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I. INTRODUCTION 

The major successes of current algebra (Adler-Weisberger’, Cabibbo- 

Radicati’, Fubini sum rules3, Callan-Treiman relations4 for leptonic K-decays, 

etc 0) are almost exclusively in the nature of low energy theorems. The basis for 

these low energy theorems lies in charge conservation or approximate “axial 

charge” conservation (PCAC) . For example, the “soft pion” theorem 

<A 7rQ! I I J(o) B> 4 -t o- 
7r 

a< A Ip$ JW] IB> 

depends only upon the commutator of axial charge FF with the local operator 

J(o) l The low-energy theorems for Compton scattering and the Kroll-Ruderman 

theorem for photoproduction are of a similar nature, 

However, in quantum electrodynamics one has local current densities which 

are measurable and which commute at spacelike separations. It is a reasonable 

and generally accepted hypothesis that the hadronic currents which couple to lep- 

tons via weak and electro-magnetic interactions are likewise local; that is, there 

exists (in an experimentally meaningful sense) operators j; (x) which when sand- 

wich between hadron states and coupled to a local lepton current gives the lowest 

order S-matrix element for a weak or electromagnetic process. 

In these lectures we will discuss what happens when one tries to apply the 

same current algebra techniques for these local densities as one does for the 

charges. In doing so we run into two kinds of difficulties. The first is that there 

are far fewer direct applications. Essentially the only applications which are 

sensitive to distances << 10 -13 cm are lepton scattering at high momentum trans- 

fers. These are elastic and inelastic electron- and muon-nucleon scattering and 

also the neutrino processes. The second difficulty is theoretical; we really do 
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not have as much confidence in the commutation relations at the local level and, 

even worse, hardly any soundly based qualitative idea of the nature of the dynam- 

ics of lepton inelastic scattering at high momentum transfer. Nevertheless, that 

is what these lectures are about, and although there will be some speculations, 

they can be shot down by experiment. I also think that the problems raised here 

are quite fundamental, dealing, in what seems to be a direct way, with the ques- 

tion of whether there are any “elementary constituents” within the nucleon. Use 

of the leptons as a probe is a unique and possibly powerful way of attacking this 

problem. 

We will first discuss the kinematics of lepton scattering processes. Once 

this chore is finished, we shall derive a sum rule for neutrino processes, and 

from it, a corollary for electron-scattering processes, We shall find these re- 

lations so perspicuous that, by an appeal to history, an interpretation in terms of 

“elementary constituents” of the nucleon is suggested. With the aid of this inter- 

pretation more predictions for inelastic lepton scattering can be made; we shall 

compare these with what little data exists. 

Finally, we will discuss the radiative corrections to the Fermi part of p-decay 

and argue on the basis of the local algebra that these corrections diverge logarith- 

mically, just like for point particles. The picture of the proton as composed of 

“elementary constituents” again is in accord with this result, which in fact is 

somewhat connected to the sum rules. There is one exception to the conclusion. 

If the constituents coupled by the weak process have mean charge of -l/2 and 

spin l/2 (such as /A and v 
P 

in p-decay), the divergent logarithm vanishes. 

In any case, we will compare the numbers with experiment, and find no disaster 

even if the “divergence” is present. 
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II. KINEMATICS 

First consider the scattering of a lepton of momentum p from a nucleon of 

momentum P to final hadron state of momentum P n’ The scattering matrix 

Tfi looks like (see Fig. 1) 

Tfi = 
1 

I 

(2-V 

- F U (P’) Ye u(p) < Pn ( j’ (0) 1 P > 
4 

We neglect lepton mass and normalize lepton spinors such that ut(p) u(p) = 2E. 

p’ is the final lepton momentum and q = p - p’ is the momentum transfer. 

