ASYMPTOTIC THEORY OF BEAM BREAK-UP IN LINEAR ACCELERATORS*

by

W. K.H. Panofsky and M. Bander** Stanford Linear Accelerator Center Stanford University, Stanford, California

[^0]
I. GENERAL DESCRIPTION OF OBSERVED PHENOMENA

The observed beam current of the SLAC $960-\mathrm{sec}$ tion linac appears to obey the results of independent particle dynamics al low intensilies. However, as was first observed on April 24, 1966, the pulse length of the transmitted beam appears to shorten provided the beam current exceeds a threshold value at a given distance along the accelerator; the greater the distance, the lower the threshold. This general behavior is illustrated in Fig. 1. Further tests clearly indicated that the phenomenon responsible is the sudden onset of a radial progressive instability conventionally called beam break-up (BBU).

Observation of radial instability in high current linear accelerators is not new, ${ }^{1-6}$ and the phenomenon has been conclusively associated with the excitation of transverse deflecting modes. However, one should clearly recognize that we are dealing with two quite distinct mechanisms by which such modes can lead to an amplifying action. The first mechanism discussed in the above references resulis from the negative group velocity of the TEM $_{11}$ mode of the conventional disk-loaded structure. This negative group velocity will feed transverse energy from the end of a given accelerating section to the front, thus leading to the regenerative action involved in the "backward-wave oscillator." This phenomenon of regeneration within a given section characteristically occurs at currents of several hundred milliamperes at pulse lengths of several microseconds. The second mechanism which is dominant in a multisection relatively low current accelerator (such as SLAC or the Kharkov $2-\mathrm{GeV}$ accelerator $)^{7}$ involves amplification from section to section, coupled only by the electron beam without backward propagation of electromagnetic energy.

In this paper we will give the theory of the second mechanism only, which is the dominant cause of the BBU phenomena occurring at SLAC. As will be seen, this mechanism is very gencral, being quite independent of the detailed structure of the accelerating sections.

II. THE MULTICAVITY MODEL

A. The Model

We will represent each section of the accelerator by a single cavity; the cavity geometry constitutes a free parameter which can be chosen to fit the experimental behavior.

We will assume:
(a) Only one resonant mode at a frequency ω_{0} and loss factor Q is of significance.
(b) The cavity has axial symmetry and the axial electric field vanishes along the axis of symmetry.
(c) The rate of build-up of oscillation giving rise to the radial modulation of the beam is small compared to ω_{0}.
Consider a particle of charge e to cross at a time t the n of N cavities at a distance x from the z-axis, taken to be an axis of symmetry. Let L be the distance between cavities, and let the particle velocity be $v \approx c=1$ (see Fig. 2).
B. Equation of Motion

Let the electric field \vec{E} in the $n^{\text {th }}$ cavity be derivable from a vector potential \vec{A}, and let each cavity be excited near a single resonant frequency ω_{0}. We obtain from the deflection theorem ${ }^{8}$ for the change in transverse momentum p_{x} in the $n^{\text {th }}$ cavity :

$$
\begin{equation*}
\Delta p_{x}=e \int \frac{\partial A_{z}}{\partial x} d z \tag{1}
\end{equation*}
$$

This transverse momentum Δp_{x} results in a difference in displacement of $\left(\Delta p_{x} / n_{0} \gamma\right) L$ between the $(n+1)^{\text {th }}$ and $n^{\text {th }}$ cavity where $m_{0} \gamma$ is the particle energy. We can thus write a difference equation which can be approxmmated as a transverse differential equation of motion as follows:

$$
\begin{equation*}
\frac{\partial}{\partial n}\left(\gamma \frac{\partial x}{d n}\right)=\frac{e L}{m_{0}} \int \frac{\partial A_{z}}{\partial x} d z \tag{2}
\end{equation*}
$$

C. Excitation of Cavities

Equation (2) gives the radial equation of motion as governed by the transverse gradient of the longitudinal component of the vector potential and hence the electric field. No special assumptions as to mode structure are assumed. If the particle passes at a distance x (assumed constant in each cavity) from the symmetry axis, then, in general, work is done against the longitudinal field.

Each cavity excited at a frequency ω near ω_{0} loses energy U to the current j at the rate $j \int \overrightarrow{\mathrm{E}} \cdot \mathrm{d} \overrightarrow{\mathrm{z}}$ and loses energy to wall losses at the rate $\omega \mathrm{U} / \mathrm{Q}$. The rate of build -up is therefore given by (averaged over many cycles as designated by the
symbol)

$$
\begin{equation*}
\frac{\partial U}{\partial t}-\bar{j} \vec{E} \cdot d \vec{z}-\frac{\omega U}{Q} \tag{3}
\end{equation*}
$$

If the field $\vec{E}=\overrightarrow{0}$ on the axis and varies linearly from the axis, $\int \overrightarrow{\mathrm{E}} \cdot \mathrm{d} \overrightarrow{\mathrm{z}}$ can be approximated by:

$$
\begin{equation*}
\overline{\int \vec{E} \cdot d \vec{z}} \sim \overline{x \int \frac{\partial E_{z}}{\partial x} d z} \tag{4}
\end{equation*}
$$

where x is the transverse coordinate at which the beam carrying the current j passes from the axis. The cavity excitation is thus proportional to x; on the other hand the cavity, once excited, will affect the motion in x according to Eq. (2).

