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ABSTRACT 

The kinematics, sum rules and inequalities for inelastic electron- 

nucleon scattering are reviewed with emphasis on the relations between 

the sum rules and inequalities and the assumptions needed in their deri- 

vation. What can be learned from the manner of saturation of the in- 

equalities is discussed. Limits are put on possible modifications of the 

sum rules at large values of q2 from what we already know at small 

values of q2, and for q2 = 1 BeV2 it is shown that the inequality for 

electron scattering is roughly satisfied by summing over the inelastic 

scattering spectrum up to final hadron masses of 2 BeV. 
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I. INTRODUCTION 

Although there have been many impressive successes for sum rules or 

low energy theorems’ derived from the commutation relations ofthe integrals 

of the time components of the vector and axil-vector weak interaction current 

densities, 2 

pa@) 9 Fb”] = ifabc Fe(t) 

where 

F,(t) = -i J ga4(x)d3x 

F:(t) = -i 
J-g ,“4 W3x , 

the commutation relations of the current densities themselves, 

[FJk4tx)’ $&($jx =y = - fabc (?(*fx) ’ 6-) 
0 0 

(1) 

(2) 

(33 

W) 

have yet to be subjected to similar tests through the sum rules which they imply. 

It was first shown by Adler3 that Eqs. (3) can be directly tested in high-energy 

neutrino reactions where they lead to sum rules which imply that 
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goes to a constant which is independent of the four-momentum transfer q2 

as the incident neutrino energy goes to infinity. This q2 independent constant 

is the same as the result one obtains for dOT( F+ N) /dq2 - doT (v+ N) /dq2 as- 

suming a point-like nucleon whose V-A weak current is coupled to the leptons in 

the usual current-current interaction form. 

By an isospin rotation Bjorken4 has shown how the part of Adler’s re- 

sults coming only from the vector current can be transformed into a useful 

inequality for inelastic electron scattering on nucleons. This inequality 

essentially states that as the incident electron energy goes to infinity, the 

sum, daT (e -+ p) /dq2 + doT (e + n) /dq2, of the total electron-proton and electron- 

neutron cross sections is greater than one-half the cross section for electrons 

scattering off point-like (spinless) protons. 

All of these results depend only on the commutation relations (3) of the 

time components of the currents. More recently, Bjorken’ has derived an 

inequality for backward electron-proton scattering valid for large q2 only 

which depends on the commutator of the space components of the vector cur- 

rents. Using the chiral U(6) xU(6) algebra, for large q2 the sum of neutron 

and proton backward scattering is predicted to be greater than one-half the re- 

suit for a point-like Dirac particle. 

Both of these inequalities should soon be subject to direct test using data 

from inelastic electron scattering at SIAC. In fact, data from CEA and DESY 

already allows a very preliminary estimate6 of contributions from the low and 

intermediate energy resonance region to the inequalities for values of q2 up to 

1 or 2 BeV2. In this paper we will first review the kinematics of electron scat- 

tering where only the final electron is detected. The relation between the invariant 

amplitudes and the total (massive) photon-nucleon cross sections is given, as is 
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their relation to sums of squares of multipole amplitudes for single pion electro- 

production. Since each experimental and theoretical paper on inelastic electron scat- 

tering seems to try to invent a new notation, we relate to each other some of the 

more common expressions for the form factors and cross sections used by various 

authors. We then consider the sum rules and inequalities of Adler and Bjorken, 

stressing the assumptions needed to derive them and their justification. We show 

that the inequality for backward scattering derived by Bjorken follows from his 

original inequality (derived by an isospin rotation from Adler’s neutrino sum rule) 

if for large q2 the longitudinal or scalar photon-nucleon total cross sections are --- 

small (in a sense to be made more precise later) compared to the transverse cross 

sections. Finally, we consider the convergence and saturation of the sum rules and 

inequalities and how that convergence depends on q2. We discuss what can be 

learned from the manner of saturation of the inequalities. Some limits on possible 

modifications of the sum rules at large q2 are given from what we already know 

for q2 near zero, as well as from the CEA and DESY data. For a value of 

q2 = 1 BeV2 we show that the inequality for electron scattering is quite possibly 

satisfied by summing over the inelastic scattering spectrum up to final hadron 

masses of 2 BeV. 

