Suggested Boson-Lepton Pair Couplings and the Anomalous Magnetic Moment of the Muon*

Stanley J. Brodsky
Stanford Linear Accelerator Center Stanford University, Stanford, California and Eduardo de Rafael ${ }^{\dagger}$ Brookhaven National Laboratory, Upton, New York

The contributions to the anomalous magnetic moment of the muon due to possible couplings of scalar and vector bosons to lepton pairs are calculated at second order. From the results obtained and the comparison between the experimental and theoretical values of $\frac{1}{2}(g-2)_{\mu}$ we find new stringent tests on several theories which have been recently put forward.

* Work supported, in part, by U. S. Atomic Energy Commission. t On leave from Centre National de la Recherche Scientifique, Paris, France.

1.

There have been recent developments in the measurement of the anomalous magnetic moment of the muon. The most precise experi1
mental result which has been reported is

$$
\begin{equation*}
\kappa_{\mu} \equiv\left(\frac{g-2}{2}\right)_{\mu^{-}}=(11666 \pm 5) \times 10^{-7} \tag{1}
\end{equation*}
$$

It is the purpose of this note to discuss how this measurement yields new stringent tests on several theories which have been recently put forward.

The possible contributions to ${\underset{\mu}{\mu}}^{\substack{\text { have } \\ 3-7}}$ been summarized recently by Kinoshita. The theoretical prediction is

$$
\begin{equation*}
\kappa_{\mu_{\mathrm{Th} .}}=(11655.3 \pm 0.2) \times 10^{-7} \tag{2}
\end{equation*}
$$

The error here is a combined upper limit from uncertainties in the value
4 5 of the fine structure constant α, the sixth order radiative corrections ; 6 hadronic contributions to the photon propagator ; and the weak contri7 bution.

We have calculated the second order contribution to κ_{μ} due to a possible vector or scalar exchange of mass M and minimal coupling constant f to leptons. Two different methods were used, the usual Feynman rules and a dispersion relation technique. In the latter case, we write a dispersion relation for the magnetic moment form factor $F_{2}\left(q^{2}\right)$ and calculate the absorptive amplitude from the unitarity condition, using the $\mu^{+}{ }^{-}$intermediate state only. The result is $\left(\lambda \equiv 4 m_{\mu}^{2} / M^{2}\right)$

$$
\begin{equation*}
\delta \kappa_{\mu} \equiv F_{2}(0)=\frac{f^{2}}{8 \pi^{2}} \int_{0}^{1} d z \frac{P(z)}{z^{2}+(1-z) M^{2} / m_{\mu}^{2}} \equiv \frac{f^{2}}{8 \pi^{2}} A(\lambda) \tag{3}
\end{equation*}
$$

with

$$
\begin{align*}
& P(z)=\left\{\begin{array}{l}
z^{2}(2-z) \\
2 z^{2}(1-z)
\end{array}\right. \\
& A(\lambda)= \begin{cases}\frac{3}{2}-\frac{4}{\lambda}+\frac{2}{\lambda^{2}}(3 \lambda-4) \log \frac{\lambda}{4}+\frac{2}{\lambda^{2}}\left(\lambda^{2}-5 \lambda+4\right) \phi(\lambda) & \text { (Scalar) } \\
1-\frac{8}{\lambda}+\frac{8}{\lambda^{2}}(\lambda-2) \log \frac{\lambda}{4}+\frac{2}{\lambda^{2}}\left(\lambda^{2}-8 \lambda+8\right) \phi(\lambda) & \text { (Vector) }\end{cases} \\
& \Phi(\lambda)=\left\{\begin{array}{ll}
\frac{-1}{(1-\lambda)^{\frac{3}{2}}} \log \frac{1+(1-\lambda)^{\frac{3}{2}}}{1-(1-\lambda)^{\frac{3}{2}}} & (\lambda<1) \\
\frac{1}{(\lambda-1)^{\frac{3}{2}}} \cos ^{-1}\left(\frac{2-\lambda}{\lambda}\right) & (\lambda>1)
\end{array} .\right. \tag{4}
\end{align*}
$$