As a result the beam will receive a transverse structure so that x will be modulated at a frequency ω near ω_{0}.

Note that the field integrals appearing in Eq. (2) and in Eq. (4) are simply related if we can assume that oscillations take place near $\omega=\omega_{0}$ and that the rates of build-up or damping are slow relative to ω_{0}. We adopt the convention that all field amplitudes vary as $e^{+i \omega t}$ and that we consider the transverse displacement to vary as $e^{+i \omega t}$ also. The quantities x, E, A thus become complex amplitudes carrying both the phase and the (slowly varying) amplitude information. Using this convention we can write the field integral in (4), using $E_{z}=-\partial A_{z} / \partial t$:

$$
\begin{equation*}
I(t)=\int \frac{\partial E_{z}}{\partial x} d z \cong-i \omega \int \frac{\partial A_{z}}{\partial x} d z \tag{5}
\end{equation*}
$$

giving the equations of motion and the energy build-up equations

$$
\begin{align*}
& \frac{\partial}{d n}\left(\gamma \frac{\partial x}{d n}\right)=\frac{i e L}{m_{0} \omega} I \tag{6}\\
& \frac{\partial U}{\partial t}+\frac{\omega U}{Q}=-\overline{x I j} \tag{7}
\end{align*}
$$

In general U and I are related quadratically through a (generally complex) impedance. In general we can write
and

$$
\begin{equation*}
U=\frac{1}{2} \operatorname{Re}\left\{\mathrm{KII}^{*}\right\} \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\overline{\mathrm{xI}}=\frac{1}{2} \operatorname{Re}\left\{\mathrm{XI}^{*}\right\} \tag{9}
\end{equation*}
$$

where * denotes the complex conjugate and Re the real part. Hence (7) becomes, noting that $I \frac{\partial I^{*}}{\partial t}+I^{*} \frac{\partial I}{\partial t}=2 I^{*} \frac{\partial I}{\partial t}$:

$$
\begin{equation*}
\frac{\partial I}{\partial t}+\frac{\omega}{2 Q} I=\frac{-j}{4 K} x \tag{10}
\end{equation*}
$$

Combining (6) and (10) we obtain:

$$
\begin{equation*}
\left\{\left(\frac{\partial}{\partial t}+\frac{\omega}{2 Q}\right) \frac{\partial}{\partial n}\left(\gamma \frac{\partial}{\partial n}\right)+\frac{i j e L}{4 \mathrm{Km}_{0} \omega}\right\} x=0 \tag{11}
\end{equation*}
$$

as the basic differential equation governing the build-up of the instability.
The impedance constant K can be related qualitatively to the dimensions of the cavily. Let ℓ be the length of the cavity which can be interpreted as an effective "interaction length" in the actual case. We have dimensionally:

$$
\begin{equation*}
\mathrm{U}=\frac{1}{8 \pi} \int|\mathrm{E}|^{2} \mathrm{dv} \sim(|I| / \ell)^{2} \mathrm{a}^{2} \cdot\left(\pi \mathrm{a}^{2} \ell\right) \tag{12}
\end{equation*}
$$

where a is a radial dimension of the cavity. More quantitatively, for a simple cylindrical cavity of radius $\mathrm{a}=3.83 / \mathrm{K}$

$$
\begin{equation*}
\mathrm{E}_{\mathrm{Z}}=\frac{2}{\kappa} \mathrm{~J}_{1}(\kappa \rho) \cos \phi\left(\frac{\partial \mathrm{E}_{\mathrm{Z}}}{\partial \mathrm{x}}\right) \tag{13}
\end{equation*}
$$

where the symbols have their usual meaning. The integral in (12) then gives

$$
\begin{equation*}
U=a^{4}|I|^{2} / 362 \ell \tag{14}
\end{equation*}
$$

The constant K in Eqs. (8) - (11) is thus:

$$
\begin{equation*}
K=\left(a^{4} / l\right) / 181 \tag{15}
\end{equation*}
$$

Let us measure beam intensity in terms of the quantity $J=$ number of particles/sec (or number of particles/unit length since we take $\mathrm{v} \approx \mathrm{c}=1$). Hence we can write Eq. (11) as

$$
\begin{equation*}
\left[\left(\frac{\partial}{\partial t}+\beta\right) \frac{\partial}{\partial n}\left(\gamma \frac{\partial}{\partial n}\right)+(i C J)\right] x=0 \tag{16}
\end{equation*}
$$

where

$$
\beta=\omega / 2 \mathrm{Q}
$$

and

$$
\begin{equation*}
C=7.2 \frac{e^{2}}{m_{0}} \frac{\ell \lambda L_{1}}{a^{4}}=7.2\left(\frac{r_{0} \ell \lambda L}{a^{4}}\right) \tag{17}
\end{equation*}
$$

is a dimensionless constant expressed in terms of the classical electron radius $r_{0}=e^{2} / m_{0}=2.8 \times 10^{-13} \mathrm{~cm}$.
D. Physical Discussion

The build-up of oscillation is governed by the integrals of Eq. (16); blow-up will be dominated by that frequency ω which will maximize the build-up rate.

