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Given an irreducible unitary representation of a noncompact group, what 

happens if one tries to diagonalize one of the noncompact generators? We study 

some aspects of this question on an example. 

I. INTRODUCTION 

Classical Fourier analysis is the standard example of diagonalization of a 

noncompact generator (in this case, the generator of translations along the real 

line). Some interesting properties arise when such an abelian noncompact group is 

imbedded in a larger structure. This occurs, for instance, when one studies the 

group G = SL(2R), of two-by-two real unimodular matrices. Let us first recall 

elementary properties of this group that will be used. An arbitrary element g E G 

is of the form z = ab 
( ) 
cd a, b, c, d real, ad - b c = 1. The Lie algebra of this simple 

group is realized as traceless real two-by-two matrices, a basis of which is 

t1 = go’-;) t2= $ ‘: ; ( ) 1 o-1 
‘=!a 0 ( ) (1) 

satisfying the commutation rules 

[r, tlJ = t2 p, t2] = -tl [t,, t2] = -I: (2) 

These generators are such that given a unitary representation of G, their 

representatives are i times self-adjoint operators. Let us assume that we are given 

such a representation,and let us denote by T1, T2 and R these representatives., 

Since R generates a compact subgroup, its spectrum, though unbounded, is dis- 

crete, From the commutation rule R, T1 f iT2) 
[ ( 3 ( 

= hi T1 f iT2) , one sees 

that T1 f iT2 play the role of raising and lowering operators. On the other hand, 

suppose we diagonalize TIO Its spectrum will be continuous of the form ih (A real). 

-l- 

. 



The commutation rule pl, (R F T2fl = f (R F T2) seems to indicate that acting 

with R r T2 on some “improper states” 1 h> corresponding to the spectral value h 

of -iTI, will lead to the “improper state” \h F i> . We intend to discuss more 

precisely this question. 

To do this, we shall specifically study one irreducible representation of G 

which we choose to be one of the discrete series. 1 In Section II, we describe this 

representation following Ref. 2. Section III is devoted to the diagonalization of T1 

through a Mellin transform. It turns out that we are naturally lead to study some 

properties of a set of orthogonal polynomials, of a type introduced by Pollaczek. 3 

Finally, in Section IV, we consider the representation of G in this new basis. 
4 

It will be understood in the following that when a real positive number x is 

taken to complex power y, Argx = 0. The complex conjugate of z will be de- 

noted z*. 

II. A REPRESENTATION OF THE DISCRETE SERIES 

As in Ref. 2, let us consider the vector space $# of analytic function such 

that if f E $# : 

(1) f(z) is analytic for I m z > 0, and continuous with all its derivatives in 

Imz LO 

(2) 4(z) = ; f (- $) is also continuous with all its derivatives in I m z 1 0 

As a result of (1) and (2)) one can define a norm on g through 

(3) 

Equipped with this norm, g is not complete. Its completion is a Hilbert 

space $@ of analytic functions in the upper half plane. Indeed, if f E g , its 
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value at a given point z (I m z > 0) is such that 

or 

Imz >O: 
I ’ f(z), 5 Ilfll 

2pYiG (4) 

Equation (4) shows that a Cauchy sequence in 9 with respect to the norm (3) 

will converge uniformly, in the ordinary sense, on any compact set of the upper 

half z-plane, to an analytic function. g is dense in & but it is clear that it is 

not all of 2 as shown by the example of -&- 1% y which belongs to 2 

but not to $@ ; it is, however, the limit of 

N 

x 
$ (z - i)’ (z + i)-p -’ 

1 

which belongs to 9. 

For an alternative description of c%, we introduce the functions f,(z) E g : 

f,(z) = tz - i)n (z + i) -n -1 n=O, 1. . . . 

if,lfrn) 
= & nm 

(5) 

Let us show that the system if,) is complete. It is sufficient to prove that 

if f E g and fn f 
( I) 

= 0 for all n, then f = 0. Indeed, an explicit computation leads 

to ($p tz + iIn f tz)lz=i = 0, for n = 0, 1, . . . . By recurrence, all deriv- 

atives of f vanish at z = i and since f is analytic, f = 0. As a consequence, the 

elements of ,$@ are characterized by sequences of complex numbers 
ianI ’ 

n non-negative integer such that < 00 ; the analytic function itself is 
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obtained as 2 anfn(z). This series converges uniformly in any compact 
0 

domain of the upper half plane, since such a domain can be enclosed in a circle 

I P < 1 where one has 

N 

a&#) 5 I 
0 

ab Let cd 3 ( 1 g E G and f E 9, the set of transformations 

f - w# (6) 

leave g invariant and can be extended to a unitary representation of G in z O 

This representation belongs to the discrete series,’ it is irreducible and will be 

studied in the following. From the global form (6), we can derive the representa- 

tives of the generators T1, T2 and R defined in the introduction. They are the 

differential operators: 

T2 = -;(z+(z2 -1) gz) 

R = ;(z+(z~+~)$~) 

The complete set (fn} satisfies: 

Rf, = i(n+ $) fn 

( Tl+iT2)fn = nfnBl 

(7) 

( T1 - iT2)fn = -(n+ l)fn+l 
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In other words, in this basis R is diagonal with eigenvalues of the form i 

n non-negative integer. 

