
I 

PROPAGATOR ZEROS, VERTEX POLES AND THE Z -+O LIMIT* 

SLAC-PUB-339 
August 1967 

* 
Kyungsik Kang 

Physics Department, Brown University, Providence, Rhode Island 

and 

Stanford Linear Accelerator Center, Stanford University, Stanford, California 

and 

David J. Land+ 
. 

Radiation Physics Division, U. S. Naval Ordnance Laboratory 
Silver Spring, Maryland 

ABSTRACT 

We prove the cancellation mechanism between the poles of the proper 

vertex function and the zeros of the propagator even when the propagator 

satisfies a subtracted Kgllen-Lehmann representation, so that the vertex 

pole does not lead to a pole in the scattering amplitude in general. The 

dynamical origin of the vertex poles is discussed. The renormalization 

function is constructed in two ways to determine the residues of the pole 

terms of the inverse propagator in terms of the driving force. Then we 

show how the compositeness conditions used by other authors follow from 

OUT construction of the various field-theoretic and S-matrix quantities. 

Discussions on the high energy behavior of those functions are also briefly 

given. 
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1; INTRODUCTION 

It is generally the case in quantum field theory that the coupling 

constants and the masses of the interacting particles can assume irres- 

pective values from each other. Within the framework of the S-matrix 

theory, however, the coupling constant can be expressed by certain equations 

evaluated at the particle mass. Some time ago, it was argued that' the . 

restrictions on the magnitudes of the coupling constants at any given mass 

follow from the general principles of quantum field theory with no addi- 

tional assumption. The assumptions made in this discussion are that the 

propagator satisfies an unsubtracted Lehmann representation' and the proper 

vertex function has no pole in the complex s-plane. It has been pointed 

out since then by Goebel and Sakita 3 that the assumption of no poles in 

the proper vertex function has no direct physical significance and that 

t,he upper bound on the coupling constants so obtained has likewise no direct 

physical significance. In particular, they have shown that it is possible 

for'the propagator to have a zero coupled to a pole of the vertex function 

as well as the dynamical origin'of the vertex pole in non-relativistic 

elastic models. By extending this argument, it has also been shown that 4 

a vertex pole does not lead to a pole in the scattering amplitude. A 

physical interpretation of this cancellation mechanism has been given in 
4 the work of Jin and MacDowell by considering the propagator as a continuous 

function of the coupling constant. However, in the proof, they have again 

assumed that the propagator obeys an unsubtracted spectral representation. 

Thus only those zeros existing between the particle pole and the threshold 

have been considered in this work. 

If, however, the propagator needs a subtraction', then it necessaril; 
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has a zero to the left of the particle pole, and it is not immediately 

clear if the cancellation theorem still holds for this inevitable zero, 

This problem is attacked in this note. We prove that the cancellation 

theorem holds in general. However, the zero of the propagator below the 

particle pole; cannot be explained as emerging from the second Riemann 

sheet through the elastic branch cut by increasing the coupling strength. 

Such an interpretation can be.used easily to the zero between the particle 

pole and the threshold. But to apply the same mechanism to the zero below 

the particle pole, some explanation should be given for the zero to cross 

over the particle pole. Thus we have simply attributed the zeros in the 

propagator to the dynamical origin, i.e., the characteristics of the 

driving force. We note however that one could interpret the zero to the 

left of the particle pole as coming from - 00 when the coupling strength 

b was increased . 

Indeed, we shall show if the driving force is such that it generates 

a pole at some point in the irreducible-part of the scattering amplitude, 

then the proper vertex function and the re,-normalization function will 

have a pole while the propagator will have a zero at the same point. If 

there are no poles generated in the irreducible part, then the propagator 

will have no zeros.. If a pole is generated between the particle pole and 

the threshold, then the propagator will have a zero there but ?f a pole 

is generated below the particle pole then the propagator function should 

obey a one-subtracted dispersion relation in such a way to have a zero 

there. Therefore we will be able to relate the asymptotic behaviors of 

the various field-theoretic and S-matrix functions to each other. In general, 

the case with a pole in the proper vertex function below the particle posi- 

tion yields additional sum rule. If the zeros in the propagator are due 
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to the characteristics of the driving force, one naturally expects that the 

position of the zero and the slope at the zero are not arbitrary para- 

meters. This is also shown by introducing an alternative representation7 

for the inverse propagator function. It is through this representation 

that we prove the cancellation theorem in general. 