II. KINEMATICS 

Let us consider inelastic electron scattering (Fig. 1) where k and k’ are 

the initial and final electron four momenta, q = k - k’ is the four-momentum 

transfer, and p is the target nucleon’s four-momentum. The final hadronic 

state, n, then has four-momentum p, = p + q and invariant mass squared7 

w2=-(p+q)2. In the laboratory frame, where E and E’ are the initial and 
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final electron energies, we have 

-P ’ q (w2- 
= qo= E - E’ = 

M;+q? 

MN 2MN 
(4) 

and q2, the invariant four-momentum transfer squared (neglecting the electron 

mass) is 

q2 = 4EE’ sin2 t9/2 ; (5) 

where 8 is the scattering angle of the final electron relative to the incident 

beam direction. 

If we only observe the energy and scattering angle of the final electron, 

then we may express the double differential cross section in terms of two in- 

variant form factors which are functions of q. and q2 : 

d2* 4 CP~E,~ 
.mdE’ = q4 sin2 G/2 cw(qo, q2) + c0S20/2 P(q,, q2) 

I w 

or equivalently, 

d20 = 47ra2 E’ -- 
dq2dE’ q4 E [ 

2 sin2B/2 cx(qo,q2) + cOS28/2 p(qo,q2) 1 
(3 

47ra2 1 2 

=$” 3 5 a(qo,s2) 

2 21 
+ ( E2 - No-%) P(s,>s ) 1 

The functions ol(qo, q2) and p(qo, q2) are the vector current parts of functions 

first defined by Adler for neutrino scattering. 3 They have a rather simple in- 

terpretation as follows: Consider forward Compton scattering of massive 

photons (four-momentum q, mass2 = -q2, laboratory energy q,> 0) on nucleons, 
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with the nucleon spin averaged over. If we call the Feynman amplitude for 

this process (EC)*T clv (cloy q2)cv , where cv and 6’ are the initial and final 
c1 

photon polarization vectors which satisfy e . q = E’ . q = 0, then8 

1 

47r2cY 
b TpVtqo> s2) = qs,, s2)(a _ Pv-qPa h2) + P(s,, s2) 

= (2f13zx <N(p)lJp(0)ln><nlJv(O) IN(p)>&4)(pn-p -4) 

‘N n 
VI 

- 
where c 

SN 
and c denote averaging over the nucleon spin and summing over 

n 
final states n. The lowest lying state which contributes to c is the one 

n 
nucleon state which gives9 

Q(qoy S2) = (s2/4M;) cF,(s2) f p F2(q2)] 26 (q. - q2/2MN) 

= ts2/4M2) GM(q2) 2 b(q, - q2/2MN) 
[T 3 

and 

P(qo, S2) = 1) 2 -f- ts2p2/4M;) b (9, - s2/2M,) 

= (GE (6) 2 + (q2/4M$ (GM(q2)) 2 
1 + q2,‘4M; 

d tq o - q2/2MN) - 
c It is easily verified that on putting these one nucleon state contributions to 

(Y and p in Eq. (6) and integrating over dE’ one obtains the Rosenbluth 

formula for elastic electron-nucleon scattering. 

Since a(q,, q2) and p(q,, q2) are related to the imaginary part of 

forward Compton scattering of photons of mass2 = - q2 , and the imaginary 

03’3) 
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part of forward Compton scattering is related to total photon-nucleon cross 

sections, we may relate cy(qo, q2) and p(q,, q2) to the total cross sections, 

ot rans. (qo’ q2, and qong. (q,, q2), for the absorption of transverse and longi- 

tudinal (virtual) photons on nucleons. We find 

and 

Q!(qo, q 3 ITI - 
47r2cY 

ts s2, atrans. 0’ 

2 q2 
ptqogq ) = 4?r2Q ,?I ( atrans (s,,s2) - along, tqoA2)) 9 . 

where 131 = 
d 

q2 + 4,” is the magnitude of the laboratory photon three- 

momentum. As q2 -+ 0 ’ along. -+ 0 and we find 

.2 
P(S,YS 1 q2 

q2* 0 47r2cY q. [ 
otrans. (qo ’ O) ’ I 

Pa) 

(10) 

where u trans D (qo, 0) is the total photo-absorption cross section for real photons 

with laboratory energy q. . 