Let us understand some of the qualitative features of these equations.
The field configuration in the deflecting mode has the qualitative configuration shown in Fig. 3. The above analysis shows that the details of the field configuration are of minimum significance since the same integral I over the fields governs both the transverse momentum imparted to the particle as well as the coupling of the particle in "driving" the field build-up. Equation (6) shows that the transverse momentum $\Delta \mathrm{p}_{\mathrm{x}}$ is in phase quadrature (leading) with the field integral I.

According to Eq. (10) a lincar combination of the field integral I and its rate of build-up is 180° out of phase with the driving displacement x. On the other hand x and $\Delta \mathrm{p}_{\mathrm{x}}$ must have a common in-phase component if the oscillations are to grow. Therefore for maximum build-up the phase of x will be somewhere between the phase of Δp_{x} and $-I$, as shown in Fig. 4.

E. Solution by Laplace Transform Using the Method of Steepest Descent

In this section we will study the solution of the equation (16) where γ is a given function of n.

Let us try the Laplace transform solution, using an appropriate contour c,

$$
\begin{equation*}
x(n, t)=e^{-\beta t} \int_{c} f(n, \mu) e^{\mu t} d \mu \tag{18}
\end{equation*}
$$

in Eq. (16). The function $f(n, \mu)$ satisfies

$$
\begin{equation*}
\mu\left(\gamma \mathrm{f}^{\prime}\right)^{\prime}+\mathrm{iCJf}=0 \tag{19}
\end{equation*}
$$

where ' denotes differentiation with respect to n. We can integrate this equation by assuming adiabatic variation of γ with n (WKB approximation). The result is

$$
\begin{equation*}
\mathrm{f}(\mathrm{n}, \mu) \sim \gamma^{-1 / 4} \exp \left\{ \pm \mathrm{i}(\mathrm{iCJ})^{1 / 2} \mu^{-1 / 2} \mathrm{~g}\right\} \tag{20}
\end{equation*}
$$

where

$$
\begin{equation*}
g(n)=\int_{n_{0}}^{n} \gamma^{-1 / 2} d n^{\prime} \tag{21}
\end{equation*}
$$

since the general WKB solution of the equation $\left(A f^{\prime}\right)^{\prime}+B f=0$ is

$$
\begin{equation*}
f \sim \frac{1}{\sqrt[4]{A B}} \exp \left[\pm i \int^{n} \sqrt{B / A} d^{\prime}\right] \tag{22}
\end{equation*}
$$

The i term in the exponent of Eq. (20) is carried from Eq. (16) and governs the phase of the space harmonic in x at the frequency ω relative to the phase of the electric field in each cavity, as discussed previously. Hence the general solution is

$$
\begin{equation*}
\mathrm{x}(\mathrm{n}, \mathrm{t})=\mathrm{e}^{-\beta \mathrm{t}} \int_{\mathrm{c}} \mathrm{w}(\mu) \mathrm{d} \mu \exp \left\{\mu \mathrm{t} \pm \mathrm{i}[\mathrm{iCJ} / \mu]^{1 / 2} \mathrm{~g}\right\} \tag{23}
\end{equation*}
$$

where the weighting function $w(\mu)$ depends on the starting conditions. We chose the root giving a positive real part in the exponent.

Evaluation of the function $w(\mu)$ in terms of specific starting condition, such as a unit disturbance in x occurring at $n=n_{0}$ at a fixed time, is quite
straightforward, but evaluation of the inverse Laplace integral, Eq. (23), in general is not possible in closed analytical form.

Among such starting sources are:
Shot noise in beam
Shock excitation through misalignments
Thermal noise in early sections
Noise or spurious signals from klystron power sources
Electrical discharges in high microwave fields
Present experimental evidence is not conclusive as to which of these initial driving terms are important. However, the question of largest practical interest is the dependence of x on the various physical parameters (current, length of current pulse, number of cavities) once a "blow-up" of x, sufficiently large to lead to beam loss, has occurred. Such loss requires a large (10^{7} to 10^{9}) amplification. For this purpose an asymptotic solution is adequate which can be generated by the method of steepest descent.

The "saddle point" of the exponent in Eq. (23) is at one of the roots $\mu=\epsilon$
of the equation

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} \mu}\left\{ \pm(\mathrm{CJ})^{1 / 2} \mathrm{~g} \mathrm{e}^{(3 / 4) \pi \mathrm{i}} \mu^{-1 / 2}+\mu \mathrm{t}\right\}=0 \tag{24}
\end{equation*}
$$

which occur at:

$$
\begin{equation*}
\mu=\epsilon=(\mathrm{CJ})^{1 / 3}(\mathrm{~g} / 2 \mathrm{t})^{2 / 3} e^{(1 / 2+2 / 3 \mathrm{n}) \pi \mathrm{i}} \tag{25}
\end{equation*}
$$

leading to a value $\theta(\epsilon)$ of the exponent of Eq. (23) of

$$
\begin{equation*}
\theta(\epsilon)=2^{1 / 3} \mathrm{t}^{1 / 3}(\mathrm{CJ})^{1 / 3} \mathrm{~g}^{2 / 3}\left[\frac{3}{2} \mathrm{e}^{(1 / 2+2 / 3 \mathrm{n}) \pi \mathrm{i}}\right] \tag{26}
\end{equation*}
$$

where n is any integer.