Then we show how the limits Z -to and Zl-+08 reproduces the com- 

positeness conditions as defined in the S-matrix theory. We shall see 

that the existence of a propagator zero is important and moreover such 

existence is implied by these limits. Also it will be seen how Z -+O and 

2 9 Z6m -+O follow from them. We will briefly sketch the asymptotic beha- 

viors of the various functions for various values of Z and Zl. This con- 

sideration has led some authors to notice the four different situations 

for the amplitude. In particular, we shall obtain Table 1 which tells for 

instance that in the limits Z +O and Zl-+O, not only the irreducible part 

but also the propagator function does need one subtraction, while the 

whole amplitude does not. 

In Section 2, we obtain the inverse $ropagators from the Herglotz 10 

property. From this, the renormalization function and the mass renormali- 

zation are derived. Section 3 deals with the scattering amplitude. By 

introducing the well-known decomposition of the amplitude 498 , we relate 

the field-theoretic quantities to the S-matrix quantities. The proof of 

the cancellation theorem is given in Section 4. Also, 2140, and Z --to are 

investigated in connection with the compositeness conditions. 

2. THE RENORMALJZATION FUNCTION Z(s) 

Let us consider the Lehmann representation2 for the propagator with 

no subtractions 
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5 

m 

A'(s) = -+ f ; ( ')In(s')/* ds' ' ' s'- s m-s St 

and with one subtraction 

A'(s) = -+ +a+s-m ds' p(d) IA( 
II m-s (d- s)(s'- m*) 

(1) 

(2) 

The spectral function in Eq. (1) and (2) is positive definite and thus the 

propagator given by Eq. (1) or (2) is a Herglotz function 10 . It has no 
2 complex zeros but it may have a real zero between m and s t' But the pro- 

pagator given by Eq. (2) must have a real zero below the particle pole. 

Notice that the latter kind of zeros is originated from the high energy 

information of the propagator, while the former is from the low energy 

behavior. The quantity A(s) is related to the form factor F(s) by 

F(s) = (m*- s) h(s) 

and the proper vertex function I'(s) and the propagator by 

A(s) = T‘(s) A%> 

(3) 

(4) 

from which it follows that 

Im A'-'(s) = ~(s)lr(s)l* (5) 

Here p(s) is the phase-space factor which approaches a constant at infinity. 

At this point, we recall some properties of the Herglotz function. If 

H(z) is a Herglotz function then -H-l(z) is also a Herglotz function and it 
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has a representation 

H(z)=A+Bz+: (6) 

with B > 0, Im H(z) > 0, Ri 2 0 and z. are the CDD poles of H(z). From 1 
Eq. (6) it follows that for E < arg z < fi - E, 

B = lim H(z)/z 
z -+oJ I 

and 

Furthermore, Eq. (6) implies that 

(7) 

(8) 

(9) 

If H(z) has only one cut on the real axis, then one can further show that 11 

the two integrals 

Im H(x) dx 
X 

and 
s 

Im "(~2 ti 

x H(x) 

cannot both diverge at the same time. 

