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ABSTRACT 

The data on electroexcitation of N* in the momentum transfer range 

- q*= 0.1 to 2.33 BeV* have been analysed phenomenologically using an 

isobar model. Assuming only the Ml transition, we obtained a phenomeno- 

logical form factor for the INN* vertex. This form factor is found to 

decrease much faster than the elastic nucleon form factors. This implies 

that the N* has a larger spatial extension than N. 
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1* INTRODUCTION 

The electroexcitation of the proton into ~*(1236 MeV) has been 

investigated both experimentally 192 and theoretically3 by many people. 

The purpose of this paper is to analyse some 1,* of these recent data 

phenomenologically using a very simple isobar model. A simple para- 

metrization of the problem as given in this paper is desirable for 

many applications such as: 1) calculation of the radiative tail due to 

the 3-3 resonance in order to extract information from second (1325 MeV) 

and third (1688 MeV) resonances in the inelastic electron scattering; 

2) calculation of the contribution of the 3-3 resonance to various pair 

production experiments; 3) estimation of the contribution of the 3-3 

resonance to various sum rules; and 4) estimation of the effect of the 

3-3 resonance on various other processes in which the N* appears as a pro- 

pagator in Feynman diagrams (e.g. Fig. 4). The usual analysis using 

dispersion techniques is not suited for this purpose because the result 

is too complicated. The situation is very similar to the analysis of 

elastic electron proton scattering where phenomenological nucleon form 

factors are often very useful even though no one can derive them exactly 

from other known physical phenomena. The major difficulties in per- 

forming the phenomenological analysis are the following: 

1. It is difficult to estimate the non-resonance background in a 

model independent way. From the prominence of the resonance peak in the 

data, one expects that the background should not exceed 10 to 23% of the 

curve at the resonance peak. At the resonance peak the 3-3 resonance 

amplitude is imaginary and the background is expected to be mostly real. 
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Hence the background simply adds to the 3-3 cross section. The background 

consists of: a) the tail of the second resonance (1525 MeV); b) the 

three Born diagrams shown in Fig. 1 a,b,c with the I = y/2, J = j/2 

amplitudes subtracted from these diagrams, and c) the small non 3-3 

amplitudes generated by the imaginary part of the 3-3 amplitude due to 

dispersion relations and crossing. These statements are model dependent. 

The items (b) and (c) have been estimated in great detail by Zagury3. 

AS can be seen from Zagury's numerical curves, the estimates of the 

background terms depend greatly upon some uncertain factors such as 

G en' Hence we have chosen to estimate the background directly from the 

data graphs themselves. This may cause a 10 to 15% error in the 3-3 cross 

section at the peak. For most of the applications we have in mind, such 

errors are tolerable. 

3. Even though the Ml amplitude is expected to dominate4 the transi- 

tion y f N -+ N*, one cannot tell from the data of electroproduction ex- 

actly how much the Q2 and E2 amplitudes contribute. We have written a 

general expression for N* production including Q2 and E2 in addition to 

Ml (see Eq. (2.16)), but the formula contains too many parameters, and 

hence is impractical for use in our analysis. We have therefore assumed 

that only Ml contributes to the transition and obtained Eq. (2.18). All 

we can say is that the data available do not contradict the cross section 

expressed in this form. 

Assuming that only Ml contributes to the transition we have obtained 

a phenomenological fit to the transition form factor for y i- N +N* from 

the most recent Stanford' and DESY* data. The result can be written as 
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tC3(d)Mp)* = (2.05 + 0.04)* e- (1*1> 

This form factor seems to decrease much faster than the nucleon.form 

factors' 

(1*2) 

The static theory of Fubini, Nambu and Wataghiff predicts that the form 

factor associated with y + N +N* is proportional to GMV = G NE) 
- Gm. 