If the state n consists of a nucleon and a pion, i. e., we have electropro- 

duction of a single pion, we can express Srans. (go, q2) and along. (q,, q2) 

in terms of squares of multipole amplitudes: 10 

utrans, (qo, q3 = 
27rP I I 7r c.m. 2 

I I ‘cm 
Q(Q+ lJ2 IMP+ 

. . 

+ tQ+ l12tQ+ “lEQ+[2 

+ t Q + II2 (Q + z> IMtQ+ lj-(2 

-7- 



where F I I 
= 

7r c.m. - (MN- MJ~] [W2 - (MN+ M is the magni- 

tude of the center of mass pion three-momentum and .< c m = (MN/W) ];il 
I I . . 

is the center of mass photon three-momentum. Note that in our notation 

c1ong. (qot q2) is negative when q2 > 0 (q2 space-like) so that the quantity 

ml0 s3 is actually the sum of two positive quantities in Eq. (9b) for q2 > 0. 

There are of course an infinite number of other ways to write Eq. (6) in 

terms of two form factors. Drell and Walecka 
11 write 

dr 4~~ ET2 
d&?‘dE’ = 7 q 2Wl(q2, q-p) sin2 0/Z + W2(q2, q-p) cos2 6/2 1 

(12) 
SO that their functions W1 and W2 are related to Q! and p by 

a! = W1/MN 

(13) 
p = w2/MN 

Another commonly used expression for the cross section is given by Hand, 12 

who writes 

where 

K = q. - q2/2MN = 
W2-M; 

2M 
N 

(14) 
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and 

or 

1 ?i= 
1 + 2(1 + qt/q2) tan2 0/2 

2 
i-z 

=’ 2 + cot2e/2 

1+qz/q2 

Comparing with Eq. (6)) we find 

K 
cy(qo, S2) = - 

47r21y o;r 

2 
As q--+0, UT becomes the real photon-nucleon total cross section, and becomes 

the same as otrans. (q,, 0) defined in Eq. (9). Generally, Hand’s cross sections 

CT 4 (I;i‘l /K) otrans. and OS = (-I?1 /K) along, . Note that for space-like 

q2 9 CT ’ OS’ Otrans. ’ and - o1ong. are all positive, as therefore are Q! 

and p. 

III. SUM RULES AND INEQUALITIES 

FOR INELASTIC ELECTRON SCATTERING 

The vector current part of the original sum rule of Adler for neutrino scat- 

tering can be written 

ca 
6f c dqo 6) (cl,, S2) - p(+) (qo, q2) = 1 3 (18) 

The functions p (+I are defined just as in Eq. (7) except that in place of 

the electromagnetic currents JP(0) and J,(O) we have put the isospin raising 
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or lowering F-spin currents, g (l&iz)p(O) ( recall that g 
3P 

(0) is just the iso- 

vector part of the electromagnetic current). If we explicitly separate out the 

nucleon Born term in Eq. (18) we have 

dqo [ &)(qo, q2) - P(+)(s,, s2, 1 = 1 
(q2+M2,) /2MN (19) 

where the superscript V denotes the fact that we are dealing with the isovector 

part of the current; the isovector anomalous magnetic moment pv= ‘“;, -p’ = 3.70. n 

2 As q -+ 0, we see from Eq. (10) or (17) that only the first term, (F;tq2) ) 2, on 

the left hand side of Eq. (19) survives, and as q2 ---) 0 it goes to 1, in agreement 

with the right hand side. 

In the derivation3 of Eq. (18) only two assumptions enter: (1) the commuta- 

tion relation Eq. (3a) of the F-spin densities, and (2) an unsubtracted dispersion 

relation for the forward Compton scattering amplitudes (which are the coefficients 

of P P P 11 
and qppv in the expansion of Tpv) corresponding to p(q,, q2). It is 

of course the second assumption which is most open to question. However, we 

note that 

(a) The fact that as q2 --+ 0 the left and right hand sides of Eq. (19) as it 

now stands automatically become equal rules out a q2 * independent subtraction. 

This just means we have done nothing grossly wrong, e.g., introduced a kine- 

matic singularity in q2 in one of our amplitudes. 

(b) The assumption of an unsubtracted dispersion relation for the amplitude 

corresponding to p for two axial-vector currents, together with Eq. (3~)) leads 

at q2 3,13 = 0 directly to the Adler-Weisberger sum rule, so it is very unlikely 

that there is a q2 independent subtraction there either D 
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(c) Consider the derivative with respect to q2 at q2 = 0 of Eq. (19). 