, 

III. DIAGONALIZATION OF A NONCOMPACT GENERATOR 

Our aim is now to diagonalize a noncompact generator, TI, say. An eigen- 

function of the corresponding differential operator (7 ) is a homogeneous function 
a z 0 For no value of the exponent does such a function belong to k%?. This is to 

be expected: T1 has no eigenvalue (in the sense that they would correspond to 

normalizable eigenstates) but we expect its spectrum to be purely imaginary, or 

( i ZI - Tlilto exist as a bounded operator for I m z # 0. 

We shall obtain this diagonal form by studying the following Mellin transform, 

Let f E 2, we introduce the function of the real variable A, F(A) by 

f-F F(h) = 

1 
z - ih 

(9) 
0 

It is clear that the integral converges in the ordinary sense for f E $# D We 

shall extend it with the help of the transforms 
iFn5 of the basic functions 

i I f, 

introduced in Section II. 

1 --- ih 
f-F n n F,(h) =v mdp(p 

J 
- qn @+1)-n-l p 2 (10) 

0 

A convenient way of performing the integral (10) is to observe that the series 

m 

c 
tn( p - l)n ( p + 1)-n-1 = 

(P +l)k -1) 
jt(<i asp 

0 

conve rges absolutely and uniformly in X 1 [I 0 5 p < o. 1 D Hence 

-5 - 

I 



. 

we obtain for the set {Fn) the generating function: 

iwf: 
co 

tnFn(h) = @$ J dp 

p-i -ih 

p(1 - t) + (1 + t) 
0 0 

1 -- - 
= (1 + t) 2 

ih 
(1 -Q 

-$+ih 
(11) 

where we have used the fact that 

co 

/ 

1 

F. (h) = @$ dp p-z 
- ih 

P+l 
0 

-i.5 a3 
-lTh 

= lim 
Ed-l-0 

+ J / + dP 
P+1 

p-$-iA = 1 

-0o-ic ic . 

by Cauchyvs theorem. 

In formula (ll), the phases of (1 + t) and (1 - t) are zero for - 1 < t < +l. 

We summarize elementary properties of the functions F,(h) in the following: 

Proposition 1 

(1) F,(A) is polynomial in h of precise degree n and Fn $- = 1. ( 1 

(2) (-)nFi(h*) = (-l)nFn (-A) = Fn (A) = F (-n, $+ ih; 1; 2) (12) 

co 1 

c 

-0 - 
tnFn(h)=(l+t) 2 

ih 
(3) for ItI < 1 (1 - t) 

-i+ih 

(4) Fm(h)*Fn (A) a = dnm chn h (13) 

(5) 2ih Fn (A) = nFn-l(h) - (n+ l)Fn+l (A). 
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Proof. Proposition 1 asserts that the F,(A) forms 

nomials in the Hilbert space of functions F(h) such 

11412 = 7 dh Fh2<o, chrh I OI . 

-co 

an orthonormal 

that 

set of poly- 

We have already proved (3) from which (1) and (2) easily follow. Indeed F,(A) 

appears equal to the polynomial of degree n: 

n (-$ -ii- (--jj +ih)p(-)p F,(% = c 
0 

(n - p)! p! (14) 

where (x) = 
P 

Hence the coefficient of An in F,(A) is 

“ 

(4 Fd p! ,‘-,! = * f 0. ei n 
0 

From the integral representation (lo), we obtain the expression (12) of Fn 

in terms of the hypergeometric function from which the value Fn( $) = 1 follows. 

To establish the orthogonality relation, we make again use of the generating 

function. From the equality ( ) I mx [ < 5 ) 

+m 
.2ikX dh 1 

chrnh= chx ’ -CO 

we derive for -1 < u, t < 1: 

ccl 

1 
c 

d mn cz-= 
1 -tu u t mn 

m,n=m 
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Since we are dealing with an analytic function of t and u in 1 t 1 < 1, 1 u 1 < 1, 

we can identify the coefficients of its Taylor expansion and thus arrive at the de- 

sired orthogonality property. 