It is easy to show for both Eq. (1) and (2) that the inverse pro- 

pagator has a solution 

A'-'(s) = (m*- 
00) 

'???e pole terms in Eq. (10) represent the zeros of the propagator. Thus for 
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Eq. (l), there are two situations, i.e. the inverse propagator has no or 

one pole between the particle pole and the threshold. For Eq., (2), there 

are again two situations, either one or two poles because of the inevitable 

pole below m2. For both Eq. (1) and (2), we have 

OD ds) trd * ds < w 

but for Eq. (2) we have further 

PdW12 
S 

ds 

Let us define the renormalization function Z(s) by 

Z-'(s) = (m*- s) A'(s) 03) 

01) 

w 

By taking the limit s -+a, we get the wave function renormalization 

constant 

z+$ 5 O1 ds p(s)h)(* : 2 Ri 

St (s - m*)* i (si- m*)* 
(14) 

Because of Eq. (ll), the quantity 

ds' ~(sf)l~(sf)l* + x Ri 
05) (d- s)(s’- m*) i (si- m2)(si- s) 

does exist both for Eq. (1) and (2). In particular, for Eq. (2) 
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lim s [Z(s 
s --+w s 

m 

)-z] = - ; Ri ds) \r(S)I* ds _ 2 
2 2 

st s-m i s-m i 
:x4 

exists further because of Eq. (12). Although the integral on the right 

hand side is positive definite, Eq. (16) can be made zero in this case as 

there must be a pole below m*'. 

If Z vanishes, we obtain from Eq. (14) the sum rule 

w 
l=$ s ds P(S) Iw12 + z Ri 

St (s - m*)* i (si- m*)* 

and from Eq. (15) that 

co 
z(s) = + s ds' ds'> tr(s')i2 + c Ri 

St (s'- s)(s'- m*) i (si- m2)(si- s) 

(17) 

08) 

which satisfies Z(m*) = 1 due to Eq. (13): We further have from Eq. (16) 

that 

co 
- lim sz(s) = $ s ds P(s)lr(s~i2 + 2 Ri 

2 s -+ca St s-m i s-m i 
(19) 

which would result another sum rule if sZ(s) vanishes in the limit s --+cQ, 

Since, however, Eq. (1) has no zeros below m* we can never have ihis second 

sum rule for the unsubtracted Iehmann representation. It is also obvious 

that Eq. (16) can never be made zero for Eq. (1) even when a relation like 

Eq. (12) holds. 
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We note that the mass renormalization 6m2 2 2 Cm-m o is given by 

6m2 = $ lim (s - m*)[Z(s)-Zl w 
s --+a2 

thus 

-Z&-n* = $ 
s 

m * ds + L Ri 

St s-m i s-m 2 
i 

(21) 

from Eq. (16). It should be mentioned that Z8m2 always exists for Eq. (2) 

while it may not for Eq. (1). In particular, Z6m2 can never be made zero 

for Eq- (1). This follows from the fact that Z6m2 has the same represen- 

tation as that of lim s[Z(s)-Z]. 
s --+- 

To sum us, if the propagator does not need any subtraction, Z6m2 may 

not be finite in general and can never become zero regardless Z = 0 or 

not, while if the propagator is given by Eq. (2), Z&m* is always finite 

and can be made zero for both Z = 0 and Z # 0. 

Finally, from the Herglotz property of the propagator we notice 

- lim [sA'(s)]-' is positive definite. This implies Z 2 0 from Eq. (13) 
s +- 

both for Eq. (1) and (2). On the other hand Z is bounded by 1 from Eq. (14), 

so that we get the familiar result 0 ,< Z < 1 both for Eq. (1) and (2). 

Furthermore-because-of Eq. (8), one gets C'/[s[* < IZ(s)I < C. 

3. THE SCATTERING AMPLITUDE 

To see the origin of zeros of the propagator functions, we consider 

the s-wave amplitude T(s) for the two spinless equal mass particle scat- 

tering in the presence of a particle with mass m and coupling constant g* 

havi-ng the quantum numbers of this channel. The scattering amplitude can 
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be expressed by a dispersion relation 

03 
S - s 

T(s) = A + 
0 Im T(s') + ' - '0 

II ds' -(-a so)( s'- s sl 

g2(s - so) 
+ (m2- s)(m*- so) 

where f(s) is the given discontinuity across the left hand cut L. I 

Following the usual N/D method 
12 , we write the amplitude 

T(s) = N(s)/D(s) (23) 

where 

D(s) = 1 - ' ; So Js; ds' e 

N(s) = X I- 
\ 

' ; "'jL ds' $$$&&)- + 
g”D(m*)(s - so) w 

(m2- s)b*- so) 

