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ABSTRACT 

We discuss IG( scattering using a low-energy dominated sum rule 

derived from the SU(j)@SU(j) algebra of currents assuming the pionic 

and the kaonic pole dominance hypotheses. The exact validity of the 

latter assumptions implies a much larger S-wave KJC scattering in the 

I = l/2 channel than in the I = 3/2 channel. The use of the current 

algebra scattering lengths for threshold elastic KJ~ scattering suggest 

that this discrimination is due to a scalar I = l/2 resonance. If this 

is the kappa (725), a width > 28 * 2 MeV is predicted. If, however, 

the error in kaonic pole dominance is greater than X$,the existence of 

the kappa would not be required. 
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SECTION I - INTRODUCTION 

The SU(3)@SU(3) algebra of charges is generally assumed to be 

exactly valid, and so far this assumption is consistent with all avail- 

able experimental evidence. From the success of the current algebra 

calculation of the JON scattering lengths the pionic pole dominance 

hypothesis is expected to be good within 55 (11, The question arises as 

to the accuracy in the corresponding hypothesis for kaons. We know from 

the current algebra calculation of the S-wave K'P scattering length and 

effective range(2) that in the KN system it is valid within 3C$. It 

does not necessarily follow, however, that kanoic pole dominance should 

have a 3% error in the Ksr system. In this paper we try to examine this 

question by considering a sum rule for K31 scattering which is derived by 

using the SU(3)@SU(3) current algebra and the assumption that the 

fl,K matrix elements of the axial currents A 
P 

are dominated by single n,K 

poles via D fi,K = aJI K'P fi,K 
5 

from q2 =m 
? 

z, < to q2 = 0. The sum rule is 

dominated by low-energy m. scattering and we shall see that the magnitude 

of the error in kaonic pole dominance in the KX system depends crucially 

on the existence of the kappa meson. 

The existence of the kappa (4) has been speculated(5) in connection 

with the saturation of the mesonic Adler-Weisberger sum rules (6). These 

relations are not saturated very well by the vector mesons, but that lack 

of saturation is not by itself a compelling reason for believing in scalar 

mesons. The Adler-Weisberger sum rules are not particularly low energy 

dominated, and the discrepancy could come from the high energy part, 

especially from higher resonances. However, Eq. (l), derived in Section II, 

involves the difference of two Adler-Weisberger relations and is hence 
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more low energy dominated. 

tant in the context of our 

in Section III, we compute 

The question of the kappa is thus more impor- 

sum rule. After evaluating its MS numerically 

the vector meson contribution in Section IV 

and show that the contribution from higher resonances as well as any 

high energy elastic scattering to the integral in Eq. (1,) is negligible. 

(One cannot show this for the ordinary Adler-Weisberger relations.) In 

Section V we discuss how S-wave elastic scattering may or may not con- 

tribute to our sum rule. In Section VI we derive the width of the kappa 

that is necessary to satisfy Eq. (1) and show that its interference with 

the S-wave unitarity cut is negligible. The concluding Section VII 

discusses the critical relation between the existence of the kappa and the 

theoretical uncertainty in kaonic pole dominance in the IGr system. 

SECTION II - DERIVATION OF SUM RULE 

The starting point of our calculation is the sum rule: 

In Eq. (1) F fi, FK are the usual nt 
2 

and Kt decay constants respectively, 

and k = OS:- - c~zz+ . 
2 

To derive the sum rule we start from the forward unsubtracted K?c 

dispersion relation(7): 

lim 
f 2 ds 

4r,b) 

[s2 
I Y 

',' K+m: K 
bp- m$ -2s(PE+ PZ)+(Pi- PZJ21F 

., f 
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where i(2n j4%,= 7TJd4xi 21im2 (-pz+ m:) e+ipixi< o~T~:(x~),cP:(~~), 
i 

Pc+m, 

* * 
03x2Lqxl)) jo > * The matrix element of the T-product has a pole in 

2 . 
each pi. We shall extrapolate 1) in pz from rn: to zero with pi kept at 

$, and 2) in p: from { to zero with p: fixed at rnz. For 1) using 
It 

D; 
= a?[(p', n-pole dominance and the commutation relation for A' , and then 

smoothly going back to the mass shell, we obtain a la Weinberg (Ref. 1) 

that 

x J ip *z 
d4z e ' < K+(4p37;(z)6 (4)(z)-i8(zo)[AE-(z), D;'(O)] 

- [A;+(z), D;-(O)]jK+ >thr.= 
I 

(14 

Similarly, the use of DF = K 

K' 

aK(p , K-pole dominance and the commutation 

relation for A leads, in the second case, to 

l z ?I 
J d4z e 

ip K < r[+ j4p!$v;(z)G (4) 
4mcK?; 

(z)-i~(zo)[A~-(z), D;+(O)] 

(lb) 

- [A;+(z), D;-(O)lIn+ >thr,= 
J 

St ds Z . 

n 

If we now use the symmetry properties of the "a-commutators 43) , i.e. 