Fig. 1 --Kinematics of lepton-nucleon scattering. 
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For our applications all hadron states of given momentum will be summed 

and initial spins averaged. A routine calculation then gives us the differential 

cross section, in angle and energy of the outgoing lepton but summed over hadron 

states of momentum Pn = p + P - p’ O For electromagnetic scattering, we get 

do 
& dfidE’ = & = ($$) F bos” 4 CT1 (q2, v) + sin2 : 02(q2,V)] 

(20 2) 

where we choose q2 and v=E- E’ = virtual photon laboratory energy as the 

important variables. o1 and o2 describe the contents of the hadronic “black 

box, ” defined as follows 

jpv (q,P) = 5 C <P/jCl(o)/nXnljv (o)(P) (233 tj4 (pn - P - 9) 
n 

(spin averaged) (2.3) 

The terms left out are proportional to P q P q or q q pv’vp’ pv and do not 

contribute, because qpj’ (leptons) = 0. Also, elastic scattering is included in 

jw 
by inclusion of pieces in crl and ~2 proportional to 

For weak processes we get 

do ‘P doFp 
& mdE’ = - = 

dq2dv 

(2.4) 
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and 

J pO ZZ2W 
PV Mp c 

<P 
n 

lJ,$4/n><nlJ~@)l.) (2rr 8 (pn - p - 4) 

(2.5) 

=PPa q2,1, TP 
( 1 

-+ 2 - 
P v 1 

o;p\4 ,v - +j EpvapP q a; > O1 p Bpq2V +... 
( ) > 

The only difference, aside from the difference in G and e2/q2 is the extra form 

factor, arising from the presence of parity-violation in the weak interactions. 

As q2 - 0, these cross sections become proportional to photoabsorption 

cross sections and pion scattering cross sections. The first is fairly clear, since 

the matrix elements <PI jl* (0) In > as q2- 0 are those needed for photoabsorption. 

In the neutrino case, as q2- o the lepton current becomes a multiple of qU . 

That is, upon approximating ma M 0, Tr I$ y d’ y, M 4 pp pb -I- p’ p ) 8EEl = - 
CL v V2 qpqv 

because pp , p;L and qp become proportional to each other for forward scattering. 

Therefore, only qpqV JpV contributes to forward neutrino scattering. The diver- 

gence of the current is dominated, for AS = 0 processes, by the divergence of the 

axial vector current which by PCAC is related to the pion field. Thus the neutrino 

scattering is related to pion-scattering, slightly off-the-mass-shell. In our nor- 

malization, PCAC may be written 

i <P~qpJpWIn> = 
fig M 

g A <+$o+> 
r 

and putting this together with the lepton current gives us after some algebra 

The (1 + gi) comes from the “elastic” scattering contribution, to which the vector 

current also contributes as q2 -0. 
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III. SUM RULES 

We turn now to the sum rules, which can be derived in various ways. We 

start with the “infinite-momentum” method5 which is now quite easy, given the 

machinery at our disposal. Consider at fixed q2 and v = E - E’ , what happens 

as we increase the centepof-mass energy of lepton and hadron. We see that the 

scattering angle 8- 0 

sin2 8 = 0 92 
2 

0 
E2 -O 

and 

do ep da VP 2 - t 

dq2 dv E-+m dq2 du 
&#P / 2 

- 27r 1 \q ‘v E-ta, (3.1) 

These equations are covariant, and we can consider them in the center-of-mass 

frame. In this frame, P - 00 as well as 
P 

p 
P 

and furthermore, 

P P 

b 
* -PP 0 q2,v = AL-2 joo 

PVl ( ) P2 0 
(3,2) 

That is, the time-components of the currents alone determine the scattering. Also 

the momentum transfer becomes purely transverse! 

= P: or q. - 4, = 
M; - q2 - M2 

2p0 
-0 

and also from 2 z 0 we get 

2 
qo+4,~ & -0 
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which implies both qo- 0 and qz- 0 in this limit. This suggests that the 

electromagnetic scattering is “Coulombic” in character. A simple-minded pic- 

ture of scattering would have a Lorentz-contracted disk of charge (the nucleon) 

scattering the lepton instantaneously in time via the Coulomb interaction with the 

charge density. We shall come back to this picture later in more detail. 

