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ABSTRACT 

Binding energies and approximate wave functions of the J=O bound 

states of three identicalbosons have been computed under the assumption 

that only two-body forces in the &O state derived from local potentials 

of the Yukawa and exponential form are important. In both cases, only 

three bound states occur for interaction strengths below or comparable 

to that required to give a second bound state in two-body subsystems, 

the first excited state appearing when the two-body subsystems bind, and 

the second close to the interaction strength where the two-body subsystems 

have zero scattering length. Also close to this point, the Yukawa inter- 

action produces a collapse of the ground state to a tightly bound system 

of dimensions small compared to the range of the interaction, while the 

exponential interaction does not; separable interactions of the Bander or 

Yamaguchi form fitted to the same two-body binding energy and scattering 

length give infinite binding energy to the three-body system before this 

point is reached, at an interaction strength only 4C$ greater than that 

required to fit the n-p triplet scattering length and deuteron binding 

energy using central forces. 
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The quantum mechanical three-body problem and in particular the 

problem of determining the binding energy of three strongly interacting 

nucleons has received the attention of physicists for a number of years. 

A variety of techniques have been devised to treat the problem. Varia- 

tional methods applied to the three-nucletin problem still yield upper and 

lower bounds for the binding energy which differ by an order of magnitudel. 

The special dynamical technique used by Baker, Gammel, et al.' to obtain 

a three-body ground state wave function is valid only for the ground state 

and has so far not been followed up. The most promising development has 

been that of Faddeev3 who presented a well defined set of integral equa- 

tions which treat on an equal footing all possible non-relativistic pro- 

cesses: bound states, elastic scattering, exchange interactions and breakup. 

Typically 4 Faddeev's equations have only been exploited by studying prob- 

lems in which the two-body interaction is separable, i.e. I(p,q) = f(p)f(q), 

and consequentiy non-local. Employing separable potentials in Faddeev's 

equations is mathematically advantageous in that it reduces the problem to 

that of solving a one variable integral equation. While this is a compel- 

ling reason for using separable potentials, it is not equivalent to justi- 

fying their use as an accurate representation of a physical interaction. 

In fact it is the local potential description of interactions which is 

known to be applicable to high accuracy in atomic problems, to the high 

angular momentum states of the nucleon-nucleon 5 system , and even to the 
r 

long-range part of the s-wave nucleon-nucleon interactionb. Thus it would 

be extremely useful to have a reliable and numerically accurate method for 

solving the three-body problem via Faddeev's equations for local inter- 

actions. Having such a method we can then use the non-relativistic three- 
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body problem as a theoretical laboratory in which to test the consequences 

of various two-body models. We can examine whether or not the three-body 

problem is sensitive to the local or non-local character of the interactions 

for models which give comparable agreement with the two-body subsystems. 

Finally, we should be able to obtain information from physical three-body 

systems about features of the interaction not probed by two-body scattering. 

We present below a calculation of this type. 

The reduction of the Faddeev equations to integral equations in two 

variables with 3 X ( L f 1) X min(2J + 1, 2L + 1) coupled components has 

already been given by Osborn and Noyes 7 and by Ahmezadeh and 8 Tjon , where 

J is the total angular momentum and L the maximum orbital angular momentum 

includedin the two-body subsystems. We will use the variables E = 

al +C02+UJ 3 and u$ as defined in Reference 7. The problem we describe 

here in detail is the simplest of all three-body problems: that of three 

identical spinless particles in the J=O bound states. For the purely 

attractive forces considered here the most deeply bound states will occur 

for J=O. It is reasonable to assume as a first approximation that centri- 

fugal shielding in the two-body subsystems will prevent any state except 

the &O from making an important contribution to the binding energy. Thus 

we are left with three integral equations in two variables, which because 

of bose symmetry reduce to just one integral equation. 

Part of our purpose is to study the consequences of separability in 

three body systems. So we want to reformulate (without changing its 

physical content, of course) our integral equation in such a way that the 

separable approximation manifests itself in an obvious way. This is 

easily done. One of the most general separable formulations of the two-body 

part.ial wave transition amplitude, tt(p,q;s f ie), is the Kowalski-Noyes' 
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representation which reads 

ta(p,q;s f ie) = ft(q,s)tt(k,k;s + ie )f,$P," )+&L R,$vss) (1) 

Here q and p describe the magnitude of the incoming and outgoing momenta 

in the relatfve two-body C.M. system; s i: the energy and k = 

s < 0. The fa(p,s) appearing in this relation is the half-off-shell 

extension function defined by ft(p,s) = tt(p,k;s -I- ie)/tt(k,k;s f ie). 