The asymptotic behavior of $\delta \kappa_{\mu}$ for $M^{2} \gg m_{\mu}^{2}$ is

$$
\delta K_{\mu}=\frac{f^{2}}{8 \pi^{2}} \frac{m_{\mu}^{2}}{M^{2}} \times\left\{\begin{array}{cl}
\log \frac{M^{2}}{m_{\mu}^{2}}-\frac{7}{6}+\frac{3 m_{\mu}^{2}}{M^{2}} \log \frac{M^{2}}{m_{\mu}^{2}}+\frac{57}{4} \frac{m_{\mu}^{2}}{M^{2}}+\ldots & \text { (Scalar) } \tag{5}\\
\frac{2}{3}-\frac{2 m_{\mu}^{2}}{M^{2}} \log \frac{M^{2}}{m_{\mu}^{2}}+\frac{25}{6} \frac{m_{\mu}{ }^{2}}{M^{2}}+\ldots & \text { (Vector) } ;
\end{array}\right.
$$

and for $M^{2} \ll m_{\mu}{ }^{2}$

$$
\delta \kappa_{\mu}=\frac{f^{2}}{4 \pi} \times\left\{\begin{array}{l}
\frac{3}{4 \pi}+\frac{1}{\left(4 m_{\mu}^{2} / M^{2}-1\right)^{\frac{1}{2}}}+\ldots \tag{6}\\
\frac{1}{2 \pi}+\frac{1}{\left(4 m_{\mu}^{2} / M^{2}-1\right)^{\frac{3}{2}}}+\ldots
\end{array} \quad \text { (Scalar) } \quad . \quad \text { (Vector) } \quad\right. \text {, }
$$

2. The standard use of the comparison between the experimental value of κ_{μ} and $\kappa_{\mu_{\mathrm{Th}}}$. has been to check the validity of quantum electrodynamics at high momentum transfers. Assuming a modification in the photon propa9,10
gator of the form

$$
\begin{equation*}
\frac{1}{q^{2}} \rightarrow \frac{1}{q^{2}}-\frac{1}{q^{2}-\Lambda^{2}}=\frac{1}{q^{2}} \times\left(\frac{\Lambda^{2}}{\Lambda^{2}-q^{2}}\right) \tag{7}
\end{equation*}
$$

11
one is led to a negative correction

$$
\begin{equation*}
\frac{\delta \kappa_{\mu}}{\kappa_{\mu}}=-\frac{2}{3} \frac{m^{2}}{\Lambda^{2}}+0\left(\frac{m_{\mu}^{4}}{\Lambda^{4}}\right) \tag{8}
\end{equation*}
$$

On the other hand, from the comparison between (1) and (2), we have

$$
\begin{equation*}
\frac{\kappa_{\mu}^{-K_{\mu}}{ }_{\mathrm{Th}}}{\kappa_{\mu}}=(0.92 \pm 0.43) \times 10^{-3} ; \tag{9}
\end{equation*}
$$

hence a lower limit on Λ is obtained

$$
\begin{equation*}
\Lambda>42 \mathrm{~m}_{\mu} \sim 4.5 \mathrm{BeV}, \quad(3 \mathrm{~s} . \mathrm{d} . \text { effect }) \tag{10}
\end{equation*}
$$

which is the best limit to be placed yet on the validity of quantum electrodynamics.
3. It has been recently shown that the possible identity between hadronic currents and corresponding vector and axial-vector field operators leads to a specific set of commutation relations, the so-called algebra 13 14 of fields, which is simpler than the usual current algebra. The possibility that the leptonic part of the electromagnetic current also 15 satisfies the algebra of fields has been discussed by Lee and Zumino. Such a possibility has been demonstrated, explicitly, within the context of a model which postulates the existence of a direct coupling of lepton pairs to a new (hypothetical) neutral vector boson (B°). This coupling has precise experimental consequences. Thus, e.g., it has been shown 15
by Lee and Zumino, that from its possible contribution to the scattering of charge leptons, and the present knowledge on electron-electron 16
scattering experiments, one expects

$$
\begin{equation*}
\left(\frac{\mathrm{f}_{\mathrm{B}}^{2}}{4 \pi}\right) / \mathrm{M}_{\mathrm{B}}^{2}<\frac{\alpha}{(0.76 \mathrm{BeV})^{2}} \sim \frac{1}{(9 \mathrm{BeV})^{2}} \quad(95 \% \text { Confidence). } \tag{11}
\end{equation*}
$$

where M_{B} denotes the mass of the B^{0} boson and f_{B} its coupling constant to lepton pairs.

