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ABSTRACT 

The first order polarization dependent electron multiple scat- 

tering theory of Toptygin has been evaluated for realistic experimental 

conditions. The result is a prediction of essentially no beam depo- 

larization. Recent experiments are discussed, and calculations are 

made to illustrate the influence of multiple scattering on Mott double 

scattering asymmetries. 

(Submitted to Phys. Rev.) 

* 
Supported in part by the U. S. Atomic Energy Commission. 



-2- 

INTRODUCTION 

In recent years much labor has been devoted to the measurement of 

the longitudinal polarization of electrons from radioactive nuclei. One 

of the classical methods 

a Mott double scattering 

tering process to change 

of making this measurement has been the use of 

1 apparatus . This technique uses a first scat- 

the initial longitudinal polarization component 

(directed along the electron momentum direction) to a transverse com- 

ponent (in a plane perpendicular to the momentum of the electron after 

scattering). This transverse polarization then produces an asymmetry in 

the second scattering process which occurs in a plane perpendicular to 

the plane of the first scattering (cf. Section II). If both of these 

processes are single scattering events, the theoretical predictions of 

the asymmetry are straightforward and well-known. However, in scattering 

foils thick enough to facilitate counting statistics, multiple scat- 

tering processes must be taken into account, especially in the first 

scattering foil. Mulhschlegel and Koppe2 have developed a polarization 

dependent multiple scattering theory valid for small angles3. Toptygin4 

has obtained analytical results which are in principle valid for all angles. 

In this paper a single scattering polarization dependent theory is 

briefly sketched (Section I), which is consistent with the Toptygin mul- 

tiple scattering theory, and formulas used for asymmetries in the Mott 

double scattering apparatus are given (Section II). The pertinent con- 

clusions of Toptygin's theory are indicated (Section III), and these 

results are then used in the asymmetry formulas previously developed to 

give comparisons with the predictions of single scattering theory (Sec- 

tion IV). Curves are given for a possible check with experiment. 
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1. SINGLE SCATTERING TKEORY 

To develop a polarization dependent, electron single scattering 

theory consistent with the Toptygin multiple scattering analysis, one 

may fruitfully use the density matrix apprcach. 

Since we are following the general development of Mulhschlegel 

and Koppe 2 , we need only outline the basic procedure, for notational 

reasons, and give the most general results not previously published. 

A "transition amplitude" A = A(&z',Z,s) may be defined by the 

equation: 

A&A+ = w@;Z,%)p($') , (1) 

where s is the vector of Pauli spin matrices, p and p' are the density 

matrices for the initial and final beam polarizations $ and "P', and w 

is the probability of scattering into momentum b' and arbitrary polari- 

zation given initial momentum z and polarization 5. An explicit form 

for the transition amplitude can be constructed in the usual way as': 

A = f - igz*$ , (2) 

where f and g are the ordinary Mott functions of the scattering angle 8, 

atomic number Z of the scattering nucleus, and the electron energy. The 

vector "u = (Z x 2')/ Ii x 2 is a unit vector perpendicular to the scat- 

tering plane defined by c and T+k'. 

Rewriting the matrix produce ApAf in terms of the more convenient 

functions J, G, F, and D, we find that: 



where 
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AoA+ = (+)(J + D:*ifP -I- (J; + D;: + $ X $ + Gz$ - G$)*;) (3) 

J = If/' + lgl' D= -i(Tg - jjf) 

G= I 2 
*ig I F = ??g + zf . 

Factoring out (J + DGe3) from Eq. (3) and independently expanding the 

final beam polarization density matrix in terms of the unit matrix (I) 

and the vector of Pauli spin matrices (z) in the form: 

we find by comparison of these two equations that the spin dependent 

cross section is: 

w(l;.';%,%) = J + D;*?) , (6) 

and that 

“PI = (J - G)i: -I- (D i- G;fi$)t.+- F; X "p 

J -I- D&"p 
(7) 

This polarization vector after single scattering may be more usefully 

resolved along axes which are always orthogonal as follows: 

3, = (D f J&t): - F(% X t) -I- (J - G)-: X (3 X :) 

J I- D(%t) 
(8) 
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or 

3 = (J + D(&t))-' X 

{ 
c-F@ X t).(g' X 2) + (J - G)I: X (3 X t)+? x ;f;)] ;I x ;: 

(9) 
+ [-F($ X t)& I- (J - G)-: X (h X t).;'] :' 

+ [D + Jj+p*;tu] t 
1 

where z' is a unit vector in the direction of g'. 