From Eq. (10) we know that, 

p(-)(q 
0' 

s2) - p(+) (q 1 
0' 

q2) - - - q2 

q2 - 0 27r20! 90 [ 
a&-+ N) - cgY++w 1 

(20) 

1 =- 2 
27r22a, 90 c ( 

2aT y+p++ 
) ( 

-UT J+p+I=; )3 , 

where ?r(y - + N) and oT(z + N) are the total, transverse cross sections 

on nucleons of the “fictitious massless photons” Y- and y+ which correspond 

to the isospin indices (17 i2)x/z; while ,-JT (7 + p--+1 = i > and gT(yv+p-I = t) 

are the total, transverse cross sections on protons which correspond to I = i 

and I = $ final states and which come from the isovector part of the “real 

photon. I1 Taking the derivative of Eq. (19) with respect to q2 at q2 =0 we 

then find 

2 
dF;(s2 ) 

dq2 q2=o 

-CT ,v*p+; ( )I =o 

This is of course just the Cabibbo-Radicati sum rule. 
14 If there was a q2 

dependent subtraction in Eq. (19)) the right hand side of Eq. (21) would pre- 

sumably no longer be zero. The fact that Eq. (21) appears to be satisfied 15,16 

as it stands then sets limits on such a subtraction constant. We will return 

to this point in Section V. 

Let us assume for the moment that Eq. (18) (or equivalently Eq. (19)) is 

true as it stands. Then since 2(pp+P,, Z/3 f-1 + p (+I 1 p (-) - @(+) -we can derive 
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the inequality4 

where pF and pn correspond to electron-proton and electron-neutron scat- 

tering respectively. Equation (22) is only an inequality, both because we can 

say nothing about the contribution of the isoscalar part of the electromagnetic 

current from the commutation relation Eq. (3a) or the sum rule Eq. (18)) and 

because o 7’ + N-+1 = 4 
( ) 2 0. In fact, at q2 = 0 where only the proton Born 

term contributes, the left hand side of Eq. (22) is equal to one, i.e., twice 

the right hand side, since one-half the nucleon’s charge is isoscalar, about 

which the sum rule Eq. (18) has no knowledge. 

Equation (22) is just the inequality for inelastic electron scattering first 

derived by Bjorken. If we integrate over dE’ (= - dqo) in Eq. (6b) and let 

E - CQ, we can rewrite the inequality as 

which is just one-half the result for do/dq2 for a point (spinless) particle. 

The assumptions needed to derive Eq. (22) or (23) are of course just those 

needed to derive the sum rule Eq. (18). 

B jorken’s second inequality, however, depends on different assumptions. 

It reads5 
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where Q! and a! 
P n correspond to electron-proton and electron-neutron 

(backward) scattering respectively. The right hand side of Eq. (24) depends 

not on Eq. (3), but on the commutator of two space components of the currents. 

The number l/2 on the right hand side of Eq. (24) corresponds to the U(6) X U(6) 

chiral algebra. It would be zero if the nucleon’s isospin was carried (for large 

q2) by spin 0 objects. As it stands, Eq. (24) predicts that at large q2 the sum 

of proton and neutron backward scattering should be greater than one-half that of 

a point Dirac particle. 

IV. A RELATION BETWEEN 

THE TWO ELECTRON SCATTERING INEQUALITIES 

It is clear from the kinematics presented in Section II that if clang. Or 

cS = 0, then, since in that case (Y and p would only depend on ctrans or cT , . 

ac and p are related by p(q,, q2) = A 
q +s: 

@mo,s2) l 
The two inequalities 

17 
presented in Section III are then related. We in fact now show the following: 

If, for all q, and q2d,, 

a,tqo’ q2) 3 (25) 

then Bjorken’s inequality for backward scattering using chiral U(6) XU(6) 

algebra follows from his original inequality derived from Adler’s neutrino sum 

rule. This follows trivially since if we write Bjorken’s original inequality as 
co 

l/2 ,< / dqop(qo, q2) and use Eqs. (17) and (25) we have 
0 

(26) 

co 

dqo -+-- q2 

4n CY q”+qZ 

,< lim q2 
2 
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the last line of Eq. (26) being just the inequality for backward scattering derived 

using the chiral U(6) X U(6) algebra (Eq. (24)) . 