A more stringent upper limit on ($f_{B}^{2} / 4 \pi$)/ M_{B}^{2} can be obtained from the possible contribution of B° exchange to the anomalous magnetic moment
of the muon. Indeed, from the result obtained in Eq. (5) (vector case) and using Eq. (9) we are led to the following 95% confidence limit:

$$
\begin{equation*}
\left(f_{B}^{2} / 4 \pi\right) / M_{B}^{2}<\frac{2 \pi \times 2.05 \times 10^{-6}}{m_{\mu}^{2}\left[\frac{2}{3}+0\left(\frac{m_{\mu}^{2}}{M_{B}^{2}}\right)\right]} \sim \frac{1}{(24 \mathrm{BeV})^{2}} \tag{12}
\end{equation*}
$$

On the other hand, the discrepancy between the values in Eqs. (1) and (2) could be regarded as indicative of the existence of the B^{0} boson, with mass and coupling constant such that $\left(f_{B}^{2} / 4 \pi\right) / M_{B}^{2} \simeq 1 /(33 \mathrm{BeV})^{2}$.

The above analysis ignores possible modifications of the lepton 15 form factors due to the existence of the B°. In one possible model, which is analogous to the theory of reference 12 for the isovector current, the lepton current $J_{V}{ }^{\gamma} \equiv\left(M_{B}^{2} / f_{B}\right) B_{V}$ obeys the (renormalized) equation of motion of a vector field:

$$
\begin{equation*}
\partial^{\mu}\left(\partial_{\mu} B_{v}-\partial_{\nu} B_{\mu}\right)+M_{B}^{2} B_{v}=J_{v}^{B} \tag{13}
\end{equation*}
$$

The lepton form factors are then spin projections of

$$
\begin{equation*}
\left.\mathrm{F}_{v} \equiv\langle\mathrm{p}| \mathrm{J}_{v}{ }^{\gamma}|\mathrm{p}+\mathrm{q}\rangle=\frac{\mathrm{M}_{\mathrm{B}}^{2}}{\mathrm{M}_{\mathrm{B}}^{2}-\mathrm{q}^{2}}<\mathrm{p}\left|\mathrm{~J}_{v}^{\mathrm{B}}\right| \mathrm{p}+\mathrm{q}\right\rangle \tag{14}
\end{equation*}
$$

where ${ }_{15}^{p}>$ and $\mid p+q>$ are electron (or muon) states. In an alternate model, photons do not couple directly to the B field. The source of the electromagnetic field and also the unrenormalized B field is $S_{\nu}=\bar{\psi}_{e} \gamma_{\nu} \psi_{e}+\bar{\psi}_{\mu} \gamma_{\nu} \psi_{\mu}$. In this case, one finds for the lepton form factor

$$
\begin{equation*}
\left.\left.F_{v} \equiv<p\left|s_{v}\right| p+q\right\rangle=\frac{M_{B}^{2}}{M_{B}^{2}-q^{2}}\left(1-\frac{q^{2}}{M_{0}^{2}}\right)<p\left|J_{v}^{B}\right| p+q\right\rangle \tag{15}
\end{equation*}
$$

where M_{0} is the bare mass of the B. It is reasonable to assume that
$<p\left|J_{V}{ }^{B}\right| p+q>$ does not increase for large space-1ike q^{2}. Also, we shall take $M_{0}^{2} \gg M_{B}^{2} ;(14)$ and (15) then lead to experimental restrictions on M_{B} independent of the magnitude of f_{B} :
i) e-e scattering: the one photon exchange matrix element is modified by a factor $\left(M_{B}^{2} /\left(M_{B}^{2}-q^{2}\right)\right)^{2}$. From reference $16, M_{B}>0.76 \mathrm{BeV}(95 \%$ conf.). ii) $\quad \frac{1}{2}(g-2)_{\mu}$: from Eqs. (7)-(9), $M_{B}>6 \mathrm{BeV}(99 \%$ conf.).
iii) e-p scattering: the presence of an electron form factor leads to a $1 / q^{6}$ (or faster) fall off for the observed form factors when $q^{2} \gtrsim M_{B}^{2}$. The present experimental results imply a limit on $M_{B} \gtrsim 3 \mathrm{BeV}$.
4. The anomalous magnetic moment measurement also places limits on two other (hypothetical) bosons which have been recently proposed to explain the $-1 / 4 \mathrm{MHz}$ discrepancy between theory and 19,20 the $-1 / 4 \mathrm{MHz}$ discrepancy between theory and experiment in the Lamb shift ; (the splitting $2 \mathrm{~S}_{\frac{1}{2}}-2 \mathrm{P}_{\frac{1}{2}}$ in H and D) 4