Here p(s) is the same phase-space factor introduced before and normalizes 

the amplitude by 
: 

T(s) = p-'(s) eib(s)sin 6(s) (25 > 

In general, the denominator function may have pole terms corresponding to 

zeros of T(s). If we, however, assume that the scattering length is 

negative and t11e value of T(s) at the left hand br.anch point is positive 

then no 13 s::ch pole terms may occur in D(s) . In the absence of the 

particle, the above procedure would have resulted in a unitary amplitude 



t(s) = p-l(s 

-ll-@ 

i6 (s 
e O 

> 
sin Eo(s) (26) 

whose N/D solution has the numerator and denominator functions- of the 

form 

d(s) = 1 - ' ; "'( ds' $$#&-J 

(27) 

Although T(s), N(s) and n(s) are subtracted, this is done so formallyl' 

and we shall see that in certain'cases they do not require any subtrac- 

tions. Then one can easily find that 15 

T(s) = t(s) + 

If we denote the second term in Eq. (28) as 

\ 

a(s) = .&?H 

its analytic property admits a representation 

2 
a, 

a(s) = 1 -+-+- ds! Irn ab'> 
lt s' - s m-s St 

(28) 

(29) 

(30) 

where the absorptive part can be obtained from the unitarity conditions 

of T(s) and t(s) 

Im a(s + ie) = p(s)la(s -I- ie)/' + 2 p(s) Re[a*(s + ie)t(s)] (31) 
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Although the imaginary part given by Eq. (31) is not positive definite, 

we can 'deduce a function, after some usual manipulation 16 , whose imaginary 

part is positive definite. Namely, the quantity defined by 

D m* !&(S) = a(s)d*(s)/g*d*(m*) = -$-- # d(s) 
m-s +*I 

can be shown to satisfy 

, 

s 

00 
ds’ g*d”) d*(m*) 

2 
A(s) = -+ -t- + s'- s m-s St 

(32) 

(334 

or in the one subtracted form 

g2p(s')d2(m2) 
2 

A(s) = B + +- + S -m ds' fi (33) 
m-s (d- s)(s'- m2) 

We note that A(S) is a Herglotz function and has the same analytic property 

as that of the propagator function Eq. (1) or (2). It should also be 

noticed from Eq. (32) that a zero of d(s) ,coincides with a zero of A(s). 

Now let us compare the scattering amplitude 

T(s) = t(s) + EF$iZl A(s) 

with the well-known decomposition 478 

T(s) = t (s) f r(s)nf ww 

From Eqs. (3), (4) and (35), we have 

T(s) = t(s) + %)a 
m-s 

(34) 

(35) 

(36) 
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By making use of the unitarity conditions, one can easily verify that 15 

F(s) has the same phase as T(s) while I'(s) has the phase of t(s). Thus 

from Eq. (28) and (36), we can put 

F(s) = @# 

and 

(37) 

Upton inserting Eq. (38) into (35) and comparing with Eq. (34), we realize 

that A(s) so constructed is nothing but the propagation function A'(s). We 
observe that a zero of 

I'(s) and a zero of the 

Also it follows that 

d(s) results in a pole of the proper vertex function 
propagator A'(s). 

(39) 

which ensures Z(m') = 1. A zero of d(s) thus a zero of A'(s) corresponds 

'to a pole in Z(s). From the Herglotz property of A(s) we find 

lim [sA(s)]-' = s dcm2) 2 0 
s -+m Db*) 

(40) 

Notice that a zero of d(s) below m* does necessarily imply Z = 0. 