D$-(z),D;+(o)l = ~A~+(4,D~-(o)l, Mf(z),D~*(o)l = @+(z),D$o)I, 

we get Eq. (1) from the difference of Eqs. (la) and (lb). 
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SECTION III - Fn AND FK EMPIRICS 

We use the experimental results FK/mK sin 8 = 72.4 X 10m3 and 

FK/Ffl tan 8 = . 277 obtained from I'(K -+neV)/I’(n -+n'eV) ignoring sym- 

metry-breaking (which is absent to first order by the Ademollo-Gatto 

theorem). Alternately, we can take sin @ = .21 from hyperonic decays (9) 

assuming that Cabibbo theory, i.e. that there is exact SU(3) in the 

states, is nearly exact for baryons. Finally, there is the recent cal- 

culation of FK/F, =~ 1.16 from SU(~)@SU(~) spectral function sum rules 

and vector and scalar meson dominance (10) . When substituted in 

FK/Ffl tan 8, this gives sin 8 = .23l. We regard the value sin 8 = 

,221 + ,006 as the most reliable one. From the success of the meson 

mass-formulas derived from current algebra considering only first order 

symmetry-breaking , (") higher order SU(3) -violating effects are not ex- 

pected to be very significant. The approximations made in obtaining 

the others are more suspect. Using sin 6 = .221 + .006, we obtain 

FK/% = * 327 + .008, 9/m,, = . 946 f ,002, and compute the LHS of Eq. (1) 

to be (.371 + .036)/m: (l'). 

SECTION IV - HIGH-ENERGY BEHAVIOR AND RESOJJANCES 

To compute the RHS, we first divide up the integral as 

sO 
m 

/;%+ mnj2 + so, where So is chosen to be (2 BeV)2, i.e. So >> { + rnz, 
J 

so that it is reasonable to use Regge theory to estimate the second inte- 

gral. Only the p-trajectory contributes to k, and this contribution 

is twice the p-contribution to CT tot 

K+L- 
. Following Barger and Olsson (13), 
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we write: 

(2) 

In Eq. (2) s1 is a scaling factor taken to be 1 BeV2, q R-t is the CM 

momentum and 7 pK' 'o~r are Regge residues. Using SU(3) and the para- 

metrization of Ref. 13, we have 27 
rnz 

= 2.06. 

O( 
+ $ oK = 'err If we neglect 

s ) above So, Eq. (2) gives %w 8.48/s. Then the Regge con- 

tribution to the second integral is = .006/m:, which we can neglect for 

our purposes. Hence we shall ignore the integral from So to TV in the 

RHS of Eq. (1). 

Let us now consider the contributions from the relevant known 

resonances to our sum rule. The P-wave part of EGr scattering is experi- 

mentally known(14) to be completely dominated in the I = l/2 channel by 

the l- resonance K*(890). We use the Breit-Wigner formula for the K*- 

contribution to Dtot (I'), i.e. 
K+Y 

2 2 
rytot (K*) = 5 g (2JK+++ 1) rK*mK* 

K+ll- k 
(3) 

In Eq. (3) k is the CM momentum given by 4k 

- g*g - 2m$lg. The contribution of K*(890) to the RHS of Eq. (1) is 

then found to be .146/m:. Similarly, we calculate the contribution of 

the 2+ resonance K*(1420)(noting that it decays into K+J~- only 5% of the 

time) to be .005/m'. This rapidly decreasing contribution with the 

increasing mass of the resonance justifies our neglect of contributions 

from any possible direct channel resonance in between fi = 1.5 BeV and 
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2 BeV. For the same reason, the effect of any possible "tail" of the 

K*(890) on our result is not regarded as significant. Thus we still 

have a discrepancy of (.220 * .036)/m: between the LHR and RHS of Eq. (1) 

which is expected to come from the S-wave part. 

SECTION V - S-WAVE ELASTIC SCATTERING 

Since S-wave scattering dominates below the mass of K*(890), we 

need consider only elastic scattering for this partial wave. The for- 

++ 
ward elastic invariant amplitudes for K JI -+K'k can be written near 

f 
threshold by reducing two pions and using PCAC on D; , after Weinberg w, 

as 

Mf = L ? 2p,'pK- i(2rr 
K+Y-? F,' i 

)32P, J d4z 6(zO)e 
0 

ipn*z< K+~[AE+(z),D;-(O)][K+ > 

According to Ref. 1, the "U-term" in Eq. (4) involving the commutator 

between an axial current and a divergence should not contribute to the 

threshold scattering lengths because of the Adler consistency condition (16). 

Then (f ) 
K'flf thr. 