As Yennie has emphasized, the Lamb shift discrepancy could be reconciled by the presence of a new interaction that is weak, repulsive, and long ranged. If the interaction is due to a scalar meson coupling (S°), as proposed by Yennie and Farley, then its effect would be of higher order in $e-p$ scattering; also $\pi^{0} \rightarrow S^{0}+\gamma$ is forbidden. Assuming a universal coupling of S° to all charged particles $f^{2} / 4 \pi \equiv \alpha^{\prime}$ we find from Eq. (6) a possible contribution to the anomalous magnetic moment $\delta K_{\mu}=3 \alpha^{\prime} / 4 \pi \times$ $\left[1+0\left(\frac{\mathrm{M}_{\mathrm{S}}}{2 \mathrm{~m}_{\mu}}\right)\right]$; hence, using Eq. (9), $\alpha^{\prime} / \alpha<1.2 \times 10^{-3}(95 \%$ conf.). On the other hand, the $2 \mathrm{~s} . d$. discrepancy between theory and experiment for K_{μ} could be regarded as evidence for the existence of the scalar interaction. The values of M_{S} and α^{\prime} needed to fit both the Lamb shift $\left(\alpha^{2} \mathrm{~m}^{2} / \mathrm{M}_{\mathrm{S}}^{2} \cong 10^{-8}\right)$ and K_{μ} are $\mathrm{M}_{\mathrm{S}} \sim 10 \mathrm{MeV}$ and $\alpha / \alpha \sim 6 \times 10^{-4}$.

We notice that a vector interaction with the above couplings and mass is ruled out because of the appreciable Dalitz pair rate which is predicted in $\pi^{\circ} \rightarrow \gamma+V^{\circ} \rightarrow \gamma+e^{+}-e^{-}$.

It is, however, possible that there is a new vector meson V^{n} which couples photons only to hadrons (as ρ°) with mass $\leqslant .70 \mathrm{MeV}$ and small coupling constant ϵ. ${ }^{22}$ In this case $\pi^{0} \rightarrow \gamma+e^{+}+e^{-}$would display a very narrow resonance in the pair distribution. Also, the form factors obtained from electron-proton scattering would be modified, for small q^{2}, by a term $\epsilon q_{V}^{2} /\left(q_{V}{ }^{2}-q^{2}\right)$. As seen in Fig. 1 of reference 20 , the resulting modifications of the form factors are not excluded by experiment for $\mathrm{m}_{\mathrm{V}} \$ 70 \mathrm{MeV}$; in fact, the data show a hint of a change in slope at small q^{2}, although this may well be due to a common systematic error in the analysis of the experiments. The effect of the proton electric form factor $G_{E P}\left(q^{2}\right)$ on the Lamb shift in H is

$$
\begin{equation*}
\Delta E=\frac{1}{2}(Z \alpha)^{4} m_{e}\left[m_{e}^{2} G_{E p}^{\prime}\left(q^{2}=0\right)\right] \tag{16}
\end{equation*}
$$

The Lamb shift discrepancy would be resolved if $G_{E p}^{\prime}(0)$ were tripled; i.e., if $\epsilon / \mathbb{Z}^{2} \cong 0.02 /(70 \mathrm{MeV})^{2}$.

The corresponding contribution of this V^{0} coupling to the anomalous magnetic moment of the muon is $\delta \kappa_{\mu} / \kappa_{\mu}=\varepsilon^{2} A_{V}(\lambda)$, where $\lambda=4 m_{\mu}^{2} / m_{V}^{2}$, and A V is defined in Eq. (4). For $\mathrm{m} \sim 70 \mathrm{MeV}$, this gives a correction to $\kappa_{\mu_{\mathrm{Th}}}$. \quad ithin the limits given in Eq. (9).

We note that the v° coupling also induces a small change in the ground state HFS splitting in H. It is, however, ~ 7ppm, which is not seriously inconsistent with experiment.

One of the authors (EdeR) wishes to thank Dr. Alfred Mueller for several helpful discussions.