From Eq. (39), if d(s) has a zero at a point to the left of rn*? then the 

only way to be consistent with Eq. (40) is such that d(s) grows faster 

than D(s) as s +m. Otherwise the limit would be nagative. However, a 

zero of d(s) between m 2 and the threshold is consistent with 0 5 Z < 1. 

Remember that a zero in d(s) of Eq. (27) arises from the dynamics of the 

driving force. Thus the zeros of the propagator and the poles of the proper 

vertex function are determined by the given left hand discontinuity. 
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Hence we consider in what follows the driving force which makes Eq. (27) 

meaningful. Namely, the left hand cut discontinuity is bounded by 

If(s)] < (&l: )2 

Then by examining the integral equation 

(41) 

where 

one finds that d(s) grows asymptotically slower than or equal to &-I s. 

Thus we shall consider two types of asymptotic behavior for d(s) in our 

general discussions, either constant or &I s. 

To this end, we mention that if the particle in T(s) is composite 

then the elementary pole term in Eq. (22) would not appear so that 

T(s) -f[t(s)lelementary = [T(s)~composite and the particle would be 

generated by the driving force through 

(42) 

D(m2) = 0, g2 = - Nb*) 
D'(m2) 

When one wants to determine the parameters of the particle by the S-matrix 

theoretic conditions Eq. (43), it is usually desired to have no other 

arbitrary parameters in the amplitude such as the subtraction constant A. 

Also one should rule out the possibility of having coinciding zeros of 

N(s) and D(S). 
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4. THE CANCELLATION THEORE AND Z --+o LIMIT 

Now, we show in general that the poles of the proper vertex function 

do not lead to poles in the scattering amplitude T(s). For this purpose, 

617 we introduce a function defined by 

G(s) = g2d2(m2) [F(s) _ 
(s - m2) 

F(m2) - (s - m2)F1(m2)l (44) 

where 

F(s) = [n(s)d(s)]-' (45) 

The function G(s) has two cuts, p y h sical as well as unphysical. The point 

2 s=m is regular and G(m2) = 0 by the definition Eq. (44). In addition 

to the cuts, G(s) has poles at the zeros of d(s) and n(s). Remembering 

that Z(s) has also poles at the zeros of d(s), we can immediately get 

G(s) - ’ ; 
g2d2(m2) 

(s'- m2)*(s'- s)d(s') 

-r g2d2(m2) = z(s) - 1 
-L (s- SJ,) (y- m2)n' (q,)d(q,) 

where s J, denotes the possible zeros of n(s). We mention again that d(s) 

has no more than one zero to the right of m* as long as Z # 0. For Z = 0, 
2 

there can be two zeros, one above and the other below m . From Eq. (46), 

one can determine the residues R. of Z(s) at a zero si of d(s), 1 

Ri= -*&$j$ (47) 
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which implies 

n(si)d'(si) < 0 

Notice also from Eq. (46) that Z(s) is independent of s.. 1 Thus si in 

Eqs. (13)- (21) is in a way a hidden variable in the theory. Moreover if 

we insert Eq. (47) into (39), we find D(s) is regular at si. Also from 

Eq. (28), the numerator function N(s) of T(s) defined by I 

N(s) = n(s)Z(s) -I- g2d2(m2) 
(m2- s)+) 

(49) 

is regular at s.. .l This completes the proof of our premise. 

We also mention that some authors' have argued the equivalence 

between the composite particle in the S-matrix theory, i.e. as defined 

by T(s) -+t(s) with Eq. (43) and the elementary particle in the field 

theory with Z = 0 and Zl = 0. Here a definition of Zl is made by 18 

(50) 

To see this, we consider Z 1 = 0 from Eq. (50). This implies 
\ 

d(m*)/ lim d(s) = 0 (51) 
s --+m 

Suppose the driving force is such that there is a zero, say, at s = so > m2. 
s 

We have seen above that if so Cm* this necessarily gives Z = 0. In any 

case, Z = 0 results 

2 m 

s 
St 

(52) 
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Notice that Eq. (51) can be satisfied by Sg--+m*. Then from Eq. (52) 

RO = (so- m*)* 

By inserting Eq. (53) into (47) and taking 

g2 = - n(m2) 

d'(m2) 

thus realizing the S-matrix conditions Eq. 

