the criterion 3 is satisfied. What we have

accomplished is essentially the nearly complete elimination of the error introduced
by neglecting region IV. Furthermore, we have made our expression relatively
insensitive to the choice of A [see discussions after Eq. (IV.1) in Section IV]. We
shall refer to the approximation in which region IV in Fig. 3 is neglected as the

strip approximation.
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APPENDIX B

EXACT CALCULATION OF RADIATIVE TAILS

It was shown by Tsa113 that the radiative tails from an arbitrary unpolarized
target system and arbitrary hadronic final state can be calculated exactly in the
lowest order of @ if (1) the one-photon exchange mechanism is assumed, (2) the
interference terms between the electron bremsstrahlung and the hadron brems-
strahlung are ignored and (3) only the scattered electrons are detected.

The reason why this can be done is that in the one-photon exchange model, the
non-radiative cross section (see Fig. 7) dependé upontwo form factors and the radiative
cross section (see Fig. 8) also dependsupon the same two form factors. We shall repro-
duce here the formulae given in Ref. 13 for completeness. Letusnormalize theseform

factors by the non-radiative cross section (only the scattered electron is detected):

20 ZEZM

do_ _ p 20 [of2 w2\ e 2 . 20 o[22
ddp © T 2 cos 2[F<‘1 ’Mf>+ 5 tan 2G<q,Mf)], (B.1)

where ES and Ep are energies of the incident and scattered electrons, respectively,
M and Mf are masses of the initial and final hadronic system, 6is the scattering
angle and

¢ = -4E E_ sin’
sp

oo

]

a2 = m2

2
: +2M(EG-E ) +q" .

When the mass of the final hadronic system is discrete, M? = sz, we shall nor-

malize the two form factors such that

F<q2, M7) = Fj(qz) 5<Mf - M;.Z) , (B.2a)
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a(a® M7)= Gj(qz) oM M12> , (B.2b)

where j denotes the jth discrete level, and j = 0 corresponds to the elastic scat-
tering. Substituting Eq. (B.2) into Eq. (B.1) and integrating both sides with

respect to dp, we obtain the cross section

do '042E2
i 1 2 2 2 2
E_S%z 4p -5 cos —g [F.(q ) + =5 tan -g— G.(qz)] (B.3)
¢° 1+EM (L-cosf) J M J

Fj(qz) and Gj(qz) for elastic ep scattering are given in Egs. (HII.2) and (II1. 3), and
those for the narrow width approximation to the 3-3 resonance are given in Eq.

(III.11) in the text. An example of the form factors F<q2, Mf_2> and G<q2, M2

f)for

continuous M? is given by Eq. (OI1.5) and (II1. 6) for the 3-3 resonance.

In the following we first give the formula to calculate the radiative tail from
a discrete level and then give a formula for calculating the radiative corrections
to continuum states.

1. Radiative Tail from a Discrete Final Hadronic State

The expression for the radiative tail due to the jth level is [see Eq. (11) of

Ref. 13]
2 3 ! 27T
d Ojr o Ep w d(cos Gk) /
= B T d¢ (B.4)
dfedp (27r)2M0ES 2(14(110 - {u| cos ) wy Tpy Tk

-1
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where
. ; 2 2 2 2
_ 2 2 -m q m
B T = M'F.(q") [Z_E (E +w)+——-]- [ZE (E -w)+L]—2
uy T uv j [(p_k)z 5p 2 (s,k)z p' s

2 2 2
+——-————~——-(S. B -5 {m (s*p-w)+(p-s) [ZESEP—(p- s) +w(ES—Ep):”

2
1 2 2
+W§Z(ESEP+ Esw+Ep)+-g~2——(s-p)_m‘

2
1y i 2 s
5 PEE Bt E)+ % - (sop - m d

+ Gj(qz) [m2(2m2+ qz)( 1 5 + 1 2) + 4
(p- k) (s - k)

2,
+4(p-s)(p-s—2m, +(2p.s+2m2_q2)(_1_. _.__];__” ,

(p- k)(s- k) p-k " s-k

and
qz = momentum transfer to proton target squared
_ 2 - 2
=2m” - 2E_E + 2 ls| |p| cos & + 2M" - 20(Eg-E ) + 2wyl cos 6,

uz—M.z

W = photon energy = J .
2(u, - |u| cos 6,)
0 ‘m k

We have chosen a coordinate system such that the z-axis is along the H;direction
and the electron momenta, 5 and Bs in the x-z plane. In this coordihate system

the quantities q2 and Mf2 are independent of the photon azimuthal angle ¢k’ only

(p* k) and (s k) are depehdent upon ¢k. Hence the integration over qbk in Eq. (B.4)

can be readily carried out with the help of the following three integration formulae:

2r  do
(a)f a+l;>x= 227r2 y wherex=cos¢k,
0 a -b
o[ B
) @+bn? @ p%)3/2
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(c)/ dé, o b B!
(a + bx)(a’ + b'x) (a’b - ab")
2 p2 2 _ 02
The integrated result is given as the following:
2 L
d“o. a8 <EE> ) wd(cos 6))
dQ2dp 2\E_ /M 4
(2m) S 2q (u0 - Ll}\[ cos Gk)
-1
x {M2F (qz)' - 2ram” 2E _(E +cu)+95E _ _ 2ma'm” [ZE (E_- +513] -47
j @ 2_b2)372 s\“p 2 (a,z_b,2)372 plEg = W)+ | 4
1 |
+oar [—2 ;mz(s.p-w2)+(s.p) [ZE E -(s-p)+ wE_ -E )]g
/ 5 p 5 p
az—b2 \/a'z—b'z
or : 2 q2 2
+ — (AEE 4+ EwW+E)+ <% -(s.p)-m
S22 Lse s 2
a -b
2 2 2 2
- — %2(E E -Ew+E)+ L —(s:p)-m %
s p p s 2
. ‘/alz_biz
2 27a 2mal
+ G.(q)) + m(Zm +q)+87r
: <<a2—b2>37 ? @p? 3T>
v v! : 2
+ 81 - (s*p)(s.p-2m")
<\/ az—b2 Va’z—b'2>
+27r< L - 1 > (25-p+2m2—qz) ) (B.5)
/aZ_bZ /a,z_b,z
where
- |p| sin 6
v = = P ’

w[Ep Lil sin 95 - ES ]"1'3‘1 sin 6p+ lf;l 'B.l sin @ cos Gk
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- |s} sin 6

w[Ep ]E‘] sin GS - ES LEJ sin ep-l- Li] ]’2’! sin 8 cos ek]

©
fl

w[Ep - L[‘J\I cos ep cos Gk] ,
b = -wlgl sin ep sin Bk )

al

i

w[ES - I.E.I cos BS cos Bk] )

'_— . .
b' = -w|s| sin f, sin Bk,

6, =angle between k and u,
P
9p = angle between p and u ,

and
6_ = angle between s and u.
s ~A A

2. The Radiative Corrections to the Continuum State

Let us assume that the radiative tail due to the elastic peak has been subtracted
from the inelastic spectrum already. The exact formula to lowest order in a (ignoring
the radiative corrections to the hadron current) is given by Eq. (15) of Ref. 13. The

radiative cross section (ignoring the straggling) can be written as

dOr do clorr
dndg EsEy = dap Fa B [“ 5r(A)] tIag @ > A (B.6)

where do/d%p (ES,Ep) is the continuum non-radiative cross section,

E E
5(A)=:_9‘.[;2_§__1_3_m2(s:2 +<.Qn +m—£)(ﬂnw—l)

-S
A 2
m

(B.7)

&(x) is the Spence function,
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and

1 (cos 8 ) 2w
max

dor 3 E wiw .
dQdp w> 4= 27T ME d (cos ek) / 4 f B}J.VT[.LV d¢k *
® 1 A 1%

(B.8)

c . . : 2 2
BHVTHV is the same as BHVTHV in Eq. (B.4) except that Fj(q ) and Gj(q ) are

replaced by F<q2, M?) and G<q2, Mfz) respectively., w is the energy of the photon

and is a function of M? and cos Hk

2 2
u —Mf

w = (B.9)
2(ug - lul cos 6,)

Wnax (cos Gk) is the value for w at the pion threshold

u2~(M +mﬂ)2
wmax(cos 9k) = . (B.10)
2(u, - lllhl cos 6,)

Let us sketch briefly the derivation of Egs. (B. 6), (B.7), and(B.8). The continuum
mass state can be regarded as a summation of many discrete levels. Hence in
order to obtain the radiative tail due to continuous mass states, we have to integrate