REFERENCES

1. J. Bailey et al., The Anomalous Magnetic Moment of the μ^{-}, presented by F. J. M. Farley at International Symposium on Electron and Photon Interactions at High Energies, SLAC, 1967 (unpublished). The previous value was $\kappa_{\mu}=(1165 \pm 3) \times 10^{-6}$. See F. J. M. Farley, et al., Nuovo Cimento 44, 281 (1966). The error limits correspond to $1 \mathrm{~s} . \mathrm{d}$.
2. T. Kinoshita, The Anomalous Magnetic Moment of the Muon, lectures given at Summer School of Theoretical Physics, Cargese, 1967 (unpublished).
3. J. Schwinger, Phys. Rev. 75, 1912 (1949); A. Petermann, Helv. Phys. Acta 30, 407 (1957); C. M. Sommerfield, Phys. Rev. 107, 328 (1957); Ann. Phys. (N. Y.) 5, 26 (1958); H. Suura and E. H. Wichmann, Phys. Rev. 105, 1930 (1957); A. Petermann, Phys. Rev. 105, 1931 (1957); H. H. Elend, Phys. Letters 21, 720 (1966); M. V. Terent'ev, JETP 43, 619 (1962) (translation: Soviet Physics JETP 16, 444 (1963)).
4. We have used the solid state value $\alpha^{-1}=137.0359$ (see W. H. Parker, B. N. Taylor and D. N. Langenberg, Phys. Rev. Letters 18, 287 (1967)) but have allowed for a $25-\mathrm{ppm}$ error to cover values obtained from other experiments. For a review, see D. R. Yennie, International Symposium on Electron and Photon Interactions at High Energies, SLAC, 1967 (unpublished).
5. The radiative corrections have been calculated through orders $(\alpha / \pi)^{3}\left(\log \mathrm{~m}_{\mu} / \mathrm{m}_{\mathrm{e}}\right)^{2}$ and $(\alpha / \pi)^{3}\left(\log m_{\mu} / \mathrm{m}_{\mathrm{e}}\right)$ but not $(\alpha / \pi)^{3}$. T. Kinoshita, Nuovo Cimento 51B, 141 (1967); A. Petermann (to be published) and S. D. Drell and J. S. Trefil (unpublished). In the error given in Eq. (2), we have allowed for a possible contribution of $\pm 8(\alpha / \pi)^{3}$.
6. C. Bouchiat and L. Michel, J. Phys. Radium 22, 121 (1961). See also L. Durand, Phys. Rev. 127, 441 (1962); ibid 129, 2935 (1963); and more recently T. Kinoshita and R. J. Oakes, Phys. Letters 25B, 143 (1967).
7. S. J. Brodsky and J. D. Sullivan, Phys. Rev. 156, 1644 (1967); T. Burnett and M. J. Levine, Phys. Letters 24B, 467 (1967); R. A. Shaffer, Phys. Rev. 135, B187 (1964). Since these corrections are logarithmically dependent on a cut-off, we have allowed for a factor of 2 in estimating the weak contribution to κ_{μ}.
8. The expression for vector exchange has been given by Berestetskii, Krokhin and Khelbnikov (see Ref. 11). However, there appears to be an error in their final expression corresponding to our $A(\lambda)$. Our result for scalar exchange disagrees with a previous calculation by W. S. Cowland, Nucl. Phys. 8, 397 (1958).
9. We should remember, however, that this type of modification is not totally uncontroversial because of the ghost-like nature of the modified propagator.
10. We work in the metric $g^{00}=1, g^{i j}=-\delta_{i j} i, j=1,2,3$.
11. V. B. Berestetskiti, O. N. Krokhin and A. K. Khelbnikov, JETP 30, 788 (1956) (Translation: Soviet Physics JETP 3, 761 (1956)).
12. N. M. Kroll, T. D. Lee and B. Zumino, Phys. Rev. 157, 1376 (1967).
13. T. D. Lee, S. Weiriberg and B. Zumino, Phys. Rev. Letters 18, 1029 (1967).
14. M. Gell-Mann, Phys. Rev. 125, 1067 (1962); Physics 1 , 63 (1964).
15. T. D. Lee and B. Zumino, Phys. Rev. (to be published).
16. W. C. Barber, B. Gittelman, G. K. O'Neill and B. Richter, Phys. Rev. Letters 16, 1127 (1966).
17. We assume here $f_{B}^{2} \ll 1$ and neglect B exchange. We note that a modification of the muon propagator would not affect the dispersion calculation of $\frac{1}{2}(\mathrm{~g}-2)_{\mu}$. See J. A. McClure and S. D. Drell, Nuovo Cimento 57, 1638 (1965); N. Kroll, Nuovo Cimento 45, 65 (1966).
18. R. Taylor, International Symposium on Electron and Photon Interactions at High Energies, SLAC, 1967.
19. G. W. Erickson and D. R. Yennie, Ann. Phys. (N. Y.) 35, 271 (1965); ibid 35, 447 (1965); M. F. Soto, Jr. , Phys. Rev. Letters 17, 1153 (1966); a review of the experimental and theoretical work is given in D. R. Yennie, Ref. 4.
20. R. C. Barrett, S. J. Brodsky, G. W. Erickson, M. H. Goldhaber, SLAC-PUB-335 (to be published in Phys. Rev.).