We chose that value of n for which ϵ has the greatest real part, i. e., for which blow-up occurs at the maximum rate. This gives $n=2$ or

$$
\begin{equation*}
\theta(\epsilon)=3\left(2^{1 / 3} / 4\right)(\sqrt{3}-\mathrm{i})(\mathrm{CJt})^{1 / 3} \mathrm{~g}^{2 / 3}=(1.64-0.94 \mathrm{i})(\mathrm{CJ} \mathrm{t})^{1 / 3} \mathrm{~g}^{2 / 3} \tag{27}
\end{equation*}
$$

The appropriate contour passes through the "saddle-point" $\mu=\epsilon$ along a direction of "steepest descent," i.e., along a direction to make $\theta(\mu)$ a greatest maximum. If we expand $\theta(\mu)$ about $\mu=\epsilon$, we can put:

$$
\begin{equation*}
\theta(\mu)=\theta(\epsilon)+\frac{1}{2}(\mu-\epsilon)^{2} \theta^{\prime \prime}(\epsilon) \tag{28}
\end{equation*}
$$

Differentiation of (26) gives:

$$
\begin{equation*}
\theta^{\prime} '(\epsilon)=\left(3 / 2^{1 / 3}\right)(\mathrm{CJ})^{-1 / 3} \mathrm{t}^{5 / 3} \mathrm{~g}^{-2 / 3} \mathrm{e}^{\mathrm{i} \pi / 6} \tag{29}
\end{equation*}
$$

Let the argument of the contour c of steepest descent when passing through $\mu=\epsilon$ be ψ, i.e., let $\mu-\epsilon=\rho \mathrm{e}^{\mathrm{i} \psi}$ where ρ and ψ are real. The argument of

$$
\begin{equation*}
(\mu-\epsilon)^{2} \theta^{\prime \prime}(\epsilon)=\rho^{2}\left|\theta^{\prime \prime}(\epsilon)\right| \mathrm{e}^{\mathrm{i}(2 \psi+\pi / 6)} \tag{30}
\end{equation*}
$$

is $-\pi$ along the path of steepest descent, or $\psi=5 \pi / 12$. The appropriate contour is shown in Fig. 5. The function of (n, μ) thus falls off steepest in both directions along c away from the real axis. This leads to a useful approximation if the exponent is large, "i. e., if "blow-up" has largely progressed.

The asymptotic solution is then given by evaluation of the integral (23), using Eqs. (26), (28), and (29); and obtain:

$$
\begin{equation*}
x(n, t)=x_{0}(n, t) \exp \left\{3\left(2^{1 / 3 / 4}\right)(\sqrt{3}-i)(C J t)^{1 / 3} g^{2 / 3}-\beta t\right\} \tag{31}
\end{equation*}
$$

where $x_{0}(n, t)$ is a relatively slowly varying function given by

$$
\begin{equation*}
x_{0}(11, t) \approx J^{1 / 6} t^{-5 / 6} g^{1 / 3} \gamma^{-1 / 4} \tag{32}
\end{equation*}
$$

The growth is thus controlled by the exponent

$$
\begin{equation*}
1.64 \mathrm{C}^{1 / 3}\left(\mathrm{tJ} \mathrm{~g}^{2}\right)^{1 / 3} \tag{33}
\end{equation*}
$$

in the highly transient break-up observed at SLAC, where the term β t is small compared to the present term.

For a constant "blow-up factor" we thus obtain the basic scaling law:

$$
\begin{equation*}
(J t) g^{2}=\text { constant } \tag{34}
\end{equation*}
$$

Hence the total charge (Jt) per pulse which can be accelerated to a spccificd point along the accelerator under a given acceleration program $\gamma(\mathrm{n})$ within a limiting blow-up factor is constant, i. e., independent of pulse length.