Eg. (B.4) with respect to M? . Equivalently all we need to do is to make the replace-

ment

(cos 6 )

max
F, (q )-—’f ?)dM? =f , F(q M ) 2(u - lul cos Gk) dw

(M+m ) 0
(B.11)

and a similar one for Gj(qz) in Eq. (B.4). We have used Eq. (B.9) to change the vari-
able of integration. Substituting Eq. (B.11) into Eq. (B.4), we notice that the integrand
diverges at w = 0 (the well-known infrared divergence). Hence we divide the integration

into two parts, one from w = 0 to A and the other from A to wmax(cos Bk). The integra-

tion from A to @, (cos k) is given by Eq. (B.8). The integration from w= 0 to A plus

the vacuum polarization and the vertex correction is given by Eq. (B.7), which can be
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obtained from the 7.° terms of Eq. (II.6). It should be noted that A is chosen here
to be independent of angle whereas in Eq. (I 6) AE is the maximum energy loss
of the detected electron. When AE is fixed, the maximum energy of photons which
can be emitted along the direction of the incident electron is nzAE whereas in the
direction of the scattered electron it is AE. Hence instead of 1?11<Es/ nz/_\.E> +
fn(Ep/AE)] as in Eq. (II. 6), we have to use [m(ES/A> + m(Ep/A)] in Eq. (B.1).
The integration with respect to ¢k in Eq. (B.8) is of course identical to that
in Eq. (B.5). Equation (B.8) is practically useless as it stands, because we have

2 2 .2

to know F(qz,M )and G(q ,Mf) for certain range of q2 and M? before we can

f
apply radiative corrections. We shall derive an approximate expression for

Eq. (B.8) using peaking approximations in Appendix C. A possible use of Eq. (B.8)
is in making the final consistency check on the data after F(qz, M?) and G(qz, Mf2>
were extracted, by using peaking approximation method.



APPENDIX C

PEAKING APPROXIMATIONS

Schiff30 was the first one to use the so-called peaking approximation to inte-
grate the Bc—zthe—Hei’cler31 formula for bremsstrahlung. Our Egs. (B.4) and (3. 6)
are essentially the Bethe-Heitler formula with modifications due to the spin, recoil

3,6-11 have written down vari-

and excitation of the target system. 32 Many people
ous versions of the peaking approximations. In the following we shall derive our
own version based on Egs. (B.4) and (B.8). Figures 9a through 9¢ show some
examples of the integrands of Eq. (B.5) for the radiative tail from the elastic peak
in ep scattering, for E, =20 GeV, 6= 5%, and E_ =18, 12 and 6 GeV. The inter-
esting features shown in these plots are:

1. The integrand in Eq. (B.5)} is indeed very sharply peaked when Gk is
equal to BS or Qp; namely, most of the photons are emitted along the di-
rection of either the incident or the scattered electron. The widths of the peaks

/2 /2

are roughly given by (m/ES)1 and (m/Ep)1 , respectively. This is to be com-
pared with 0=m/ Es which is the angular spread of the bremsstrahlung when the
direction of the scattered electron is integrated out. We shall call these two peaks
the s peak and the p peak, respectively. |

2. Because lqzl decreases monotonically with increasing cos Gk and the
integrand is roughly proportional to q—4G§(q2), we see that the s peak is more

prominent than the p peak.

. . 2

3. When Ep is small, there occurs a third peak near cos 9k =1, where fq
becomes minimum. Since this third peak is never taken into account in the usual
peaking approximation, we can understand why the peaking approximation becomes

unreliable at the low energy end of the scattered electron spectrum.
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In Fig. 9d through 9f, some examples of the integrand in Eq. (B.5) are shown
for the radiative tail from the elastic peak in pp scattering with ES = 20 GeV,

6 =5°, Ep = 18,3, 12,5, and 6 GeV. We observe that there are hardly any peaks
in this case. However, it is interesting to notice that if we blindly apply our peak-
ing approximation formula, Eq. (C.11), to the calculation of the elastic radiative
tail of up scattering, the answer is found to be correct to within 10% near the
elastic peak,‘ and within a factor of two in the deep inelastic region.

The detailed procedure of our peaking approximation is as follows:

1. Terms with (s k)_2 and (s - k)—l in Eq. (B.4) are assumed to contribute
only to the s peak, whereas terms with (p - k)_2 and (p k)—1 are assumed to con-
tribute only to the p peak.

2. Terms which do not have (p - k) or (s - k) in the denominator, such as -2
and 4 in Eq. (B.4), are made to contribute half to the s peak and half to the p peak.