We now go back to the neutrino process and try to utilize the commutator of 

charge densities proposed by Gell-Mann’ and discussed by Adler in his lectures: 

J; (2, o), Jo to) 1 = 2 J”, (0) d3’1~) 

sandwiched between proton states in the Pz+ Q. 

c <P/J: (O)(n>< n 
n 

-( 
+ 

1 J; (0) IP> jZrj3d3) (& -s- pjl 

\9, =il 3 

(3.3) 

(3.4) 

= 2<PlJ3(o)(P> = 2(cos2Bc+2sin28,) 

The right-hand side may be evaluated just by evaluating To 3 (0) and To 8 (0) in 

terms of Q and Y for the proton. A simple way to get the factors is to use the 

quark model directly, since the result is model-independent. In that model 

J:(X) = p’(X) (1 - y5) b’(x) cos ec + h’(x) sin 0d z ptt (I - 15) iii 

and 

<PI E(x), Jo (-04 IP> = 6(3)(g)< P12pVt (1 - -y5)p’ - 2iit(, - y5)%\P> 

= 2 et3)($) < Plpft p’ - ntt n’ cos’ oc -A’? A’ sin2 ec 1 P> 

= (3) 
26 ()[ 4 2 - cos 2e c 1 

(3.5) 
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where the AS = & 1 terms in J3 have been dropped in the next to last line, and 

the last line follows from counting the quarks in the proton. Returning to the left- 

hand side, we see that there is a great similarity between the structure of the 

commutator and the structure of Jo0 O In fact, for q fixed we identify the com- hn 

mutator with 

/ f$ [J:: - J~,P] = Pofiqo[o~ (q2,.) - o;~p (q”, vj] 

= 2 r L c~~2 ec + 2 sin2 ec I 

(3.6) 

Now in the limit PO- m from Eq. (3.2) 

n n 

qO- 
M; - M‘ 

2p0 
= q2+2MvB0 

2p0 

and 

po dqo -Mdv = dv 

We thus arrive at the sum rule’ 

{dv bEp (q2,u) - oip (q2,v)] = 2[c0s20c + 2 sin28d (3.7) 

0 I 

The question of interchange of limits is a little dirty and will be discussed by Adler. 

For a more critical discussion with regard to rigor, we shall choose in Section VI 

to discuss the process in terms of the Fubini, or dispersion method3 of derivation. 
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Before doing that, however, there is some physics to do. Going to q2 = 0 

and extracting the AS = 0 part by setting cos ec = 1 we see that 

lim 

/ 

d(oyp - aVP) 

E--coo dq2 dv 
q2= 0 

(3.8) 

1 which is the Adler-Weisberger sum rule. Notice that for the forward neutrino 

reaction the sum rule is exact provided we do not replace al by U w using PCAC. 

Tests of the q2 # 0 sum rules will be difficult. A related test, however, is pro- 

vided by electromagnetic-scattering of leptons in the form of an inequality. We 

start with 

= j-dv [uldq2, vj + U1&i2, vj] (“lv is isovector cross 

section, By averaging over 

p and n we cancel any in- , 

+v ulv(k2, v 

terference terms) 
; 1 = i final states 

(3.9) 

vp 2 2 
ulv ( 1 q ,v - .;,p q ,v ( )I 

1 =- 
2 
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(This differs from the neutrino sum rule by a factor 2 because we leave out the 

contribution of axial current.) This leads to the inequality’ 

da do n ,2nol 2 
lim -J + - - 

E-m dq2 dq2 - q4 
(3.10) 

The right-hand side is large, of order Rutherford scattering from a point particle, 

and it is this feature that makes the inequality interesting. We shall return to this 

point later on. 

IV. AN APPEAL TO HISTORY 

We have “derived” two interesting sum rules which bear a great similarity to 

sum rules obtained in non-relativistic quantum mechanics. For example, for elec- 

tron scattering from an atom or nucleus we have the sum rule’ 

s4 C 
Z+Z(Z- 1) f,(s2) 1 

(4.1) 

47rCY2 - s- 

I I 
c 

q4 i 
Qf 

where the Qi are the charges of those constituents of the target which can be seen 
I 

with the available spatial resolution I J=&* A x 
_ . 