Let us evaluate the integral g if we accelerate from n_{0} to n_{1} at a uniform energy gain γ^{\prime} and coast from there to section n_{2}. We obtain:

$$
\begin{equation*}
\mathrm{g}=\int_{\mathrm{n}_{0}}^{\mathrm{n}_{2}} \gamma^{-1 / 2} \mathrm{dn}^{\prime}=\frac{2}{\gamma^{1^{1 / 2}}}\left(\mathrm{n}_{1}^{1 / 2}-\mathrm{n}_{0}^{1 / 2}\right)+\frac{1}{\left(\mathrm{n}_{1} \gamma^{\prime}\right)^{1 / 2}}\left(\mathrm{n}_{2}-\mathrm{n}_{1}\right) \tag{35}
\end{equation*}
$$

For constant acceleration (no coasting) and $n_{1} \gg n_{0}$ we obtain the simple scaling law,

$$
\begin{equation*}
\text { Jt } n_{1} / \gamma^{\prime}=\text { constant } \tag{36}
\end{equation*}
$$

while for "pure" coasting from n_{1} to n_{2} at an energy γ_{c} we obtain

$$
\begin{equation*}
\mathrm{Jt}\left(\mathrm{n}_{2}-\mathrm{n}_{1}\right)^{2} / \gamma_{\mathrm{c}}=\mathrm{constant} \tag{37}
\end{equation*}
$$

Numerical comparisons of these relations with experience is good and has been discussed elsewhere. ${ }^{9}$ Suffice it to say that reasonable agreement is oblained with an exponent of about 20 leading to beam loss through BBU .

The stecpest descent calculation leads to valid results only if the exponent is large. The error can be estimated by estimating the variation of $x_{0}(n, t)$ as given by Eq. (32) over the range of interest. For numerical situations of interest this might add a correction of no more than 20% to the exponent.

F. Solution by Iteration

The steepest descent solution is purely asymptotic and thus cannot be linked to the starting condition. Let us now examine the solution of the basic differential equation (16) under the boundary conditions corresponding to a δ-function impulse at $t=T$, i.e.,

$$
\begin{align*}
& \mathrm{x}\left(\mathrm{n}=\mathrm{n}_{0}, \mathrm{t}\right)=\delta(\mathrm{t}-\mathrm{T}) \\
& \frac{\partial \mathrm{x}}{\partial \mathrm{n}}\left(\mathrm{n}=\mathrm{n}_{0}, \mathrm{t}\right)=0 \tag{38}
\end{align*}
$$

As mentioned above, the exponential factor $\exp (-\beta t)$ is always factorable; we can thus write a first integral by putting

$$
\begin{equation*}
y(n, t)=x(n, t) \exp (\beta t) \tag{39}
\end{equation*}
$$

where $y(n, t)$ satisfies

$$
\begin{equation*}
\frac{\partial}{\partial n}\left[\gamma \frac{\partial y}{\partial n}(n, t)\right]+i C J \int_{-\infty}^{t} y\left(n, t^{\prime}\right) d t^{\prime}=0 \tag{40}
\end{equation*}
$$

and where the boundary conditions are

$$
\begin{align*}
& \mathrm{y}\left(\mathrm{n}=\mathrm{n}_{0}, \mathrm{t}\right)=\delta(\mathrm{t}-\mathrm{T}) \mathrm{e}^{\beta \mathrm{T}} \\
& \frac{\partial \mathrm{y}}{\partial \mathrm{n}}\left(\mathrm{n}=\mathrm{n}_{0}, \mathrm{t}\right)=0 \tag{41}
\end{align*}
$$

We again make the WKB approximation. Let

$$
\begin{equation*}
\mathrm{y}(\mathrm{n}, \mathrm{t})=\frac{1}{[\gamma(\mathrm{n})]^{1 / 4}} \mathrm{~F}[\mathrm{~g}(\mathrm{n}), \mathrm{t}] \tag{42}
\end{equation*}
$$

If we neglect terms of the order of $(\mathrm{d} \gamma / \mathrm{dn})^{2}$ and $\left(\mathrm{d}^{2} \gamma / \mathrm{dn}{ }^{2}\right)$, (which is exact in the absence of acceleration) we find that $F(z, t)$ satisfies

$$
\begin{align*}
& \frac{\partial^{2}}{\partial z^{2}} \mathrm{~F}(\mathrm{z}, \mathrm{t})=-\mathrm{iCJ} \int_{-\infty}^{\mathrm{t}} \mathrm{~F}\left(\mathrm{z}, \mathrm{t}^{\prime}\right) \mathrm{dt} \\
& \mathrm{~F}(0, \mathrm{t})=\gamma_{0}^{1 / 4} \mathrm{e}^{\beta \mathrm{T}} \delta(\mathrm{t}-\mathrm{T}) \\
& \frac{\partial \mathrm{F}}{\partial z}(\mathrm{z}=0, \mathrm{t})=\frac{\gamma_{0}^{\prime}}{4 \gamma_{0}^{1 / 4}} \delta(\mathrm{t}-\mathrm{T}) \mathrm{e}^{\beta \mathrm{T}} \tag{43}\\
& \gamma_{0}=\gamma\left(\mathrm{n}_{0}\right) ; \quad \gamma_{0}^{\prime}=\frac{\partial \gamma}{\partial \mathrm{n}}\left(\mathrm{n}=\mathrm{n}_{0}\right)
\end{align*}
$$