But this statement is very ambiguous, because in the static limit a factor 

such as Er + Mp in the initial state of proton is automatically replaced 

by 2M . The result is that a kinematical factor such as 
P 

(E; + Mp)/*Mp = 
CMp’ J433J2 

(1 + I I 2 
' 4M M 

P 33 ‘Mp+ M33) 
*) (1.3) 

would be replaced by 1. (El is the energy of initial proton in the rest 
* 

system of the N .) This factor is not small compared with unity when I 9'; 

is 2.35 GeV* , for example. Therefore, the static model does not predict 

the form factor for the yIYN* vertex at high momentum transfer. From 

Eq. (1.1) and Eq. (1.2) one is tempted to conclude that the N* has a 

larger radius than N, in agreement with the intuitive notion than an excited 

state should have a looser structure than the ground state. This obser- 

vation is true even if Eq. (1.1) is multiplied by the square of the factor 

given by Eq, (1.3) and then the product is compared with Eq. (1.2) 
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In the appendix we present in detail how the multipole analysis can 

be carried out using the formalism of Durand, DeCelles and Marr7. This 

method seems to be much more simple and straightforward than the usual 

way of reducing the matrix elements into a C.G.L.N. type 3,698 of decom- 

position. 

2. CALCUMTIONS 

In the isobar model the relevant diagram is shown in Pig. 2, which 

defines our notation. pp p*.( Pi and Pf are the four momenta of the 

incident electron, final electron, initial proton and N*, respectively. 

q is the momentum transfer. The final pion is denoted by P. Since the 

initial proton has isospin l/2, spin l/2 and parity +, and the N* has 

isospin 3/2, spin 3/2, and parity f, the transition current for y + N -+N* 

must be isovector and has multipolarities Q2 (scalar quadrupole), E2 

(transverse electric quadrupole) and Ml (magnetic dipole). Instead of 

decomposing the amplitude into Ml, E2, and Q2, one could also use the 

helicity amplitudes fo, f, and f used by Bjorken and Waleckag; however, 
* 

since in the case of N (1236) both theoretical and experimental analyses 

indicate that the Ml amplitude dominates the cross 4 section , it is more 

natural to decompose the amplitude into Q2, E2 and Ml. We shall choose 

the ypN* coupling to be the sum of three gauge invariant amplitudes 10&l* . 

H3 = ie C3 $,(x)y5r,rp(x) FpV + h.c. 

H4 = -e ~4 ~v(x)~5(~p~(~)) FClv + h-c: _ 

(24 

(2.2) 



-6- 

H5 = 
-e C5 Fv(X)y5(P(X)ap FPv + hoc. (2.3) 

where q(x) is the proton field, F 
PV 

is the electromagnetic field tensor 

F pv = aPAv- avA, and Jr, is the spin J/2 field of Rarita and Schwinger, 

satisfying the subsidiary conditions 12 

Y& .= 0 and 

ribo~, + 2-z) - Mfl qv(x) = 0 . 

With this choice of couplings Hs 
does not contribute to the cross section 

when the photon is on the mass shell. c3' 
C4 and C5 are for simplicity 

assumed to be functions of q* 
2 

alone (but not Mf) in momentum space. 

C 3 (0) and C 4 (0) can be obtained by comparison with photoproduction ex- 

periments. The experiments of Lynch et al. 
1 and of the DESY* group 

detect only the energy and angle of the final electrons, hence the cross 

section can be written in the lab system as 13 

d*a 
2 

'Ome 2 2 -- = dfi2dp2 'q4 4E2 G2(q2,M:) cm* g + *G,(q*,M:) sin* g 1 (**4) 
where14 

rO = 2.8 x lo-l3 -3 28 
cm, m e = 0.51 x 10 GeV, q* = - 4ElE2sin 2 

2 MF = (q + pi)* = q*+ Mp + 2qCMp, s, = El- E2 and the functions Gl and G2 
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are defined by 

T 
PV 

-y r 1 <fjJ,(O) 
if 

Ii > * < fjJ,(O) Ii > S4(q + Pi- Pf 

(‘iv’ ~(‘i~S)S-*) (2.5) 

[i > and If > represent the initial proton state and final pion nucleon 

system, respectively. Choosing the direction of the three dimensional 

momentum transfer -&" in the rest frame of N* as the z axis, we have from 

Eq. (2.5) 

c,(q*,M;) = T = T =T,=T E Tl. and 
xx Y-Y -- (24 

ti 4 *2 
G2(q2,$) = 4% (Too - G TI ) . 