It is tempting to take over the same physical picture for the relativistic scat- 

tering at infinite momentum, because (1) the scattering goes via the charge density; 

(2) there is only spatial momentum transfer, essentially as in the non-relativistic 

case; (3) because of Lorentz contraction, the scattering occurs instantaneously in 

time provided we respect the uncertainty principle and do not look closely at the 

energy of the outgoing lepton. 
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The neutrino sum rule can now be interpreted in a simple way (set for sim- 

plicity oc = 0) 

For point I = I3 = $ spin i particles only the V scatters. For I3 = - i 

particles only v scatters. At large q2, we expect the neutrino to scatter in- 

coherently from the “elementary constituents” of the nucleon. If these constitu- 

ents have spin and isospin 1 2 , then the sum rule simply says 

and 

dovp 

ds2 
zz <Nt> i$ drrVP 

dq2 
= <N/> $ 

(4.3) 

do VP dovp G2 G2 --- 
ds2 dq2 

= <Nt -NI> n = 7 

where Nt = no. 1 of constituents with I3 = + 2 . Of course the sum rule is &tore 

general than the model, but the same idea holds in the general case as well, inde- 

pendently of the magnitude of q2. 

For electron scattering Nf and NI are replaced by c QI . Intuitively, we 

expect c Qf 2 1 
i 

because it would be hard to understand the quantized charge 
i 

of observed states if the constitutents had charges small compared to ‘1. The in- 

equality 

[Ff]proton + [F Qq neutron 2 i 

(4.4) 

confirms that expectation. It is interesting to trace the origin of the result. It 

came from the assumed locality of isospin current. This means instantaneously 
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in time the isospin is localized within the nucleon. Thus given a nucleon state 

lP>, thestate J;(o) IP> is meaningful and consists of one charge more at 

the origin of space (at t = 0). Therefore instantaneously in time, the constituents 

of the nucleon carrying isospin are localized in space. For simplicity, let the 

constituents have I = 0 and I = . If for the proton, 

[ 1 c Q4 (4.5) 
i proton 

=ic~~+~$)2 +)I (Ctj - $)2 +x QE 

3 - 31 j(13 =-i) k(1 = 0) 

then charge symmetry gives for the neutron 

[ 1 c Q; 
i neutron 

=C (pi - ~)’ + C (~j+ ~)” +& Q~ 

i j 

and 

[C Q:lp+[F Qi] 2 $ x (no: of I= i constituents)?; 

n 

Assuming this picture makes sense, the important question is what inelas- 

ticity v is needed, for a given q2, in order to see these supposed elementary 

constituents of the nucleon. Again we appeal to history: we suppose that at suf- 

ficiently high momentum transfer the scattering is quasi-elastic. This does not 

necessarily mean that the constituents be loosely bound or escape the nucleon. 

For example, for a non-relativistic particle bound in a harmonic-oscillator po- 

tential, the total scattering at fixed c&2 is always the Rutherford value, although 

the scattering to any given level is damped exponentially for large q2 . The im- PvN 

portant excited states are those which lie near the classical kinematics: 

c-l2 

40 = AE = k 
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The same relation might be expected relativistically as well, because of our 

“infinite momentum’* kinematical argument 

where m is the mean mass of the constituent in the nucleon. Because elastic 
2 

scattering occurs for Y = 4 2M ’ we must have % < M 
P P 

in order for the kine- 

matics to make sense. 

A tempting choice is ?Yi - 300 MeV corresponding to the “light quark” model 10 , 

which explains well the magnetic moments of the nucleons in terms of Dirac moments 

of the constituent quarks. Unfortunately, this choice appears to have already been 

ruled out experimentally 11 by the data from CEA. We shall discuss this later in 

more detail. In any case, this order of magnitude m is easy to test with present 

machines; for v - lo-15 BeV and q2 = 1 (Beq2 we can probe for a mean mass 

iii 2 50 MeV. 

In the way we have phrased the question, the difficulty with finding “elementary 

constituents” of the nucleon is not that they are too heavy to be produced but that 

they are too light to be seen with the leptonic illumination at our disposal. For ex- 

ample, at q2 = 1 (BeV)2 , we need an incident lepton energy greater than lo3 BeV 

just to “see” the electrons in the atom. 