Incorporating these boundary conditions we obtain an integral equation for $F(\mathrm{z}, \mathrm{t}):$
$F(z, t)=-i C J \int_{-\infty}^{t} d t^{\prime} \int_{0}^{z} d z^{\prime} \int_{0}^{z^{\prime}} d z^{\prime \prime} F\left(z^{\prime \prime}, t^{\prime}\right)+\frac{\gamma_{0}^{\prime}}{4 \gamma_{0}^{1 / 4}} z e^{\beta T} \delta(t-T)+\gamma_{0}^{1 / 4} \delta(t-T) e^{\beta T}$
The solution Eq. (7) may be found by iteration:

$$
\begin{align*}
F(z, t)=e^{\beta t} \delta(t-T)\left(\gamma_{0}^{1 / 4}+\frac{\gamma_{0}^{\prime} z}{4 \gamma_{0}^{1 / 4}}\right) & +\theta(t-T) e^{\beta T} \sum_{j=1}^{\infty}(-i C J)^{j} \frac{(t-T)^{j-1}}{(j-1)!} \times \\
& \times\left(\frac{\gamma_{0}^{1 / 4} z^{2 j}}{(2 j)!}+\frac{\gamma_{0}^{\prime}}{4 \gamma_{0}^{1 / 4}} \frac{z^{2 j+1}}{(2 j+1)!}\right) \tag{45}
\end{align*}
$$

where $\theta(t-T)$ is a unit step function.

Using the definition for

$$
\mathrm{g}(\mathrm{n})=\int_{\mathrm{n}_{0}}^{\mathrm{n}} \gamma^{-1 / 2} \mathrm{dn}{ }^{\prime}
$$

given by Eq., (21), we may trace back to obtain a solution for $x(n, t)$:

$$
\begin{align*}
x(n, t)= & \frac{e^{-\beta(t-T)}}{[\gamma(n)]^{1 / 4}}\left\{\left(\gamma_{0}^{1 / 4}+\frac{\gamma_{0}^{\prime}}{4 \gamma_{0}^{1 / 4}} g(n)\right) \delta(t-T)+\theta(t-T) \sum_{j=1}^{\infty}(-i C J)^{j} \frac{(t-T)^{j-1}}{(j-1)!}\right. \\
& {\left.\left[\frac{\gamma_{0}^{1 / 4}[g(n)]^{2 j}}{(2 j)!}+\frac{\gamma_{0}^{\prime}}{4 \gamma_{0}^{1 / 4}} \frac{[g(n)]^{2 j+1}}{(2 j+1)!}\right]\right\} } \tag{46}
\end{align*}
$$

For the coasting (non-accelerating) case this simplifies to

$$
\begin{equation*}
x(n, t)=e^{-\beta(t-T)}\left[\delta(t-T)+\theta(t-T) \frac{C J}{\gamma_{c}}\left(n-n_{0}\right)^{2} \sum_{j=1}^{\infty}(-i)^{j} \frac{\left[(t-T)\left(n-n_{0}\right)^{2} \frac{C J}{\gamma_{0}}\right]^{j-1}}{(2 j)!(j-1)!}\right] \tag{47}
\end{equation*}
$$

Due to the appearance of $(2 \mathrm{j})!(\mathrm{j}-1)$! in the denominator, this series converges very rapidly. For $z^{2}(t-T) \sim 3000$, fifteen terms would be sufficient.

In Figs. 6 and 7, the numerical evaluation of the sums is presented. Let $g(n)$, γ_{0}, and γ_{0}^{\prime} be as above. Note that the expansion parameter

$$
\begin{equation*}
\mathrm{s}^{3}=\mathrm{CJg}^{2}(\mathrm{t}-\mathrm{T}) \tag{48}
\end{equation*}
$$

is the same as that appearing in the asymptotic calculation leading to Eq. (31). Re-expressing Eq. (46) in terms of functions of s, we obtain:

$$
\left.\left.\begin{array}{rl}
x(n, t)=\frac{e^{-\beta(t-T)}}{[\gamma(n)]^{1 / 4}}\left\{\left(\gamma_{0}^{1 / 4}+\frac{\gamma_{0}^{\prime}}{4 \gamma_{0}^{1 / 4}} \mathrm{~g}(\mathrm{n})\right.\right.
\end{array}\right) \delta(\mathrm{t}-\mathrm{T})+\theta(\mathrm{t}-\mathrm{T}) \mathrm{CJ} \mathrm{~g}^{2}\right\}
$$

The amplitude functions $A(s)$ and $B(s)$ are shown in Fig. 6. Asymptotically the functions behave as:

$$
\exp \left(3^{3 / 2} \times 2^{1 / 3 / 4}\right) s=\exp (1.64 s)
$$

in agreement with the steepest descent solution Eqs. (27) and (31). Figure 7 gives the phase functions $\phi(s)$ and $\psi(s)$. The first term in Eq. (49) is generally negligible since it represents the original impulse without build-up.

These figures (Fig. 6 and Fig. 7) can be used to construct by superpositon any build-up pattern resulting from an initial disturbance $x(t)$ at $n=n_{0}$.