Finally, the recurrence relation is an immediate consequence of the repre- 

sentation of the Lie algebra of G. Indeed, from equations (6) and (8), we have: 

+a, 

-(n+1)Fn+1 (q] - ch;A dpp-’ -i A 

--oo 

-Co 

In the last integral, interchange of the order of integration and derivation is 

allowed. As a result: 

n-lth)-tn+l) ‘n+l (ht] = --& [eiah Fn(Q]o =. =ihFn(h) l 

The polynomials Fn belong to a class which has been studied by F. Pollaczek. 3 

We denote by H the Hilbert space of square integrable functions on the real line 
dh with measure - chxh ’ As usual, two functions which differ on a set of measure zero 

are identified. 

Proposition 2. The polynomials Fn form a complete orthonormal basis in H D 

Proof. In view of proposition 1, it is sufficient to prove that the functions hn, 

n non-negative integer form a complete set in H . Let FE H be orthogonal to 

all An. Consider the function 
+CCl g(s) = s dA ish 

-azxe F(A) . 
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It is analytic in the strip 1 I mh 1 < i and all its derivatives vanish at the origin. 

As a result, g(s) = 0 and F(A) vanishes almost everywhere. This proves that the 

system Fn i t is complete. 

We can recover f, from Fn through an inverse Mellin transform 

+a, 

f,(z) = & J Fn (h) (-i z) 
- i+ih dh - chnh -% < Arg(-iz) < f (15) 

-CO 

With these results, we can return to the integral transformation (9). First 

let f E $8 , then the integral in (9) is absolutely convergent. Moreover, one readily 

shows that for real h 1 F(h) 1 e 
2 IAl 

-0 as Ihj - cb faster than any power of IAl 

and hence F E H. Using (15)) one finds that if f = 2 anfn, then F = 2 an FnO In 

other words, the Mellin transform M is an isometk mapping from ‘$?8 C c%? in 

a dense subset of H which will be denoted D. By continuity, it is then uniquely 

extended to a one-to-one isometric mapping M from sto H. 

We close this section by mentioning some properties of D. Let f@) stand ‘for the 

n-th derivative of f E g, and T(z) = $ f (-;), then: 

Proposition 3. Any F=MfeD can be extended as an entire function in the com- 

plex h plane. Moreover: 

F[-i($+n)] = i(‘-@$) (0) 

F [ i(~+n)] =it2 -n)~ (0) ’ n=O’ l’ .” (16) 

and 

I&h) = M?(h) = -iF(-A) 
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Proof D Note that one can write 

F(A) = Gl@) + i $2 (A) 

where 
1 1 

J 
-- 

$I~@) = i @$ f(M) P 2 
-ih 

$2(A) = i F J b) P 
-t +ih 

0 
$, is deduced from $, by changing A- -h and f - f. Thus it is sufficient to 

consider $I. At first it is analytic for I mh > - f , vanishing 

at the points i i + n , for non-negative integer n. Furthermore, 
[ I 

integration by parts, 

gives for an arbitrary positive integer p, and Imh > - $ : 

1 

+ HP 
J 

dp 
dpdp WP) P 

-; -A-t-p 

0 

The zeros of the(i - iA)p are just cancelled by those of chn A. We can then 

analytically continue this formula to I mh > - i - p. Since p is arbitrary, ~$~(h) 

is an entire function of A. If we set p = n-k 1 and A = -i n non-negative 

integer in the above expression, we get: 

q)l -i($+n = L$f- d$ 
[ ,3 f(ip) = it’,; n, fb-9 (0) . 

P=O o 

Combining these results with similar ones for (p2, we arrive at formula (16). 
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IV. REPRESENTATION OF G 

The isometric operator M of the preceding section enables one to carry the 

representation U of G, defined in x, to an equivalent representation V, defined 

in H through V(g) = MU(g) M-l0 The inverse transformation V -1 was already 

indicated in (15). Hence, for V(g), we obtain the following expression: 

with p > 0, -; <Arg(a[Lii) < f (17) 

At first this formula is defined when F E D. It is then extended by the unitarity 

property to all H. Assume F E D and none of the real numbers a, b, c, d to vanish. 