Thus far, we have discussed the possibility of a quasi-elastic peak in the 

scattered lepton energy spectrum. There will, in addition, probably be a broad 

continuum arisingfromdiffraction production 12 
of P 

0 and other l- mesons at 

high inelasticities v = q. = A E at fixed q2 . The onset of these processes can be 

estimated on kinematical grounds. When the minimum momentum transfer to the 

nucleon is small compared to the nucleon size (- 350 MeV) we can expect the 
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coherent processes to go efficiently, This occurs when 

A = 
q2+ rni 

min 2q0 
s 350 MeV -7Ii 

or 
(4.6) 

qO 
ST =vz2m+m 

P 

which is, for large q2 , essentially the same estimate as from the quark model. 

Therefore, the “quasi-elastic peak, ** if any, may well merge into a continuum 

coming from the coherent production. 

In terms of our model of constituents, we can interpret the coherent processes 

in a simple way. They are simply the scattering of leptons from the vacuum fluc- 

tuations of charge surrounding the nucleon; in the quark model it is the “meson 

cloud” of virtual quark-antiquark pairs surrounding the 3 constituent quarks. On 

these grounds, it would be reasonable to expect that the q2 dependent e of the dif- 

fractive contribution is again pointlike + q2 ( ) 
-2 

and may in all cases obscure any 

quasi-elastic bump. Because diffractive processes are expected to be the same 

strength for proton and neutron, in taking the difference of the yields they should 

disappear. We would predict (for large q2) in the quark model 

47rcY 2 

cl4 

d%n t 
dq2 

I 
q2 - co 

i ( 4 --f 9 4-t 9 Iii-- 1 1 ( ;+ -I+ 4 
9 ?i )I (4.7) 

= 1 4no! 2 

3 
c 1 CF 
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V. FORMULAE 

We now catalogue the sum rules which might conceivably be related to exper- 

iment . We first discuss the various kinematical regions in the light of the pre- 

ceding arguments (see Fig. 2). Elastic scattering lies along the line - q2 = 2 Mv. 

Fig. 2 --Kinematical regions for inelastic lepton scattering. 

Inelastic scattering to a given state lies along lines in the q2, v plane displaced 

parallel to the elastic line: 

- q2= 2 Mu + M2 - M2 n (5. I) 

The quasi-elastic region is 

- q2= 2mv ry 5 Mu (5.2) 

and cuts across all resonant states. This quasi-elastic region, where the largest 

scattering is expected, divides the region of asymptotic limits of form factors for 

electroproduction of resonant (or other) states from the region of diffraction pro- 

duction of l- mesons. It is interesting to plot the conjectured behavior of a form 
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factor of a high-spin resonant state in this picture (Fig. 3). The rising behav- 

ior for small q2 is characteristic of high-spin excitations in nuclear physics 

and has also been entertained in connection with electro-production of hadron 

13 resonances. 

ds*) 

-v- 
Diffraction “Quasi-elastic *’ 

region 
Asymptotic 

region region 

Fig. 3 -- Possible behavior for form factor of high-spin resonances 

The formulae begin with the neutrino sum rule of Adler: 

- s2/2M 

(5.3) 

const On the basis of a diffraction-production model, we expect al-- V as v-~. 

VP Then, if o1 - (T VP 
1 as v -CO , it presumably does so as we enter the dif- 

fraction region and the sum rule should be saturated in the quasi-elastic region. 
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This is in accordwith the quark model, and one has, in addition, 

ldv o;‘(v, q2) = 4 ( -q2-m 
1 

Quasi-elastic 
region 

Quarks 

jdv u;p(u,q2) = 2 

Quasi-elastic 
region 

and in any case 

Jdv ul(v, 2jyp > 1 
Quasi-elastic 

region 

The electron-scattering inequality is 

Jsv [Ulp (w2) -I- Uln(Y?c12j] > i 
Quasi-elastic 

region 

and for the quark model 

Jdv Ulp(V’ 2) = 1 
Quasi-elastic 

region 

Jb Oh (v,?) = p 

Quasi-elastic 
region 

( - q2-m ) 
Quarks 

(all 9”) 