3. The most important terms are those with (p + k) (s * k) in the denominator.

We first ignore the Gk dependence of photon energy, w, and integrate this term

with respect to the solid angle

1
.[ e =fdx % _ar 1 ms-p+[(s»p)2-m4]1/2
@ HER k-p)? @ V(s pZ-m? 2
~LAr 1 s )
*F G 2

where px =(1-x)p + XS,

. 2r 1 2(s-p) 2r 1 2(s-+p)
We then give 7 (5 p) fn 5 to the s peak and 7 5D In 5
(JJS m wp

m

to the p peak, where w, and w, are the photon energy along the incident (9k= 98)

and outgoing (8, = ep) electron directions respectively, and are given explicitly
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uz ~ M]2
“s = 2[M = E, (T-cos e)] : (C.1)
and
u2 - Mf
wp = 2[M +E_ (T-cos 9)] . (C.2)

4, Using a technique similar to the above, we ohtain

/ m? 2
dQ, =4n/w
2
(p- k) k P

m2 2
dQ2, =4rn/w° ,
f(s . k)z k s

dQ E + 2E
/__li_:ﬂlm ppz am fm p,
w P m

-k E m
(p-k) b Wy
ko o~ 4T n 2Es
(s« k) wSES m

The coefficients associated with these terms in the integrand are evaluated at the

peaks. For example, for the s peak w is replaced by Wy qz and M2

¢ are replaced

by
2 _— e —-— -
qq = 2(ES ws) Ep (L-cos 0) (C.3)
2 .2
Mfs =u - Zws (uO =~ 1u] cos es)

and for the p peak w is replaced by wp, and q2 and Mf2 are replaced by

2 _ _
qp = - ZES (Ep + wp) (L-cos §) (C.4)

2

M fp

=42 - pr (uO ~ |ul cos 9p)



With these approximations, Eq. (B.8) can be written as

do (dcr do,_
(Q)>A)= (w>A) +——-——-(Q)>A) (0.5)
df2dp dQ2dp k//s d{2dp ,15//M
where
w (cos 6)
dqp @ > 8 k /s " TomE / o, ;Z F(qS,MfS) B (Eg-w)(1+c0s 6) -
.- A s

2(S
+ {Ep(Es— ws)(1+cos 6) + wS(ES+ Ep cos 9)} !Zn-i——z—El

m
E wﬁ 4E§
+ {“‘ wS(ES+ Ep COS 9)+ EE- --2— (1+COS 9) }m 7
s m
2 .2
2G(q , M '
n (s2 fs) ~-E (E_ - w)(1-cos 9)+w2+ E E (1-cos g)gn_z.(E_P_)
m
Wg Wg ZESZ
- E Ep(l-cos 0) (ES-——2—) n\—= (C. 6a)
s

dO'r a3E M wmax(cos 9p) iu_)E 1
dQdp @ >4 - "otk f w4
'15//.2 S A P qp

x{terms obtained by interchanges ES-—-E y W —wp and qg‘—,—qg in Eq. (C. Ga)} . (C.6b)

p
5, We have gotten rid of one integration by the above approximation, however,
Eq. (C.#6) is still not in a desirable form because it still implies that F(qz, M?) and

G( 2,M§> have to be separated out from the cross section for certain ranges of q2
and M? before one can apply radiative corrections. It is desirable to make a fur-
ther approximation such that the integrands in Egs. (C.6a) and (C. 6b) contain only

the cross sections G(ES - W, Ep) and cr(ES,Ep + wp) respectively. Comparison of
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Eq. (C.6) with Eq. (B.1) shows that somehow we have to make the ratio of the
coefficient of Gj(qz) to that of Fj(qz) in Eq. (C.6) equal to ZM_Z ’cam2 —g in order
to achieve this purpose. We can do this by ignoring wz in the non~logarithmic

term and changing /n 4E§/m2 into fn 2(s - p)/m2 in Eq. (C.6a). After these

approximations, Eq. (C.5) can be written as

do E ~A dE!
L. = S S do !
g @8 ‘f E_-E. ‘s d0dp (B B
smin(Ep)
pmax(Es) 4dE! do
+f El _% tp dﬂdp’ (EssEtp) ? (C’T)
P P
E +A
p
where
(=2 (1 x5 0) m 2Ase D) _ c.s
S,p—'IT 2 2 m2 XS, ] ( . )
= ! = -
x, = EL/E =(E,-w)/E, , (C.9a)
= E/E'=E /(E_+w C.9%
Xp p/ p p/( p p) ’ ( )

and Esmin(Ep) and Ep max(Es) are given by Eqgs. (A.18) and (A.19).