Thus, the inequality for backward scattering which depends on the com- 

mutator of two space components of the currents also follows from the original 

electron scattering inequality (which depends on the commutator of two time 

components of the currents) plus Eq. (25). It of course remains to establish 

the validity of Eq. (25). For the nucleon, dropping a common factor including 

a 6(q, - q2/2MN)) , We have us = (GE(q2))2 and UT = (q2/4M2,) (G,(d) 2 

so that Eq. (25) is true if 

( GEtq?)2 = as-< 2 uT = (GM(q2))2 (27) 

This appears to be true experimentally for both the neutron and proton for all q2. 

In the region of the N*(1238) resonance, recent data 18 indicates Eq. (25) is true 

up to. q2 z 1 BeV2 with c s consistent with zero above q2= .4 BeV2. Thus 

Eq. (25) appears to be true for the nucleon and up through the region of the 

N*(1238). At higher energies there is presently a conclusive lack of data on 

V. THE CONVERGENCE AND SATURATION 

OF THE SUM RULES AND INEQUALITIES 

Before discussing in detail how the various integrals ti the sum rules and 

inequalities are (or are not) saturated by a few (or many) resonances, we might 

well ask whether the integrals converge at all. For fixed p2, we see from Eq. (9) 

that for large qc, 19 

a(qO’q 2, Oc q. utrans . tqo7ss 

P3) 
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where do, q 2, is a total (massive) photon-nucleon cross section. Thus for 

large qo, Adler’s sum rule behaves as pdso/s, [d-l (qo, q? - o(‘) No, d-j 

where A-’ and d+) correspond to anti-neutrino and neutrino cross sections 

or to the cross sections of fictitious y- and rs photons. By the Pomeranchuk 

theorem, these cross sections approach each other as qo- m , and therefore, 

the integral converges. In fact, one expects in a Regge theory of high energy 

scattering that 

where ~~(0) is the t=O intercept of the p Regge trajectory and is numerically 

about 0.5. 

For Bjorken’s two inequalities, however, we have an integral like 

+ (T n) where 
% 

and on are total (massive) photon-proton and 

photon-neutron cross sections. If 
OP 

and (T n approach a constant as qo- 00 , 

as we naively expect them to do, then the integrals in Bjorken’s inequalities 

diverge logarithmically. Thus the inequalities for inelastic electron scattering 

are trivially satisfied if we integrate to high enough values of qo, 

What then can in fact be tested by the inequalities ? What can be tested is 

specific models for the saturation of the integral in the inequalities, such as 
/’ 

saturation by a few resonances or by states in a “quasi-elastic peakerr It is 

of course a perfectly definite and testable model to ask if the inequalities hold 

when we only integrate to say q. = 5 BeV or to where there are no longer any 

bumps in the inelastic scattering spectrum. 20 If such a simple model in fact 

works,we will have learned a great deal about the structure of the nucleon. Lf 

such a specific model does not work, however, we can not immediately say that 

the inequality is wrong or that Adler’s neutrino sum rule is wrong. It may be 

that Adler’s sum rule (and therefore the inequality) is saturated at large q2 
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only when we include a substantial part of the high energy tail. It may also be 

that Adler’s sum rule is plain wrong at large q2, but we will be unable to tell 

this by looking at the electron scattering inequality because it diverges and will 

be satisfied simply by integrating to a large enough value of q. . However, 

since two times the integrand in the inequality, Eq. (22)) is an upper bound on 

the integrand in the Adler sum rule, Eq. (18)) for each value of q. (and q2 ) , 

if the saturation of the inequality by the resonance region is so poor that we 

have to integrate to say lo3 BeV to satisfy the inequality, then the Adler sum 

rules are essentially useless, even if they do 

For small values of q2 the convergence 

studied by Adler and Gilman 15 who write21 

finally converge. 

of the p sum rule has been 

/Edqo($$ -5) [ P(-)t4,, q2 1 - P(+) tq,,q? 
I 

= 1 + F2tE)(q2/M2N) +O((q2/M;,)2 

0 

(29) 

so that the p sum rule, Eq. (18)) becomes the statement that if we take the 

limit of both sides of Eq. (29) as E--+m , then F2(E) --+O. Using existing photo- 

production data and assuming that F2(E)ca0, it was shown 
16 that F2(E) is 

negative and that its magnitude is less than 0.5 for E 2 5 BeV. Thus for small 

q2 (say, q2 = . 1 BeV2) we find the sum rule is satisfied to within a few percent 

with an incident energy of - 5 BeV. Note that, although our expansion in powers 

of (q2/Mi) is strictly only good for small q2 , we would not be greatly surprised 

from the value F2(5 BeV) 2~ - 0.5 if for q2 N Mi we only obtained a 50% satura- 

tion of the sum rule for E = 5 BeV, q2 = Mi . 