(all q2) 

I 
( q2-w ) 

Quarks 

( q2-Hx 1 
Quarks 

(5.4) 

(5.5) 

(50 6) 

(5.7) 

(5.8) 

(5.9) 
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(5.10) 

For backward scattering there exists another set of sum rules 14 , valid only for 

l=xe q2, which we discuss in detail in Section VI. The right-hand side of these 

depends upon equal-time commutators of space-components of the current densi- 

ties, highly model-dependent. In models in which the charge is carried by spinless 

objects this commutator vanishes, being of the form 

(5.11) 

In field algebra” the commutator also vanishes. In models in which the elemen- 

tary constituents are spin l/2 fermions, the commutator is 16 

~x<P~~~(x), JL(ofliP> = 2px(P/ Jz(s)/P>= 2[oo~~0~+2sin~O~] 

(5.12) 

The sum rules, assuming spin l/2 “quark” commutators, are 

Corresponding to (5.4) and (5.5) we have 

Quasi-elastic 
region 

(5.14) 
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Quasi-elastic 
region 

(5.15) 

For the electromagnetic processes we obtain an inequality by the same isospin 

manipulations leading from Eq. (5.3) to (5.7) 

Quasi-elastic 
region commutators 

and in the quark model 

$ / > v2p(q2,v) = 1 

Quasi-elastic 
region 

(5.16) 

(5.17) 

q2-+03 
( ) 

(5.18) 

Quark model 
Quasi-elastic 

region I 
Again, these sum rules have an immediate interpretation in terms of quasi-elastic 

scattering from the Dirac moments of elementary spin l/2 constituents. In a 

model where the charge-bearing constituents are spinless, there is no quasi-elastic 

scattering in the backward direction. Therefore, comparison of forward and back- 

ward scattering might say something about the spins of the “elementary constituents.” 
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Gottfried17, using arguments similar to those presented here, has noticed 

that if one uses the quark model and writes a sum rule for & 
IP 

at small q2 in 

analogy to the nuclear sum rule (4. l), the correlation term fc vanishes because 

in the proton 

L QiQj=-;-i+$=O 

i>j 
) 

Therefore, for all q2 , one should have - 

/dv ulp(q2, v) = 1 

(5.19) 

(5.20) 

Quasi-elastic 
region 

In the photoabsorption limit q2 - 0 , Gottfried has evaluated the sum, which 

agrees reasonably well with experiment. 

VI, DERIVATIONS 

We now derive the isovector part of the Adler sum rule7, the C abibbo- 

Radicati limit2, and the sum rule for backward neutrino scattering. 
14 For Adler’s 

vector sum rule, we consider the process shown in Fig. 4. 

P P 

Fig. 4-- Forward scattering of a current from a nucleon, 
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It is a “black box”, now with two currents entering. After factoring out the lepton 

currents, the amplitude is described by a second-rank tensor 

iP 
M =e$ 

s 
d4x e-iqx 

PV 
< P 1 T (J;)(x) J;@)(o))1 P >’ (6.1) 

+ Polynomial in q and P. 

The superscript ’ means we systematically omit disconnected diagrams. The 

T-product is what is obtained by a naive application of perturbation theory, and 

the extra polynomial terms may or may not be present. They can be present be- 

cause the ordered product of fields may be so singular at x = 0 that we cannot 

legally multiply by the step function 8 (t) to form a time-ordered product. Thus 

we may err by terms proportional to S4(x) or derivatives thereof. By an ex- 

pansion in intermediate states we obtain 

M pO 

G 

<PIJ(V)(o)in>C nlJvv)(oiP>C 

pv = M -En-i-ie (27g3 63(Pn-+pl) ’ 

w-w 
n Ep + q. 