(53) 

the limit sO-+m2, one finds 

(54) 

(43) for the particle being 

composite. Furthermore in this case we have Eq. (16) which gives9 

-Z&l2 = - lim sZ(s) = so- m* =o (55) 
s --+a3 

so that 6m 2 is finite. If there is a zero in d(s) below m*, it is when 

the Z -+O limit is already reached as was mentioned before. Hence it is 
2 ,clear that the zero so > m in d(s) approaches to m2 in the Z --+O, 

Z --+O 1 limit. Moreover in this case we obtain 

because not only d(m*) but also I'A'r in Eq. (35) vanishes as so-+m2. 

Observe from Eq. (32) that9 A'(s) blow up and one cannot determine the 

propagator function or the vertex function except at the pole position. 

The fact that A'(s) blows up is consistent with having Eq. (55) for the 

unsubtracted Lehman representation. 

Notice that Eq. (51) can also be satisfied if the driving force is 

such that lim d(s) = m, say, like & s. From Z = 0, Eq. (18) holds and 

by using 8(s',-- &I s one gets Z(s) - (S&X s)-' so that A'(s) - & s. This 

means the propagator function would need a subtraction like Eq. (2) and 

have a zero below m*. Thus a zero in d(s) exists. In this case n(s) will 
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need a subtraction while N(s) will not because D(s) - l/s. We remark 

that in this case the position of the propagator zero below m2 can be 

controlled by the subtraction constant in Eq. (2). As the subtraction 

constant increases, the position of the propagator zero below m’ move s 

away toward minus infinity while another zero appears in the interval 

b2 ,st). In particular, if the subtraction constant in Eq. (2) is chosen 

arbitrarily large, we have the same situation as before where the pro- 

pagator is arbitrarily large. But once the zero position in Eq. (2) is 

chosen, then the subtraction constant in Eq. (2) is fixed and the sub- 

traction constant in n(s) can be determined from Eq. (32). Since, how- 

ever, the full amplitude in this case does not require any subtraction, 

the parameters g2 and m* of the particle determined from Eq. (43) should 

be'independent of the position of the zero below m2 in Eq. (2). We have 

shown that the position of zero is actually a sort of hidden variable in 

the theory. 

Finally, we remark that various asymptotic behaviors of the S-matrix 

and field-theoretic quantities can be considered for various different 

limits of Zl and Z. For example, if Zl # 0, lim d(s) will be a constant. 
s -+m 

IfZfO , in addition, then lim D(s) is a constant too. The propagator 
_-- s --+m 

will behave 'like 
_. _. - 

l/s, thus there is no zero in d(s) to be left of m2. 

The right hand sides of Eq. (16) and (21) can never be made finite. For 

the driving force responsible for this, n(s) as well as N(s) will not need 

any subtraction. Similarly one can show that if the driving force is such 

that Zl # 0 and Z = 0, the propagator, N(s) and n(s) need no subtractions, 

while for Zl = 0 and Z # 0, both denominator functions of T(s) and t(s) 

will require a subyraction but the propagator function will not. The 

results are summarized in Table I. These results are fairly general in 

the sense that the left hand cut is specified only by Eq. (41). If the 
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driving force is given, then one will be able to show these results 

along with the dynamical origin of the propagator zeros and their can- 

cellation mechanism with the vertex poles explicitely in so far as Eq. 

(41) is not violated. Further investigation is under way for the case 

when the driving force is given by pole terms. 
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z1 = 0, z f- 0 

T(s) 

No 

No 

No 

Yes 

t(s) 

Yes 

No 

No 

Yes 

A’(s) 

Yes 

No 

No 

No 

Table I - Necessity (yes) and non-necessity (no) of subtractions 

iti‘the amplitude T(s), the irreducible part t(s) and the propagator 

function A'(s). 
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