Mf Q 9 
(2.7) 

Since Gl is invariant, TI can be evaluated in any Lorentz frame 15 . T00 

is evaluated in the rest frame of the N*. The three dimensional momentum 

transfer $* in the rest system of the N* is related to the corresponding 

quantity in the lab system by 

2 *2 
MfQ = M;Q* . WV 

Integrating over the phase space of the N*, and ignoring its width, 

we obtain from Eq. (2.5) 
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Mf 
T00 e2 = - 6(M2f - $3) C 1’ ‘fJJo(Q)I’i ‘I* (2.9) 

'f'i 

6(M; - M;3) 1 I< hflJ+(0)IXi>l* 

'fXi 

(2.10) 

where Xf and Xi are the helicity states of the N* and Pi, respectively. 

In order to take care of the finite width of the N*, the 6 function in 

Eq. (2.9) and (2.10) is replaced by the absolute square of the denomi- 

nator of the propagator16 of the N*. 

-1 

S(M; - M;3) -j r M33 n 

(M; - M;3) f P2Mg3 
(2.11) 

The width I' is the transition probability of N*+n + N, and since the 

II + N system is in the p state, we expect 17 

where P* is the momentum of decaying pion in the rest system of the N*, 

and can be written as 

where v = 0.14 BeV. 

*3 ITaP if we take into account only the p wave phase space of the 

decaying pions and ignore the form factor associated with the N*+N + II 

vertex. 

We have tried two expressions for P(M:): 

r(Mg) = .12 GeV (2.12) 
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and 4 

P(Mz) = .1*93 GeV (2.13) 

* * 
where P R is the value of P at the resonance, i.e. let M f = M33 

= 1.236 GeV. 

The matrix elements in Eq. (2.9) and (2.10) can be written in terms 

of Q2, Ml and E2 as7 

(2.14) 

(2.15) 

In the appendix we compute the Q2, Ml and E2 amplitudes explicitly in 

terms of C3, C4 and C5. (cf. Eqs. (A.5), (A.6), and (A.7)). 

Substituting Eqs. (A-5), (A.@, (A-7) and (2.5 through 2.15) into 

Eq. (2.4) we obtain 

d*c 2 2 
-1 

I 

rO me 4E;! "f"$ IT 1 
dRdp2 lab = 7 * (M* 

f- IvI;~)* + I'*Mg3 2Mp(E; f Mp) 

[ Mp 729 2 44 3 [ - c3 + Ch"f + C590 ** 1 &* cos* 2 e 

Mf 

2 
I-Q (23; f *Mp + c$ C3 - C4Mfq; - C5q2 

I Ml 

+ GC3 - C4Mfqi 

2 

- (2 

28 

sin 2 

28 

- 3 cos- 2) I 
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The subscripts Q2, Ml and E2 at the right hand side of each square bracket 

identify the contributions of each multipole to the cross section. The 

stars represent the quantities in the rest frame of the N*; they can be 

written in terms of invariant quantities as follows: 

~1 = (&I* + M; - q2)(*Mf) -1 
P j 

925 = (M; - M; + q2)(*bIf)-1 P and 

*2 
Q =c-q*. 

If Q2 = 0 and E2 = 0, we obtain from Eq. (2.16) 

c5 
= 0 and C4 = C3Mi1 

In this case Eq. (2.16) can be simplified into 

(2.17) 

d*c 
2 2 

rO me E2 Q* -I- (El + E2)* 
+ Mp + Mf 2 2 

dS22dp2 lab - q =---q 3Mf 
c3(9 > 

-1 
(2.18) 

X 2r MP33” 

(M; - M?j3)*f P2M;3 

where 

El = incident electron energy 

E2 = out going electron energy 

q, = El - E2 

q* = - 4ElE2 sin 28 2 

Q2 = q; - q* 
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Mp = .938 GeV 

M33 
= 1.236 &V 

Mf = (q2 + { f 2Mpqo)' 

m e = 0.51 x 10-j Gev 

rO = 2.8 x lo -13 cm 

r = See Eqs. (2.12) ad (2.13) 

Eq. (2.16) has too many parameters and hence it is impractical to 

use it for our purpose14. We shall assume that only Ml contributes to 

the cross section and use Eq. (2.18). Let us write the unknown function 

C3(q2b’fp = JJ’(q*) (2.19) 

where F(0) = 1 and 

A= CAMS = 2.05 + 0.04 (2.20) 

from the Dalitz and Sutherland analysis of photoproduction experiments 

(see next section). We then determine F(q*) from the experimental data 192 . 