(6.2) 

+ Polynomial 

where the polynomial comes from the possible extra 6 -function terms. With the 

identity 

qp<PIJp (o)[n> = so< PIJoln> - < PIz ’ II”> 
(6.3) 

ZZ qo+ Ep - En) < PIJoWln> 
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we obtain 

qp MFV =s( P ( p(k), J’$$] ( P>” eis*z d3x + Polynomial (6.4) 

The time component we evaluate, using the algebra of charge densities, and find 

qpMpo=Po + Polynomial vanishing as q - 0 (6.5) 

We postulate : 

q M” 
c1 

= pv + hqv 

with A a constant undetermined and possibly zero. We rule out (byfiat only) 

higher polynomials, which however must be covariant because M is covariant. 
IJV 

Indeed, from covariance and the divergence condition, it then follows that 

M 
PV 

= q2PpPv 
[ 

- 4 ’ p 
( 
qppv + qv p c1 ) 

+ (qp 4, - gpv 9”) M2 (s2, v) + 

+ (4*P)2g i”y] Ml (q2yv) 

(6.6) 
q pv + qv p 

q2 
/.Tgpv 4*“) + Ag 

IJV 

Notice that the absorptive part of M is related to J(v) as follows from uni- 
PV PV 

tarity, or the definition of M 
PV 

we gave 

I 

Imjyy =-; 
PV c 

<PI J:)(o) (n><nl Jt (~)(~)b; (2rj4 64((1-+ p - pn) 
n 

= 

For v < 0 crossing gives 

v>o 

Im M 
PV 

= + 74;; (q,P)“P (v<o) (6.8) 
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There are now two ways of obtaining the Cabibbo-Radicati sum rule: 

a) Demand that the coefficient of gp v grow less rapidly than q* P = v as 

v-m 

b) Demand the coefficient of c$ Pv (as v -03 ) - 0. 

Regge-pole analysis (as well as perturbation theory) suggests that these conditions 

are true, although the application of such an analysis in these circumstances is 

dubious. If we demand condition (a), we learn that 

; v2Ml(q2,v) - q2M2(q2,v) - 3 - 0 
q 1 (6.9) 

For q2 - 0, we can ignore M2 and find 

v-m 
q2 small 

(6.10) 

and, because Ml satisfies an unsubtracted dispersion relation, we find 

Ml(q2,,) = ir dv’ ~~-“$2’v’ - - &[dv?Irn M1(q2,v’) (6.11) 

- ce -CfJ 

Identifying, by means of the definition of J 
PV 

and the formulae in problems 2 and 

n 

cl2 

we can put everything together and obtain 

;fv (g”) _ (“p- Kn)2 F2”, 
4M2 

(6.12) 

- -+ F12y(q2) - 
vq 

- a/$ [,r(V) -u--b’)] 

0 
(6.13) 
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As q2 - 0 , the singularity - q -2 cancels Flv (0) = F2 v (0) = 1 
I 

and we get 

f cr2>, - 
1 

0 

(6,14) 

Although “charged photons” do not exist, this sum rule can be evaluated by making 

an isospin rotation and relating the cross section to isovector photoabsorption cross 

sections, obtained by analyzing the cross section resonance by resonance. This 

was done by Gilman and Schnitzer 18 , and by Adler and Gilman 19 who find agree- 

ment upon including contributions with v 5 1 BeV. They divide the above formula 

by two and numerically get 

.066 .059 .016 .028 .016 = + + 
M2 M2 --g- - M2 yg- 

71 71 R lr 7r 

cr2>, 
1 

( Kp- Kn)2 iF&- (1:3*8) 
ho dprod. 

(6.15) 

The agreement with experiment is very good. However, it is not clear that the 

generalizations to fixed q2 follow immediately. This requires that either v -1 F2 - 0 

asv-a or that assumption (b) is valid. While the coefficient of g is the 
PV 

amplitude for scattering a real transverse “charged photon, ” these other ampli- 

tudes going as P q 
PV 

have a less physical character. If we are given assumption 
I 

(b), we clearly get 

vM1 q2,v - ( ) l/s2 

and for all q2 we get, as before, 

1 
?r J 

(6.16) 

(6.17) 
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I 

In terms of c:” and ~1” p 

{dv’ [ cI(v) (q2,vfp a ,iV) (q2,vjvp] = 1 

0 

which is the same sum rule as we found with the infinite-momentum method. 