When M, is discrete, M, = MJ., do/d§2dp in Eq. (C.7) contains a 6 func-

f f

tion
do 4oy 2 2
1 1 1 Y t - | I - n! —
aoa By Ep)@dg (EL) [ZNH 2E (1-cos 9)] 5[(s +p;~p") Mj] (C.10)
Substituting Eg. (C.10) into Eq. (C.7), we obtain the expression for the radiative
tail from a discrete hadronic mass state Mf = Mj in the peaking approximation:

dc.r | M+(ES - ws) (1-cos B) iO_.l Ec_ri
dQ2dp (Es’Ep) - (1/ws) ts M-Ep(l-oos g) dQ (Es - @)t (1/wp) tp ds? (Es)
(C.11)

where W, and wy, are given by Egs. (C.1) and (C. 2) respectively.
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APPENDIX D

REMARKS ON PROGRAMMING

In this Appendix, a few remarks concerning the numerical calculations of
radiative corrections will be given.

First, it should be noted that in calculating the radiative tail from the elastic
peak, the integrand in Eq. (B.5) has an uncertainty of zero divided by zero when'
a'b = ab'. This happens just because of the particular factorization used in the
¢k~integration and there is nothing wrong with it. It occurs at an angle given by

| 1 Es Ep
cos 9k= s o \ T8 cos Bp— Pl sin GS s

which corresponds to the position of the minimum between the s and the p peaks.,
To facilitate the numerical calculation, an extremely small area near this point
should be ignored in the numerical integration. The error thus introduced is
negligible.

Secondly, in calculating the radiative corrections in the inelastic region,
two small regions near point a and b as shown in Fig. 3 should be ignored in the
integration. This will avoid troubles caused by round-off error in a computer.
Again, the error thus introduced is beyond detection, because typically the de-
leted region is only a few MeV wide.

We have performed all the calculations discussed in this paper on the IBM
360/75 computer at SLAC. Double precision has been used all through the cal-
culations in order to retain 14 significant digits. Typically, we found the fol-
lowing information which may be of some use to the experimentalists:

1. It takes 0.74 minutes to compute 200 different values of the

Spence function with an accuracy of 1076,
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2. It takes ~ 0.6 minutes to compute 10 different values of &
for ep elastic scattering using Tsai's formula, while
~ 0.5 minutes for the same number of points using the for-
mula given by Meister and Yennie.

3. It takes 1.5 minutes to calculate 100 points for the radia-
tive corrections on the 3-3 resonance peak with an accuracy
of better than 10'-4, using the peaking approximation method.

4, It takes 4.2 minutes to calculate 175 points on the radiative
tail from thé ep elastic peak with an accuracy of better

than 10-3, using the exact formula.
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TABLE III

Radiative Tails from Elastic e +p Scatterings

Eg=20 GeV, 0=5°% E . =18.499GeV, doy/df =22 X 10722 em?/st
. 10733 cmz/GeV/sr
68 Poe Bacl MomdTei mem Alor Dol
18.4  1.040 15.85 15.85 15. 85 15.85 15. 85
17,5 1,705 1.884 1.860  18.61  18.60 1,862
16.5 2,222 1.246 1,176 1.179  1.175 1,179
10.0  4.257 5.011 3.562 3.863  3.518 3.835
5.0  5.317 42.70 34.59 44,16  33.34 42,03
1.5  5.947 581.9 506, 5 788.2 474,17 676.5
E =5 GeV,  0=5%, E_ . =4.901GeY, doo/d9=29/.6><10_30cm2/sr
EP Missing mass - ?O CmZ/Gevfﬁton Equivalent
Gev. J11—2 GeV Exact Mo and Tsai Hand Biorken  Radiators
4.8  1.036 17.26 17.26 17.26  17.26 17. 26
4.5  1.283 4.533 4.523 4.532  4.522 4.526
4.0  1.614 2. 250 2.228  2.252  2.225 2.236
2.5  2.340 1,665 1.561 1.732  1.536 1.615
1.0 2.889 5.69 4.918 6.967  4.656 5.226
E =1GeV, 6=5, E =.996 GeV,  do./d9=1.38x1072" cm?/st
s pmax 0
. 10727 cm2/GeV/sr
GIZS/‘ Mrf/%qilnjss Exact Mo and Tsail Hand %ﬁgfl?en gggi;?;igt
.98  0.954 3.733 3.733 3.733  3.733 3.733
.90 1,030 0.6244  0.6233  0.6255  0.6239 0.6239
.70 1.199 0,2275  0.2228  0.2322  0.2213 0.2247
.50 1,347 0.1934  0.1806  0.2079  0.1765 0.1846
.30 1.480 0.3048  0.2655  0,3672  0.2516 0.3080
.20 1.543 0.5435  0.4636  0.7304  0.4292 0.5612