For any separable potential the Rt term is identically zero. Using this 

two-body formulation of separability our three-body integral equation may 

be rewritten so that the dependence of the resulting eigenfunction on E 

is just a constant when separability is valid. iriting E = k2/m and 

c1).= q2/2m then our final integral equation is 
1 

,2 
f(kt2- z qf2, z - s) M(kf2,q') = inhomogeneous term 

co 

4 
+- 

/ 

q ,2+ q”2+ qlq’f 

q”2dq” 2qtq~ / dkff2 X 

* 0 q’2+ q”2- q’q” 
(2) 

t(k' 2 3 - r; qr2, k 2 3 ,2 2 f2 
-Jp ;z- --t--J m 

X f(kf!2- 3 It2 
mz-k 2 r;q ' z - ,g) X M(k"2,q") 

For convenience we have dropped the &O subscript on all functions. The 

whole left hand side of Eq. (2) is the wave function, and M is constant 

in k' 
2 if t is separable. The details of the inhomogeneous term are not 

important here since we are looking just at eigenvalue solutions. When M 

is constant in k' 
2 it is trivial to reduce (2) to an integral equation 

involving the single variable q'. 

Our technique for solving these integral equations is to transform 
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them to matrix form by approximating the integrals by a finite sum. In 

the separable case the one variable integral equations for M may be easily 

handled by making a change of variable to give finite limits to the inte- 

gral. The integral is efficiently converted to a sum by using Gaussian 

quadrature. Seven points in the q dimension is sufficient to give an 

accuracy of 10 -3 in the binding energy. The general two variable equation 

for M is more difficult. For a fixed point mesh in the k dimension few 

(or even zero!) points may fall between the variable upper and lower limits. 

We get around this difficulty in two ways. First, we employ a quadrature 

rule that uses neighboring points outside the interval of integration. 

Second, we adjust the weights in our quadrature rule for k to evaluate 

exactly all the rapidly varying terms in the integral. The computer used 

(a Burrough's B5500) has about 10K of fast memory available. This limited 

the k mesh to 15 points and the q mesh to 7. One check of the accuracy of 

this procedure was to solve the two variable integral equation for a separ- 

able problem. Then independently we solve the resulting one variable 

separable equation. The bound state energies (accurately known) from the 

one variable equation always agree to better than $$ with the energy ob- 

tained from the two variable version of the problem. Another check is to 

do just the k" integration in the two variable problem. This leaves us 

with the kernel of the resulting separable problem, The matrix elements of 

this kernel were all determined to better than ?$ and all but 3 of the 

49 elements are given to better than 1%. Our experience indicates that 

our three-body solutions for local potentials are accurate to better than 

@. Solutions for a Yukawa potential in the limit of small coupling con- 

stants can be compared to the published results of Wong and Zambotti 10 and 

the results do not agree. However, a new calculation by Wong and Ball 11 
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using an expansion in separable Stiirmian functions 12 of comparable numerical 

complexity to the calculation presented here, agrees to better than $$ in 

the binding energy. These authors have also calculated the correction to 

the binding arising from the &2 states and find that it is less than 3. 

We hav, summarized our results in FiB. 1 and 2. These figures pan- 

tain our solutions for two frequently studied potentials - the Yukawa and 

exponential. The units for these curves are fixed by choosing the nucleon 

mass for the three bosons. In momentum space the Yukawa potential has 

the form v(p,q) = (X/2pq)Qo([p2+ q2+ p2]/2pq). The value for parameter 

p = 0.633 F-l is chosen from a calculation which fits this potential to the 

low energy triplet N-P scattering. Consequently at X = - 1.58 we approxi- 

mate the deuteron. In fact, as is seen from Fig. 1, our two-body bound 

state energy is (as it must be) about a = - .23 F-l. The exponential 

potential with p = 1.49 F -1 is similarly chosen and approximates the deu- 

teron for X = - 6.0. The solid curves in both figures represent energy 

eigenvalue solutions plotted as a function of the coupling constant X. 