G. Steady State Solution

If the pulse length is sufficiently long, equilibrium with the wall losses will be reached. The basic differential equation (16) then reduces to

$$
\begin{equation*}
\left[\beta \frac{\partial}{\partial n}\left(\gamma \frac{\partial}{\partial n}\right)+i C J\right] x=0 \tag{50}
\end{equation*}
$$

This has the WKB solution [see Eq. (21)]

$$
\begin{equation*}
x(n) \sim(\beta / \gamma \mathrm{CJ})^{1 / 4} \exp \left\{ \pm i \int^{\mathrm{n}}(\mathrm{iCJ} / \beta \gamma)^{1 / 2} \mathrm{dn} '\right\} \tag{51}
\end{equation*}
$$

Ignoring a phase factor and multiplicative constants this gives a positive exponential solution, valid at a time $t \gg \mathrm{Q} / \omega$:

$$
\begin{equation*}
\mathrm{x}(\mathrm{n}) \sim[\gamma(\mathrm{n})]^{-1 / 4} \exp \left[(\mathrm{QCJ} / \omega)^{1 / 2} \mathrm{~g}(\mathrm{n})\right] \tag{52}
\end{equation*}
$$

This case is not of relevance to the SLAC accelerator since $\mathrm{Q} / \omega \sim 1 \mu \mathrm{sec}$. However, for a potential cryogenic accelerator permitting CW operation, the steady state solution is of interest.

In the previous sections we analyzed the general behavior of the BBU phenomcnon in the absence of transverse forces other than those associated with the trans versc modes associated with the BBU itself. The actual accelerator contains a series of strong focusing lenses to confine the beam; these will affect the BBU "gain" of each section and their strength and distribution can be uscd to increasc the BBU current threshold by a significant amount.

The theory of the preceding section is completely linear; it is therefore easy to indroduce the effect of linear focusing devices such as quadrupole or magnetic solenoids; on the other hand it is difficult to introduce either the effect of lenses of higher than quadrupole order, or the effect of bunching into the theory; we note however that to the extent that the bunch structure is incoherent with the frequency of the BBU, longitudinal bunching will not affect the phenomenon.

On the basis of these remarks we can introduce the effect of linear transverse focusing by introducing a term

$$
\begin{equation*}
\gamma k^{2} x \tag{53}
\end{equation*}
$$

into the basic differential equation (19), giving

$$
\begin{equation*}
\mu\left[\left(\gamma^{\prime}\right)^{\prime}+\gamma^{2} f\right]+i C J f=0 \tag{54}
\end{equation*}
$$

Here $2 \pi / \mathrm{k}(\mathrm{n})$ is the "betatron wavelength" produced by the external focusing system produced by quadrupoles.

The Laplace transform solution (22) then becomes

$$
\begin{equation*}
\mathrm{f}(\mathrm{n}, \mu)=\gamma^{-1 / 4} \exp \left\{ \pm \mathrm{i} \int_{\mathrm{n}_{0}}^{\mathrm{n}}\left[\mathrm{iCJ} / \mu \gamma+\mathrm{k}^{2}\right]^{1 / 2} \mathrm{dn}^{\prime}\right\} \tag{55}
\end{equation*}
$$

The evaluation of this integral by the method of steepest descent is not possible analytically. We can however obtain an approximate solution for "weak focusing" corresponding to

$$
\begin{equation*}
\mathrm{k}^{2} \ll \mathrm{CJ} / \epsilon \gamma \tag{56}
\end{equation*}
$$

where ϵ is given by Eq. (25). Carrying only linear terms in k^{2}, the exponent in Eq. (55) becomes:

$$
\begin{equation*}
\theta(\mu)=\mu \mathrm{t} \pm\left\{\mathrm{i}^{3 / 2}[\mathrm{CJ} / \mu]^{1 / 2} \mathrm{~g}+\mathrm{i}^{1 / 2}[\mu / \mathrm{CJ}]^{1 / 2} \mathrm{~K}\right\} \tag{57}
\end{equation*}
$$

where $g(n)$ is given by (21) as before, and K is the integral

$$
\begin{equation*}
K(\mathrm{n})=\frac{1}{2} \int_{\mathrm{n}_{0}}^{\mathrm{n}} \mathrm{k}^{2} \gamma^{1 / 2} \mathrm{dn}^{\prime} \tag{58}
\end{equation*}
$$

The saddle point occurs to order linear in K at the point $\mu=\epsilon$ given by:

$$
\begin{equation*}
c=(\mathrm{CJ})^{1 / 3}(\mathrm{~g} / 2 t)^{2 / 3} \mathrm{e}^{-\pi \mathrm{i} / 6}\left[1-\left(2^{1 / 3} / 3\right) \mathrm{Kg}^{-1 / 3}(\mathrm{CJt})^{-2 / 3} \mathrm{e}^{-(2 / 3) \pi \mathrm{i}}\right] \tag{59}
\end{equation*}
$$

This leads to a value of the exponent $\theta(\epsilon)$ given by:

$$
\begin{equation*}
O(\epsilon)=\frac{3}{2} \times 2^{1 / 3}\left(\mathrm{~g}^{2} \mathrm{CJt}\right)^{1 / 3} \mathrm{e}^{-(\pi \mathrm{i} / 6)}-2^{-1 / 3} \mathrm{~g}^{1 / 3} \mathrm{~K}(\mathrm{CJt})^{-1 / 3} \mathrm{e}^{\pi \mathrm{i} / 6} \tag{60}
\end{equation*}
$$