The procedure used is as follows: 

i) Let F(q*) = e ), and adjust a and b until Eq. (2.18) 

reproduces the experimental cross sections at the peak as closely as 

possible. 

ii) The experimental curves will, in general, be higher than the 

curves obtained above on both sides of the peak. We assume that the back- 

ground consists of a flat part plus the tail of the second resonance. The 
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flat part is estimated by the difference between the curve obtained in 

i) and the experimental curve midway between the threshold and the peak. 

The tail of the second resonance at the 3-3 peak is estimated by drawing 

a reasonable resonance curve. The fraction of background at the peak 

is estimated together with rather generous error assignments and these 

are given in Col. 2 of Table I. 

iii) The experimental form factor squared, F2(q2),,, shown in 

Cal. 2 of Table II is then obtained by subtracting the fraction of back- 

ground from F2(q2) in step i). 

iv) The error in the experimental form factor is estimated by taking 

the root mean square of the errors due to estimates of background, experi- 

mental cross sections and the coefficient A: 

(2.21) 

A(Background)/Peak is given by the + error in Cal. 2 of Table I; the errors 

in experimental cross sections, &/a, are given in Col. 3; and DA/A = 0.02 

as given by Eq. (2.20). Finally (&?2/F2)exp. is given in Col. 4 of Table I. 

For comparison we give numerical values of several functions of the 

form (1 - q2B-1)" and a function e --q1 + 9.G) in Table II. It 

is seen that F2(q2)exp. goes down much faster than the elastic proton 

form factor which is given in Col. 4 (B = .71 GeV2 and n = - 4). F2(q2)exp . 

seems to decrease faster than - 4 th power but slower than - 5 t.h with 

increasing q 
2 

I I . The exponential form seems to fit rather nicely. Fig. 3 

shows the comparison of the data with Eq. (2.18) using 
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C!;(q2)ME = (2.03)2 e -6.3&y1 + g&2j (2.23) 

and I' given by Eqs. (2.12) and (2.13). Fig. 3a, b, c represent Lynch 

et al. 's data which are given in terms of 

d2cr 
ds22dp2 

(2.26) 

versus K s (MF - ME)/(2Mp) for fixed q2 and E2. Fig. 3d, e, f represent 

DESY data which are given in terms of d20/dn2dp2 versus P2 for fixed 8 

and E 1' These curves are not only the overall fit of our formulae and 

parameters but also give some idea about the shape of the background. 

3. DISCUSSIONS 

1) The position of a resonance peak and the shape of the resonance 

curve are somewhat sensitive to the form of the width function I'(Mz) 

chosen. If a constant P = .12 GeV were used, the resonance peak would 

occur at M = f 1.236 GeV which contradicts the data; the experimental peaks 

occur at Mf = 1.220 Gev. Of course, a constant P gives a completely 

wrong behavior near the xN threshold. The forms of I'(Mz) given by Eqs. 

(2.12) and (2.13) give a theoretically correct P wave threshold behavior 

but give somewhat lower values than the experimental curves near threshold. 

This simply means that near threshold other mechanisms such as S wave pion 

electroproduction are significant. Due to large uncertainty in the back- 

ground and experimental uncertainties, it is impossible to-judge whether 

Eq. (2.12) or Eq. (2.13) is better from our curves. 
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2) Comparisons of fits to Lynch, et al.'s data (-q2= 0.1 to 0.5 GeV2) 

and DESY2 data (-qT+236 = 0.79 to 2.33 GeV2) show that the experimental peaks 

of Lynch, et al. 's data occur at slightly lower M2 f than our peaks, whereas 

DESY data occur at slightly higher f than our peaks. The experimental 8 

peak positions are affected by the background. In particular, the tail 

of the second resonance tends to shift the peak to the high Mg side and 

a large S wave contribution near threshold tends to shift the peak to the 

low M: side. The observed difference in the positions of the peaks between 

the two experimental groups may be due to the difference in the importance 

of the background at different q2. 