The scalar product of initial and final polarization vectors yields: 

where 7, the 

angle, and CY 

polarization 

cos lj = (JP + D cos (Y. - GP sin2a) 

(J2P2 + 2JPD cos Cr I- D 
2 1 

P2sin2a + D2)2 

angle between "P and "PI is the polarization precession 

is the angle between "P and c. For initial longitudinal 

This reduces to: 

(JPL - GPL) 
cos Tj = 1 

(J2P; + D2P; + D2)' 

(10) 

(11) 

II. DOUBLE SCATTERING ASYMMETRIES 

Eq. (6) is a form of the polarization dependent single scattering 

cross section which is applicable to the second scattering in a Mott 

double scattering experiment. For this second scattering the vector 

sM is defined by writing Eq. (6) in the form: 

w=J(l f~ D t.?) = J(l + sM*-+p) l (12) 
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We see that the ratio of two events which differ only in azimuthal 

angle (and therefore have J functions equal) can be expressed as 

w1 l+P 8 
cos a 1 

w2 - = 1 +.pMP cos CX2 l 03) 

This wl/w2 asymmetry can be maximized by choosing the three vectors 

ifk, i;; and 2; to lie in a plane perpendicular to initial polarization 

h (subscripted PT, for transverse, in this geometry), as in Fig. 1. 

We may therefore define for this geometry, a left-right asymmetry 

as: 

wL 1 f PM PT 
-= 
wR 1 - PM PT ' 

. which is better written in the more sensitive form: 

6 = PM PT = "L - WR 

wL + "R 
. 

(14) 

05) 

PM is commonly known as the Mott asymmetry function, and has been exten- 

sively calculated in exact form by Sherman and Linb, It is a function 

of scattering angle 8, scattering material Z, and electron energy, and 

except for relatively small scattering angles is a negative quantity. 

PT in a Mott apparatus has been prepared by a scattering process in the 

first foil. This first process may be considered for theoretical sim- 

plicity from the point of view of either single or multiple scattering. 

For a polarization prepared by a first foil single scattering we 

ccy use Eq. (g), written for initial beta longitudinal polarization 

s = s,: 
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pL 5’ = f; + J ((J - G)COS 0 + F sin Q) z1 

-I- pL J ((J - G)sin 8 - F cos Q) z' X G. 

Choosing the largest transverse component for the second scattering 

process gives, from this equation: 

pT 
pL 

= J ((J - G)sin 8 - F cos e). 07) 

A function analogous to PT may be derived if the polarization 

vector incident on the second scattering foil has been prepared through 

first foil multiple scattering. This is discussed in the following 

section. 

III. MULTIPLE SCATTERING ANALYSIS 

In a manner similar in principle to that of Mulhschlegel and Koppe, 

I. N. Toptygin has developed a multiple scattering theory in terms of 

the solutions to two transport equations4. We solution yields a scalar 

beam intensity I, and the other gives a polarization transport inten- 

sity vector 8 = 3%. Thus for our consideration here we are interested 

in the polarization vector after multiple scattering, which is the ratio 

of these two solutions; i.e., 5 = Z/I. In order to solve the transport 

equations, Toptygin separates the two equations into four, by the sub- 

stitution of I = IO + 11, and 5 = z. -k 5,; where the zero subscript 

indicates the contribution from scattering events which are made up of 

small angle scatterings, such that the true path length dz/cos 8 can be 
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replaced by its component dz in the direction of the beam incident on 

the dz lamina. The subscripts (1) then account for all other processes. 

The separated transport equations for IO and z. are then solvable ex- 

actly, in a form amenable to computer evaluation as follows, where we 

give the result which presumes total initial longitudinal polarization 

10(z,T) = 6 cw (e 
-alT 

- k2m e 
-a2T 

Pmbs e> (18) 
1 - km 

and the components of 5, are: 

c 

km (2m + 1) -C$T 
(e -e -33 1 

(1-k:)dm 
PmP> 

00 
G d-&- 

c 

l-+/{Lj -BIT -B2T 

11 1 -I- SE 
(e -e 

00 
GE = -e 

c 
(l-s;)-1 b + We 

-BIT 2 -B2T 
f sm e > 

+ m(s: e 
-BIT -B2T 

+e > 

(194 

(19b > 

094 

+ 2smQiTi)(e 
-BIT -B2T 

- e > ~~(~0s e> 

where x, 7, and 5 denote the direction of gk' X 2, "k X (g' X z) and T'k 

respectively. I0 and P" are the magnitudes of the initial beam inten- 

sity and polarization; k m' ok,2) B 1,2' and 'rn are functions of the sum- 

mation index, the electron energy, the Z of the scattering nucleus 
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and the screening angle x0; T is foil thickness, and 8 is the total 

momentum scattering angle. The constituent functions k, M, /3 and s 

are derived analytically by Toptygin in the second Born approximation 

(up to terms in (CYZ)'). 