= + @yy&) and d = 0 
K+fi- K+n+ 

at threshold. Since 

%I vanishes at threshold and the cross-sections themselves are small 

there, a significant contribution to our sum rule from S-wave elastic 

scattering can be ruled out assuming a reasonably smooth behavior in the 

S-wave partial amplitudes. It may be argued of course that the 116-con- 

tribution" is not negligible since the Adler consistency condition holds 

only in a different region of extrapolation. In that case, one will get 

a positive contribution to AKfi and hence to the RHS of our sum rule (1). 
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To see that, consider the "a-term" 

-i d4z s(z,)e ip"z< K~~[A+(z),D~-(O)]IK' > 

in the limit p,-+O. This then equals 

-i j d3z < K'/[A<(z),D<(O)]iK' > = -i z (2~)~S(~)(s,- Gn) 

< K'IAg'(O)/n >< nlD;‘(O)lK'> - < K+~D;-(o)] n > < nIA$(z)IK'>} 

= c (2,)38(3) (;,- 6, > (En- EK) I< K+lA+(O)ln >I2 + I< .(A~'(O)lK'>I? 
n 

Although the single particle contribution to this would be zero unless 

there is a O+ strange meson, the S-wave & continuum could make a posi- 

tive contribution. Thus it would not be totally unexpected if the con- 

clusion (a ) = 
K+fi- thr. 

(UK+n+)thr were wrong. However, since the "U-con- 
. 

tribution" is smaller than the current algebra term by one order in the 

pion mass, it would be surprising if the large numerical discrepancy in 

our sum rule was caused by it. 

SECTION VI - K-WIDTH AND UNITARITY CUT 

If we assume that the discrepancy of (. 220 + .036)/m: between the 

LHS and the RHS of Eq. (1) is due to the kappa (725), by using the Breit- 

Wigner formula (3) we see that a width of 28 f 2 MeV is needed. Because 

of our remarks on off-shell corrections in Ref. (15 ), we should give an 

inequality, i.e. lYr > 28 + 2 MeV. We have to show, however that there 
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is no significant interference between the S-wave resonance and the 

imaginary part in the elastic S-wave amplitude above threshold coming 

from the unitarity branch cut. In s[x scattering, the S-wave partial 

amplitude is known (17) to have a square root branch cut and the .imagi- 

nary part of the scattering amplitude above threshold is proportional to 

In ti scattering k = 

Assuming that the S-wave unitarity cut here is exactly the same as in 

~fi scattering, we expand the forward scattering amplitude just above 

threshold in s and u, consistent with crossing symmetry, keeping only 

linear terms as an approximation. Thus, with t=O, 

M;"= A(+)+ B(+)(s f. u) 

where [T &Mf Jf (-I ('+u,o,s) = M$')(s,o,u), and 

the coefficients A,B,C, are assumed to be real. Unitarity implies that 

(6) 

Keeping only the lowest power of k in Eq. (5) and comparing with Eq. (6), 

we obtain: 

ml & (c(+)r ,k)) 2+%+&L I- - 
i i fl "K "k+ "51 12:x2 m M I i 

2 

KY thr.' 
(7) 

We now use the Weinberg prediction that M 
K+n" thr. 

= f (2mXmK/F:)(18) to 
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evaluate C(') in Eq. (7), and then substituting in Eq. (5), we derive 

Im 2 + ~=ZY~mK+rnrr f O(k2). If we assume that this is the only 
Kfl 

significant imgginary part in the S-wave partial amplitude at s 
2 =m It' 

tot 
the contribution of the interference term to u 

2 

K+lT- 
at s = mK becomes 

2 

Now, even if we take th; con$ribution of the interference term to the 
-m 

RHS of Eq. (1) to be ?K Tr 2mKrK 
51 Gintf(mz), this is 

(m:-<)(mE- ', K+Jc- 

still < 1% of the contribution from the kappa. 

SECTION VII - DISCUSSION OF FBSULT 

We have shown that in view of Weinberg's result (0 ) = 
K+sr- thr. 

(a > , the assumption of the exact validity of the pole dominance 
K+n+ thr. 

hypothesis for pions and kaons suggests through the SU(3)@SU(3) cur- 

rent algebra the existence of the kappa with a width 2 28 + 2 MeV, 

given a mass of 725 MeV. The error quoted in this lower limit for the 

width comes from the experimental error in the value used for the Cabibbo 

angle. However, the numerical discrepancy which requires the existence 

of the kappa is about 6% of the IJX in Eq. (1). If the kaonic pole 

dominance assumption and hence Eq. (lb) is incorrect by more than 36, 

it is easy to see that, since $y$ - 2: =: 2, a 6% discrepancy could 
II 

creep into Eq. (1) in such a way that no kappa might be needed. Thus the 

non-existence of the kappa would be consistent with a 3% or greater 
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error in kaonic pole dominance in the KR system, whereas the existence 

of the kappa would imply that the error is less. In fact, given the 

mass and the width of the kappa and the discrepancy of (.220 3~ .036)/m: 

between the LHS and the PHS of Eq. (l), this error can be computed 

easily. Thus an experimental resolution of the question of the exis- 

tence of the kappa meson and an accurate determination of its para- 

meters will, in the light of the present work, be of considerable theo- 

retical interest in estimating the uncertainty in the kaonic pole 

dominance hypothesis in the Ior system. 

It is a pleasure to thank Professor S. M. Berman for enlightening 

discussions and Drs. Y. Frishman and H. Harari for valuable remarks. 
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