3) The static theory of F.N.W. 
6 and the quark model 

4 predict the 

form factor for the vertex rNN* to be proportionalto the isovector part 

of the nucleon form factor. As mentioned in the introduction, this is a 

very ambiguous statement because the q2 dependence of the proportionality 

constant is not specified in these theories. This seems to have caused 

some confusion in the literature. For example, Ash, et a1.l' and 

Geshkenbein 20 made their comparisons with experiment using the relation 

Bjorken and Walecka' inferred from the F.N.W. 
6 result 

(3.1) 

(3.2) 

and Salam, Delbourgo, and Strathdee predicted on the basis of U(-6,6) that 



Our analysis of the data shows that Eq. (3.2) is closer to the truth, but 
2 

C3(q ) still goes down faster with increasing q2 than Eq. (3.2). In- I I 

tuitively this may be just a manifestation of the fact that an excited 

state such as N* has a looser structure than the ground state such as p. 

In quark language this implies that there is a spin-spin coupling between 

two quarks, c u , a with a positive c so that when two quark spins are 
2 2 

parallel they repel each other and when they are antiparallel they attract. 

4) Various estimates have been made for the constant A = C (0)M 
3 P 

from photoproduction experiments. 

a) Gourdin and Salin 10 , and later Mathews 11 obtained 

C3(0)Mp = 2.49 (Gourdin and Salin) 

C3(0)Mp = 2.0 (Mathews) 

b) Dalitz and Sutherland4 made a detailed analysis 

tation of the N* 

decay width NI + 

r 
7 

where p 
P 

= 2.79. 

culate this ssme 

from photoproduction, and they obtained for the radiative 

P f 7: 

= 0~ Q*3(2MpM33) -IL [(1.28 f 0.02) $7/';$ 1 

of the Ml exci- 

(394) 

For comparison, we can use our matrix element to cal- 

width as 

I 

Setting E2 = 0, we have from Eqs. (A.6) and (A.7) 

2 *gE;+M 
r7 = CI $0) 7 Q P 

M33 

(3.5) 

(3.6) 
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Equating Eq. (3.6) to Eq. (3.4) we obtain 

CAMS = 2.05 + 0.04 (Dalitz and Sutherland) (3*7) 

c) SUM predicts 4 that the number 1.23 in Eq. (3.4) should be re- 

placed by 1, hence 

C3(0)Mp = 1.61 (SUM prediction) 

d) It is also interesting to point out that we can obtain C3(0)Mp 

from Chew-Low static theory 21 . The relevant formula from static theory 

is 

a(7 + P + flOf P) = (5) (9) ~~)t(n"+ p dn"+ p) (3.8) 

where f2 = 0.08 and a = l/137. This formula is supposed to be correct 

near the go+ p threshold. In order to obtain C3 from this relation, we 

compute the cross sections of both sides using the isobar model 

Mf a(7 + p --UC'+ p) = M 1611 2 $ Q*cY(E; + Mp)C;(0)8(Mf2 - M;,) (3.9) 
P 

2 
Mf a(,'+ p -+ fio+ p> = M 32n2 

P 
+ I' 6(M2f - ME3) 
VP 

(3* 10) 

8 f2 *3 where I' = 7 7 P near threshold, according to static theory. Hence 

c?(o) = (3.11) 
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Now if the 6 functions in Eqs. (3.9) and (3.10) are replaced by a Breit- 

Wigner formula, then they are also usable near threshold. Since Eq. (3.8) 

is more correct near threshold, we let M f 
- p = E* = Mp in Eq. (3.11) 

i 
and finally obtain 

C3(0)Mp = 2.2 (Chew-Low Static Theory) (3.12) 

5) Dalitz and Sutherland4 obtained a formula for d20/dQ2dP2 from 

the result of Dalitz and Yennie 22 . Our Eq. (2.18) differs somewhat from 

their Eq. (2.16) and (2.161). There is an error of a factor 471 in their 

Eqs. (2.16) and (2.16t)23. The forms of the Breit-Wigner formula used 

are different, but this is just a matter of taste. 

From their Eq. (2.14) and our Eq. (3.5), the expression T in 

Dalitz and Sutherland is related to our C3(q2) by 

* 

hl 2 4r( =-a 
(Ei+Mp) 2 2 

3 M 
P 

c3(q > (3.13) 

Substituting Eq. (3.13) into their Eq. (2.16) we see that our Eq. (2.18) 

is equal to their Eq. (2.16) at Mf = M33 except for a factor of 471. 