The contributions to the polarization vector from large angle scat- 

terings, which are contained in terms I1 and Gl, are calculable by a 

method of successive approximations. However, up through the zeroth 

and first order approximations, the polarization is representable by 

the equation "P = zo/Io to a high order of accuracy, and it is the pre- 

dictions of this solution which we investigate here. 

IV. RESULTS OF TOPTYGIN'S THEORY 

A computer evaluation of the ratios of Eqs. (18) and (19) has been 

made, and values tabulated for the zeroth order polarization vector 

after multiple scattering. The theory as it stands has two major re- 

strictions relating to scattering foil characteristics and electron 

energy range. 

The first is the limitation of the Born approximation, which re- 

quires that CXZ/S << 1, limiting validity to low Z foils and high 

energies. 

The second involves the screening angle x0 used in the cross 

section integral. The Thomas-Fermi model has been used to evaluate this 

anglei and gives x0 = h/a; there X is the de Broglie wave length of the 

electron, the atomic radius a = 0.8853 X a0 X Z -l/3 , and a o is the Bohr 

radius. This calculation imposes the restriction that mxo << 1, where 
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m is the series summation index in Eqs. (18) and (19). For Z = 13 and 

v/c = 0.93, x0 has a value of 6 X 10 -3, and for Z = 79 and v/c = 0.65, 

x0 = 4 x lo-2. The use of a more refined screening angle' is expected 

to improve convergence, but will not substantially alter the results. 

For practical experimental considerations, valid series convergence 

was obtained for aluminum foils thinner than 10 -1 cm. and thicker than 

5 x 10 -4 cm. for all v/c > 0.65; and for gold foils in the vicinity of 

10 -4 cm. in thickness and for v/c > 0.85. 

The major conclusion from this analysis can be stated quite simply: 

to within less than l$, for all electron energies, total scattering 

angles and foil materials, there is no beam depolarization in multiple 

scattering under the Toptygin theory. 

The small angle theory of Mulhschlegel and Koppe was first thought 

to be in disagreement with this result, but an inconsistency in their 

calculation was discovered by Scott3, and the corrected version now 

agrees with the above conclusion. Neither of these results accounts 

for the high degree of depolarization observed by van Klinken, et al. 7 

in forward diffusion scattering. In these experiments, however, energy 

degradation of the beam is significant. 8 Iddings, et al. have shown 

that depolarization can be appreciable for large momentum transfers in 

single scattering, but that the cross section decreases so rapidly for 

increasing q2 that this process is an unlikely candidate for the pro- 

duction of the large depolarizations observed in multiple scattering. 

The more highly probable low q2 events seem unable to account for depo- 

larizations of more than a few percent. Only in the case of experimental 

discrimination in favor of high q* events could these momentum transfer 
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processes be responsible for the observed depolarizations of up to 5%. 

This seems not to have been the case in the van Klinken apparatus. 

Higher order solutions of the Toptygin equations are also unlikely 

sources for such large effects, especially since in the forward direc- 

tion small angle scattering is expected to dominate, and the lowest 

order solutions analyzed above snould apply. Several other theoretical 

approaches to the problem have been attempted 9 , but they either do not 

directly apply to the above experiment or else yield predictions signi- 

ficantly at variance with the data', In particular, no theory predicts 

the large Z dependence observed in the experiment. A similar discre- 

pa,ncy seems to prevail in positron scattering experiments loA 9 . 

v. ASYMMETRY UNDER MULTIPLE SCATTERING 

The multiple scattering polarization vector of Eq. (19) must be 

transformed onto the axes of Eq. (9) for use in the second scattering 

asymmetry expression, Eq. (14). Using this multiple scattering value 

for PT and the value of PM for single scattering in the second foil we 

have calculated the asymmetry function 6. Figure 2 compares the asym- 

metry results for single scattering in both foils to those from a pro- 

cess made up of a multiple scattering in the first foil and single 

scattering in the second foil. The angles and energy were chosen to 

maximize the single scattering asymmetry. The same type of comparison 

is made in Figure 3, for 90' first scattering, chosen to maximize the 

multiple scattering asymmetry. The thickness of the first foil was 

arbitrarily selected to be 10 -3 cm. 
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FIGURE CAPTIONS 

Figure 1 Geometry for the second scattering in a Mott double 

scattering apparatus. 

Figure 2 Double scattering asymmetry function 6 2 second scat- 

tering angle e2. Single scattering is presumed in the 

second scattering foil for all curves. The subscripts 

1 and 2 refer to the first and second scatterings 

respectively. Angles were chosen for maximum single 

scattering asymmetry. 

Figure 3 Notation is as in Fig. 2, except that the angles were 

chosen for maximum multiple scattering asymmetry. 
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