TABLE IV

Radiative Tails from 33 Resonance (zero width approximation)

E =20GeV,08=5°, E o = 18.17 GeV, do,,/da =16.1x 10733 em?/sr

s pma
10—33cm2/GeV/sr
Ep Mis\/s_izgg Mass Exact Mo and Tsal Equivalent
GeV u_ GeV Radiators
17.5 1.705 1.941 1,934 1.934
16.5 2.222 1. 032 1.012 1. 011
10.0 4,257 2.373 2.269 ) 2.329
5.0 5.317 8.916 9.396 10.25
1.5 5.947 17.15 18, 03 19.39
E = 5GevV, 8= 5°, E = 4,560 Gev, do,./dQ = 8.59 X 10—3Ocn12/sr
s ' Tpmax 33
10‘3Ocn12/GeV/sr
Ep Miss;ng Mass Exact Mo and Tsai Equivalent
GeV u GeV Radiators
4.5 1.283 8.246 8.249 8.250
4,0 1,614 . 8624 . 8642 . 8664
2.5 2.340 2229 . 2243 2341
1.0 2.889 .1182 . 1158 . 1332
o -30 2
E,Z=1GeV,0 =5, Epmax = .650 GeV , da33/ds2 = 1,97 X10 " cm’/sr
10&300m2/GeV/sr
E Missing Mass Exact Mo and Tsai Equivalent
G.eI;I \/u_z— GeV Radiators
0.6 1.275 15.17 15.24 15.28
0.5 1,347 4,264 4.308 : 4,370
0.3 1.480 1.307 1. 328 1.441

0.2 - 1.543 0.8596 0.8752 1.015




FIGURE CAPTIONS

Fig. 1 A typical spectrum of inelastic ep scattering and the radiative corrections.
Both of these curves are taken directly from Brasse, et al., (Ref. 4).

Fig. 2 Change of the 3-3 resonance curve due to radiative corrections and strag-
gling. Elastic radiative tails are also shown., The calculations were done
for (a) B, =20 GeV, § =5 (b) E, =5 GeV, 6 = 23.9° and (c) E, = 3 GeV,

8 =52.6°. The momentum transfer squared, qz, was chosen to be nearly
the same in all three cases, equal to - 2,77 (GeV/c)z. These curves indi-
cate that the elastic radiative tail is relatively unilﬁportant near the 3-3
peak, especially at higher energies, for the particular value of qz considered
here.

Fig. 3 Kinematic regions necessary for radiative corrections to inelastic electron
scattering. Efs is the incident électron energy, E;), the scattered electron
energy.

Fig. 4 Examples of overlap in the (2 S+ p, Mf2> plane for three values of
(E;nax(e), Egﬁn(9)> represented by point ¢ in Fig. 3 at three angles

91, 92 and 93. The ‘separation of form factors is possible only when two
triangles overlap.

Fig. 5 Examples of radiative tails from ep and up elastic scattering. Also shown
isthe radiative tail from 3-3 resonance,; Theincidentenergyis 20 GeV, and
thé scattering angle is 5°,

Fig., 6 Comparison of Eq. (A.6) with Eq. (A.9) for Z =1, The curves plotted repre-
sent (do/dE)XONA—]“(EO—-E)° , Fl corresponds to Eq. (A.9) and F2 corresponds
to Eq. (A.6).

Fig. 7 Feynman diagram for non-radiative ep inelastic scattering.

Fig. 8 Feynman diagrams for radiative ep inelastic scattering.

Fig. 9 Integrands in Eq. (B.5). The curves plotted are for Es =20 GeV, 8= 5% and
(2) E, = 18 GeV, (b) B = 12 GeV, and (c) E_=6GeV, for e+ p—e+ p+y; and

(&) E, = 18.3 GeV, (¢) B, =12.5 GeV, and (f) E =6 GeV for p+p—p+p+y.
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