According to Dalitz and Sutherland, their Eq. (2.16') is better than 

their Eq. (2.16) because the former has an extra factor Er/Mp which comes 

from the transformation from the rest system of the N* to the laboratory 

system. This factor is a mystery to us because according to the way we 

computed the cross section, Gl = TI is invariant and hence no extra factor 

needs to be multiplied when we go from the N* rest system to the labora- 

tory system. However, this factor has a numerical value of -.972/.938 at 
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the resonance, and hence is insignificant numerically. 

6) We have completely ignored the possible contributions from Q2 

and E2 in our analysis. Inspection of Eq. (2.161 shows that this is an 

experimentally impossible task unless one has some model to tell him 

the q2 dependence of C,(q'), C4(q2) and C5(q2). If the decayed pion is 

detected in coincidence with the electron, one may be able to untangle 

this, but the theoretical details have to be worked out before one can 

say whether this is feasible or not. If C3, C4 and C5 have roughly the 

same q2 dependence, then we can conclude from our analysis and our 

Eq. (2.16) the following: 

A. The Q2 amplitude cannot be large because it has an extra factor 

4 
of 9 in its expression. If the Q2 amplitude were significant the form 

factors for the C's must decrease much faster than the one discussed in 

this paper and this seems unlikely. 

B. The value of C5(q2) must be small because it is multiplied by 

q2 in Ml and E2, and our analysis shows that the cross section goes down 
2 

rather rapidly with increasing q . I 1 

7) In conclusion, if E2 = 0 and Q2 = 0, then G, and G, of Eq. (2.4) 
I c 

can be written as 

Gl(q2,M$) = < G2(q2,M;) = 
r M33"f" 

-1 

-q (Mg- M;3)2 + p2M!j3 
Q*22C;(s2) 

(ET+ M ) 
3M ' 

P 

Our best fit for C3(q2) is given by Eq. (1.1). This formula is 

sufficient for calculating most of the applications we have in mind as 

mentioned in the introduction. At this stage it is natural for the reader 
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to ask why we went through all the trouble of decomposing H3, H4 and H3 

into multipoles instead of directly obtaining some analytical expression 

for Glby fitting the data. The reason is that there are many kinds of 

application of the isobar model in which it is more convenient to write 

expressions in terms of C 
3' 

C4 and C5 than Gl and G2. For example, one 

may wish to evaluate diagrams such as c?.re given in Fig. 4. 

8) Finally, one is tempted to ask whether form factors associated 

1 3- with the second resonance (1525 MeV 1,J' = 2, 2 ) and the third re- 

sonance (1688 MeV I,J' = s, 8') can be analysed in the same fashion. 

Inspection of the DES3 data shows that it is hopeless to isolate the 

higher resonance contributions from the background and estimate their 

cross sections to within 2076 accuracy. However, for many purposes a 

cross section known to within 2C$ or even 3@ can be very valuable. If 

one wishes to do better than this, the final states of the target system 

must be detected in addition to the scattered electrons. 
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APPENDIX 

Multipole Analysis of Feynman Diagrams 

In this appendix we illustrate how to extract multipole moments, 

7 as defined covariantly by Durand, et al. , when a relativistic vertex 

function is given. If the target particle has spin l/2 and the final 

particle has spin S, then angular momentum conservation tells us that 

there are at most 6 multipole moments Q(S k *), M(S * 3) and E(S 2 4). 

Parity conservation eliminates 3 of the 6 amplitudes. For ~*(1236) the 

relative parity between the nucleon and N* is i-, hence we have Q2, Ml 

and E2. Let US consider helicity amplitudes given by the Hamiltonian of 

Eqs. (2.1), (2.2), and (2.3): 

rp), 
f' i 

= <PfXfIjpJPiXi >= e jry(Pfhf)73 [Cj(plgvI*- qv7u) 

(Ad 
+ $(q*PfgvJ- qVPfJ + c5(q.p.g 1 vc~- gVPill)J (p(Pixi) 

Since the spin 3/2 particle is more complicated than the spin l/2 

particle, we shall evaluate everything in the rest frame of the N*. Let 

us use the explicit representation 

r 0 11 
7c = I J 70 = 
' 11 01 

Then cP(Pi'i) = ~ 
VN 

- 
7 - A 

-f 
cl 

l pi 

-Ei+ M 
P. 