The leading term agrees with Eq. (27) while the second term is a damping factor proportional to the focusing integral K. The real part of Eq. (60) can be written in the simple form:

$$
\begin{equation*}
\operatorname{Re}[\theta(\epsilon)]=\mathrm{F}\left[1-\frac{0.56}{\mathrm{~F}^{2}}\left(\int_{\mathrm{n}_{0}}^{\mathrm{n}} \gamma^{-1 / 2} \mathrm{dn}^{\prime}\right)\left(\int_{n_{0}}^{\mathrm{n}} \gamma^{1 / 2} \mathrm{k}^{2} \mathrm{dn}^{\prime}\right)\right] \tag{61}
\end{equation*}
$$

where $F=1.64\left(\mathrm{~g}^{2} \mathrm{CJt}\right)^{1 / 3}$ is the exponent in the absence of external focusing. The current which will lead to a given value of BBU amplification will thus be
increased by a factor f given by

$$
\begin{equation*}
\mathrm{f} \sim 1+\left(3 \times 0.56 / \mathrm{F}^{2}\right)\left(\int_{\mathrm{n}_{0}}^{n} \gamma^{-1 / 2} \mathrm{dn}^{\prime}\right)\left(\int_{\mathrm{n}_{0}}^{\mathrm{n}} \gamma^{1 / 2} \mathrm{k}^{2} \mathrm{dn}{ }^{\prime}\right) \tag{62}
\end{equation*}
$$

This formula gives reasonable agreement with experiment for a value of $\mathrm{F} \approx 20$.

ACKNOWLEDGEMENT

The writers are greatly indebted to Dr. Richard Helm for important comments and corrections.

REFERENCES

1. M. C. Crowley-Milling, "A $40-\mathrm{MeV}$ electron accelerator for Germany," AEI Engineering 2, No. 2 (1962).
2. G. H.H. Chang, "Pulse shortening in electron linear accelerators," M. Sc. Thesis, University of California, Berkeley, California (1964); see also E. L. Chu, "A crude estimate of the starting current for linear accelerator beam blow-up in the presence of an axial magnetic field," Technical Note No. SLAC-TN-66-17, Stanford Linear Accelerator Center, Stanford University, Stanford, California (1966).
3. M. G. Kelliher and R. Beadle, Nature 187, 1099 (1960).
4. H. Hirakawa, Jap. J. Appl. Phys. 3, 27 (1964).
5. T. R. Jarvis, G. Saxon, and M. C. Crowley-Milling, Proc. IEEE (London) 112, 1795 (1965).
6. P. B. Wilson, "A study of beam blow-up in electron linacs," Report No. HEPL-297 (Rev. A), High Energy Physics Laboratory, Stanford University, Stanford, California (June 1963).
7. G. V. Voskresenskii, V. I. Koroza, Yu. N. Serebryakov, "Transverse Instabilities of a Beam in a Linear Accelerator Prior to Increasing Injection Current," Uskoriteli (Accelerators), Vol. 8, p. 135, Moscow Institute of Engineering Physics, Atomizdat, Moscow (1966), and
V. A. Vishnyakov, I. A. Grishaev, A. I. Zykov, L. A. Makhnenko, "A Question Concerning the Rise of the Limit of Current in a Multiscetion Lincar Accelerator," Publication No. 309/VE-072, Academy of Sciences, Ukrainian Soviet Socialist Republic Physics and Engineering Institute.
8. W. K. H. Panofsky and W. A. Wentzel, Rev. Sci. Instr. 27, 967 (1956).
9. O. H. Altenmueller, E. V. Farinholt, Z. D. Farkas, W. B. Herrmannsfeldt, H. A. Hogg, R. F. Koontz, C. J. Kruse, G. A. Loew and R. H. Miller, "Beam Break-Up Experiments at SLAC," Stanford Linear Accelerator Center, Stanford University, Stanford, California, Proceedings of the 1966 Linear Accelerator Conference, LA-3609, October 3-7, 1966.
10. Current pulse shapes observed at the end of the accelerator shown for 3 -peak current amplitudes. Note the pulse shortening effect of beam break-up.
11. The single cavity model. The figure shows the notation used describing the geometry of the nth cavity relative to the preceding and following unit. Each cavity represents resonant excitation of a particular transverse mode of each of the sections of the accelerator.
12. Field configuration in a typical transverse mode.
13. Phase relationships between transverse displacement x, transverse momentum gain Δp_{x}, and the ficld integral I .
14. Location of the saddle point in the complex plane and the path of steepest descent.
15. The amplitudes of the functions $A(s)$ and $B(s)$ as defined in Eq. (49).
16. The phases $\psi(s)$ and $\phi(s)$ as defined in Eq. (49).

$\forall 9009$

FIG. 3

86144
FIG. 4

86IA5

FIG. 5

Fig. 6

[^0]: Work supported by U. S. Atomic Energy Commission
 ** Now at University of California, Irvine, California