The interchange of the order of integration is allowed in (1’7). Let us, therefore, 

compute the kernel 

co 

chnh 
KgtW = 2n - dpp J 

1 --- 
2 ih 

(i bp +d) 
-$ -ip, 

@P - ic) 
-$ +ip 

(18) 
0 

Let GI denote the subgroup of elements of the form g(o) = e 
at1 = 

The manifold S of elements g in G, such that a b c d # 0, is invariant under right 

and left translation by G1 . Moreover 

Kg(cY)gg(P)o’p) = e 
iha! Kg{?+) eiclp (19) 

which enables one to compute K only for representatives of each type of double 

coset \/ 
G1 GG1 o 
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These fall into four classes. We select representatives of the form 

2At2 
(4 =e 

cos B -sin B 
(B) = e2Br = sin B cos B 

(20) 
shC chC shD -ch D 

((3 = -ch C -sh C tD) = chD -shD 

where the parameters A, B, C and D are all different from zero. The last two 

classes are taken into account by remarking that they can be obtained from the 

first one by left multiplication by go = , or right multiplication by gi’ , 

and that one has 

Kgog 1 (h p) = -iKg(-hlp) Kgg -l(hl~) = iKg(+4 (21) 
0 

a fact which is readily related to the mapping F - $. Let us, therefore, 

compute : 

K(AI = K 2At2 and TB) = Ke2Br ’ 

e 

By transforming the integral in (18) into a path integral around the origin, 
. 

rotating the contour to enclose the two singular points p, = y and p2 = e , 

one recovers a classical representation for the hypergeometric function. The 

final result for KA is: 

-EqA-y) 

A#0 7, A t’,l.l) = ; 2 [chA]i(hyL)[jshAj]-l -i(h+P) F k+ip;l; .hi , ) 

(22) 
E =fi 

For Class (B),we make again use of relation (21), which allows one to restrict 
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B to 0 < B < f , and obtain : 

q/-h) 
KtB) 

(h,p) = $ e2 
r(jj+ ih) 

(sin B)i’ -A) (cos B)i(A +‘I 

F($+,, ;+jcL; l+i(h+p);cos2B 
r(f+ih) 

r($+ip) r(l+i(h -p)) 

(sin B)i(h-‘)(,osB)-i(Af~)F(~-~, i-u, l+i(A+p), sin2B) (23) 

Expression (22) can be brought to a form similar to (23) using transformation 

properties of the hypergeometric function. 

On the manifold G-S (which contains the subgroup Gl), the kernel is singular. Of par- 

ticular interest is the representationof the subgroup GI. It follows from (17) that: 

F(h) = ei Q! A F (A) 

In other words, in this basis the representation of this subgroup is diagonal. 

Our calculation of the kernel Kg is not very well suited to obtain the other gener- 

ators, but they can be readily recovered using for instance the Pollaczek poly- 

nomials of the preceding section. Indeed we have 

(a) TIFnW =f (A) - (n+l)F W-1 (A 
3 

=iAFn(h) 

(b) RF~(A) = i(k+n) F~(A) = $$+ih) Fn@-i) + (+ -ih) F,(A + i)] (25) 

tc) T2FnW=-; -tn+l)Fn+lt~, =z (2 1 i [ ‘+iA)F”(A-i) -(i -ih) FJA+i)l 

(24) 

The first equation is the recurrence relation already proved in Section III, 

and only reflect the fact that TI is diagonal. 
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The two others are derived, using the generating function (11). For instance: 

-1 -ih 
c tnRFn(h) = ie (n+i)tnFn(h) = i($+t-&)(l+t) 2 (1 -t) 

0 

L +ih 
(l-t)2 (1 -t1 

=+ gtn [(l+iA)Fn(X-i) +(i -ih) FJA+i)l , 
0 

and similarly for T2. As a result, wherever they are defined (and at least on D), 

the generators are expressed in the Hilbert Space H as difference operators 

by the formulas 

T1 F (A) = ih F(h) 

T2F(h) = + 
[i ) 

; -I-ih F(A-i) -(i-9) F(A+i) 1 (26) 
+[f -iA) F (A+i) 1 

It is easily verified that T1,T2 and R satisfy the correct commutation rules 

and are antisymmetric on D. For instance, one can directly show that for any 

two FandGinD (GIp2+~] F)+(~~+R]G~F) =O. Indeed, theleft-hand 

side can be written as a contour integral: 

i s &z(h)(i+ih)F(A-i), 
C 

where G-(h) = G* (A*), and the contour C consists of the lines I mh = 0, I mh = i, and 

two infinitely remote segments joining these two lines on Re A = *A, A---* CQ o The 

integrand is nowhere singular inside this contour since the zero of ch ‘lr h for h = $ 

is cancelled by the factor ( ) i +ih and as a result, the integral vanishes as expected. 

- 14 - 



The relations (26) give a precise meaning to the remarks made in the intro- 

duction concerning the representatives of the other generators in the basis where 

TI is diagonal. When the generators are realized as differential operators in a 

Hilbert space of functions, we require the existence of an adequate supply of in- 

finitely differentiable functions, though the whole Hilbert space need not contain 

only differentiable functions. In very much the same way, we are led in the 

present case to the existence of a sufficient number of entire functions to be able 

to exponentiate the generators. 

Similar considerations can be extended to other representations of G or, more 

generally, to those of semi-simple noncompact groups. 
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