Both potentials have three different three-body bound states. In both 

cases the second excited state emerges from the continuum midway between 

the appearance of the first and second two-body bound states. Around 

x = - 2.6 the Yukawa potential problem exhibits a striking behavior. The 

bound states trajectories which are constant up until this value of X 

undergo a rapid change with emergence of the second excited state. For 

XC- 2.6 the rate of binding of the ground state is seven-fold greater 

than for the first section of this trajectory. Simultaneously the first 

excited state jumps down and then assumes a path which is just a linear 

continuation of the first portion of the ground state trajectory. Finally, 

the newly emerged second excited state continues along a linear extension 
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of the original first excited state trajectory. None of this behavior 

is observed in the exponential problem. 

In order to facilitate the interpretation of this phenomena we have 

calculated the eigenfunctions M. These eigenfunctions characteristically 

have only a very mild dependence on k2 so we will describe them as though 

they depended only on q. As is expected the ground state eigenfunction 

is nodeless, the first excited state has one node and the second two. 

For X > - 2.6 the ground state M is highly concentrated near q=O rapidly 

falling off as q becomes large. At X = - 2.6 it expands and is nearly 

constant, falling off to zero only for q >> p. Thus it resembles a delta 

function in coordinate space. Our interpretation then of the change in 

the ground state curve is that the wave function has fallen down the l/r 

portion of the potential well. Examining the second excited state wave 

function for X = - 2.6 we see that it has come to resemble the weakly bound 

ground state wave function by having its zero move out to very large values 

of q. Where the wave function is large it has a similar shape and value 

to the ground state wave function for X > - 2.6. A similar correspondence 

exists between the first excited state before the break and the second 

excited state after the break. In this case the second zero of the second 

excited state has moved out to very large momenta and the first zero has 

moved to the position of the zero in the weakly bound first excited state. 

The separable approximations studied were the Ysmaguchi 13 interaction 

v(p,q) = - X/(p2+ p2)(q2+ p2), the interaction used by Bander 14 
v(p,q) = 

- V(P2+- u2)-(q2+ c12)$, : and the Kowalski-Noyes approximation obtained by 

setting Rt equal to zero in Eq. (2). In the first two cases the parameters 

were fitted by requiring the separable interaction to give the same scat- 

tering length and binding energy as the local two-body interaction. 
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Comparing the three-body binding energies gives a simple test of the 

ability of the separable potentials to reproduce the physics of our 

local potentials. The results given in Fig. 1 and 2 show that even at 

interaction strengths comparable to the N-P triplet even state, the separ- 

able approximations deviate from the local potential predictions by about 

l@, and in the first two cases lead to infinite binding for the three- 

body system at an interaction strengh only 40$ greater than that required 

to bind the deuteron. Since the deuteron is very weakly bound, in the 

sense that 90$ of the time the neutron and proton are outside the range of 

the force, this shows immediately that the single term separable approxi- 

mations can only be used with confidence for very weak binding. The 

Kowalski-Noyes approximation does not produce this catastrophy, but on 

the other hand it fails to reproduce the sudden collapse given by the 

local Yukawa potential, even though the t-matrix used is identical to 

the exact one when taken half-on-shell. We conclude that at least two, 

(and probably more) separable terms will be needed to reproduce the three- 

body features of local potentials even for simple monotonic forms like 

those considered here, in which case it would seem better to do a little 

more work and adopt the Wong approach 11 , or that pursued here. 

The author would like to thank Professor H. P. Noyes, whose con- 

tinuing encouragement and advice made this work possible. 
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FIGURE CAPTIONS 

Figure 1 - Binding energies for two and three particle states of identical 

spinless particles, interacting via S-wave Yukawa potentials, 

as a function of the interaction strength. Results from Bander, 

Yamaguchi, and Kowalski-Noyes separable approximations are 

given for comparison. 

Figure 2 - Binding energies for two and three particle states of identical 

spinless particles, interacting via S-wave exponential potentials, 

as a function of the interaction strength. Results from Bander 

and Yamaguchi separable approximations are given for comparison. 
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