,, ,.. 1‘ 
x?L where x1 = cx z 

LJ - t i 2 0 
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0 13 2M 
x+ = B = and N=+ 

1 Ei -I- M 
P 

In the rest frame of the N*, qV(pfXf) can be written (because of the 

subsidiary conditions) as 

JrY(OJf) = Is,-sz > 

Hence: 

In the rest frame of the N* we have $* = - $z = GzQ* and we may 

(I4 evaluate the helicity amplitudes I', x for any combination of I-I., Xf, hi 

immediately from these formulae. NEW: using Eq. (lOV),(llV) and (120) 

of D.D.M. 7 , we have 

i 

3 
r(O) = ’ 

'f'i 'f 
(A-2) 
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r(+l) = 
'f'i 

r{-i) = 
fi 

(E2 1 (A.4) 

(A-3) 

1 

where is Wigner's 3 J symbol. We may arbitrarily let Xi = 5, 

remembering Xf = -(p + Xi), and solve for Q2, Ml and E2. The results are: 

[- c3+ C4Mf+ c5<] (A.51 

(4 (+> firll-3r 3l = e Q* 

P'2 - 292 $@I+ Mp' 
@‘(ET+ Mp' + 9"0, C3 

(A-6) 

- c4MfG - c5q2 1 

= -d%k- 
V-7 

;C3- C4Mf& C5q2] (A.71 
N El+ Mp' 
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From these expressions we observe the following: 

1. Our expressions for the multipoles have the correct threshold be- 

havior; namely, Q2 a Q *2, Ml * a&, andE2=Q*. 

2. When the photqn is real, C5 does not contribute to the cross 

section. 

3. Since for real photons (c- Q2= q2= 0), E2 is known to be at 

most a few percent of Ml. Setting E2 = 0 we have 

c3w 
c4(o) = - 

Mf 
(A-8) 

Hence 

Ml(q2= 0) 2Q*e = N c,(g'= 0) 
f 

(A-9) 

4. The procedure of multipole decomposition described above can be 

applied to higher resonances. As long as the target particle has spin l/2, 

we have at most 3 multipoles no matter what the spin of the excited state 

may be. When the target particle has spin greater than l/2, Si > l/2, we 

have more multipoles than 3; but we will have more Xi to choose from and 

hence will always have enough equations like (A.2), (A. 3) and (A.4) to 

determine all the multipoles. 

The matrix element squared summed over hi and Af can then we written 

down using Eq. (135.1) and Eq. (135.2) of D.D.M. In our example we have 

c r(O) 
I I 

hihf Xfhi (A.lO) 
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C r(+) 
Xihf XfXi 

(A.ll) 

These expressions can always be checked against the similar expressions 

obtained by using traces and projection operators. For example, in our 

case : 

2 = _ Tr pi:MMP r'F)75 
P 

(A.12) 

7VQ + $- (PfV7,-- PfcIyV) - 3 (x) 
f 

i 
75nP 

where 

= c,(d qJx- $7,) + C4 (9*Pfgvx- qvpfx) + c5(q’ ‘igVx- qVpix) (A-13) 

It is probably worth mentioning that the method using Eqs. (A.lO) 

and (A.ll) takes much less effort than the one using Eq. (A.12) unless 

the trace in the latter is taken by computer. We have used all methods 

checking both by hand calculations and by the computer program of 

A. C. Hearn 24 . 
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FIGURE CAPTIONS 

Fig. 1. The Born diagrams which contribute to the background. 

Fig. 2. Electroexcitation of the N*. 

Fig. 3. Comparison of the fits using Eqs. (2.18), (2.25) and the 

experimental data: (a), (b) and (c) are Lynch, et al. 's 

data which are given in terms of Eq. (2.26) versus 

K = (M; - Mz)/(2Mp) for fixed q2 and E2; (d), (e) and (f) 

represent Brasse, et al. 's data which are given in terms of 

d2D/dn2dp2 versus p2 for fixed 8 and El. Two forms of the 

width function I? are illustrated. The dotted lines are 

obtained by using Eq. (2.12) in the cross section (2.18), 

and the solid lines are from Eq. (2.13). The arrow on 

each abscissa indicates the position of the ~*(1.236) 

resonance. In (e) an example is given of the radiative 

corrections which have been applied by Brasse, et al. to 

the data of (e), (f) and (g). 

Fig. 4. Examples of Feynman diagrams which can be calculated easier 

in terms of C 3, C4 and C5 than in terms of Gl and G2. 
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