The data at or near q2 = 0 also limit possible modifications of the /3 sum 

rule, Eq. (18). Suppose, for example, we guess that Eq. (18) should be re- 

placed by 22 

m 
- 

P(-) (go, q2 ) - P(+’ (sot q2 )] = 
0 

(30) 
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I 

This agrees with Eq. (18) at q2- -0, but differs elsewhere. It in fact corresponds 

22 to a q2 dependent subtraction constant of the form q2(2M2+ q2) /(M2 + q ) in 

the (massive) photon-nucleon forward Compton scattering amplitude correspond- 

ing to Pts,, 42,. If we take the derivative with respect to q2 at q2 = 0 of Eq. 

(30), we obtain a modification of the Cabibbo-Radicati sum rule ( Eq. (21) ) : 

dFvtq2) 
2 . d;2 

Available photoproduction data, which show that the Cabibbo-Radicati sum rule 

is well satisfied 15,16 (see Table I) then limit 23 M 2 1.7 BeV, i.e., greater 

than a P meson mass by better than a factor of two. Such arguments, of course, 

apply only to subtraction constants which depend on q2 linearly, i. e. , we can 

say nothing using the above arguments about subtraction constants that behave ’ 

like (q2/M2) 2 as q2-+ 0. 

Let US now look briefly at what the existing data on inelastic electron scat- 

tering 18,24,25 says about the inequality for q2 = 1 BeV2, In Table II we have 

calculated rough values for P,(q,, q2 = 1 BeV2) at the peaks of the known 

resonances extracted mostly from the recent DESY data. 25 We see that 

B,(qo, 1 BeV2) is slowly decreasing but has a mean value of 2 0.2/BeV in the 

resonance region. As the valleys between the resonances are rather shallow 

pp cy 0.2/BeV gives a fair estimate of the integrand of the sum rule. Integrating 

from threshold (W = MN + Mti qo= .68 BeV) to around the region of the N*(1920) 
2.02 

(W = 1.92 BeV, q. = 2.02) we find 
/ 

dqo P,(qo, q2 = 1 BeV2) Eli 0.25. 

.68 
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2.02 
Assuming a similar value for 

J W$,ts,, q2 = 1 BeV2)(which seems to be 

true at least for ,“,= 0) and-a6 li ding on the Born term contribution, which is 

cv 0.1, we findi. dqo [pp(qo, 1 Be?) + pn(qo, 1 BeV2)] N, 0.6 and the in- 

equality is roughly satisfied by integrating over the resonance region. 

It is of course clear that -if we increase q2 much higher (to say 2 BeV2) 

the contribution of the low mass region considered above will decrease and 

the inequality will no longer be satisfied by considering only this region. For 

information on what it takes to satisfy the inequality for large values of q2 we 

must await the outcome of experiments underway at SLAC. 
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FIG. I 

The kinematics of inelastic electron-nucleon scattering. 



I 

TABLE I 

Contributions to the Cabibbo-Radicati sum rule, 

q2=o 

-0 I = $) 1 = 0; s ee Refs. 15 and 16 for details. 

2 dF-7 (9”) 
dq2 

- 1720 pb 

q2=o 

v 2 

0 
iii- N 

S-Wave Eo+ 
( ) 

N* (1238) 

N*(1520) 

N* (1688) + 100pb 

High energy tail starting at 

q. = 1.1 BeVto make sum \ 

rule satisfied 

+ 1520pb 

+ 600pb 

- 1200 pb 

+ 400 pb 

+ 300pb 



TABLE II 

q2 = 1 BeV2 at the peaks of the known pion-nucleon 

resonances. 

qO 

.88 (W = 1238 MeV) 

1.28 (W = 1512 MeV) 

1 BeV’ 

.26/BeV 

.25/BeV 

1.58 (W = 1688 MeV) .22/BeV 

2.02 (W = 1920 n/rev) .13/BeV 