(6.18) 

Before going on, we comment on the implications of a violation in the sum 

rule. The weakest assumption made was that, essentially 

lim M~v (v,q2)- M v(-v,q2) o 
ZZ 

v-m V 
(6019) 

that is, that part of the amplitude corresponding to I = 1 exchange in the t-channel 

grows less strongly with v than that corresponding to exchange of an elementary 

I = 1, J = 1 particle. Thus Reggeiz ed p-exchange models satisfy this assumption. 

This can be checked experimentally by looking for the energy dependence of coherent 

p* photo- and electroproduction. 

We now derive the backward-scattering sum rules, 14 which involve a rather 

different technique. We choose a transverse polarization vector E such that 

C.P = E'q = 0 and consider again 

= q2M2 - v2M 1 

where we now include the axial terms as well. We have 

- t cy (q2,v) V>O 

+ ; u”2P (q2, IVI) v<o 

(6.20) 

(6.21) 

which in turn is proportional to the cross section for 180’ neutrino-muon scattering. 

- 25 - 



I 

Now go back to the Low equation (6.2) for M, and let go- i 00 (the reason for 

the i will come later). In this limit, we find that 

“I - [Polynomial ?] + t % 
s 

d3x eiy-“< PI 

(6.22) 

In the quark model, or any model based on spin l/2 elementary constituents, the 

commutator is 2P. 
( )( 

cosBsc + 2 sin2 ec o 
1 

For spin 0 models or in the Lee- 

Zumino-Weinberg “field algebra” 15 the commutator vanishes. For definiteness, 

let us take the quark model, so that 

Mc- (Polynomial) + $ cos2 Oc -I- 2 sin2 8 
C 

(6,23) 
0 

Now we evaluate M, another way, using a once-subtracted dispersion relation, 

valid if M1 v - 
( I) 

0 (that assumption should be familiar! ! ) as v-co : 

MI (v , q”) = M, (0, q”) + 51 ““,: 1; y; !“.‘;y2’ (6.24) 
--co 

M, (w2) is even in q o and therefore the qzl term in (6.22) comes from the 

dispersion integral. & 
Now in the limit go- ia , q fixed, q2- - co and v-qP 6-A 0 0 =iq,P I I . 

0 

21 q2 
Since the values of v’ in the dispersion integral occur for v 1 2 s z 0 , then 2M 

fi- 0 as q-im. 
0 

Thus, in the limit (in the absence of pathological cancellation), 

we get 

Ml .q,- ice * (6.25) 

The dispersion integral must be of order -2 q (at least) as q2- --oo . That 

size is itself surprising, and we assume it is no worse (such as independent of q2). 
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We conclude that 

q2+ -co 
T / > ImML(v,q2)= 

i 

ec + 2 sin2 ec 

mode1 (6.26) 
0 spin 0 

model 

lim 

quark 

Using the expression (6.21) for absorptive part 

lim 

q2+ --oo 

PI> [<p(q2,v) - oLp(q2,v)] = 2(c0s20c + 2 sin2ec) 
, (6.27) 

(quark model) 

For lepton scattering there follows the inequality 

lim 
q2 --co 

-$/ > [uzp (q2,v) + f12,(q2,v)] > + (6.28) 

The physics of these sum rules is similar to those in nuclear physics. For large 

q2 , correlations vanish and the scattering is the sum of the scattering from the 

Dirac moments of the point spin l/2 constituents (if they exist). 

VII. COMPARISON WITH EXPERIMENTS 

The experimental situation is not at all complete. The only relevant data on 

inelastic electron scattering comes from CEA 11 , where there is an electron I 

spectrum taken at E = 4.9 BeV, 8 = 31’ and E’ down to - 1.6 BeV just about 

where a quasi-elastic quark peak (for a 300 MeV quark) might be expected. We 

take Eq. (2.2) and write u = Jdx , s2) 
1P 

v ’ a2p- - 0 and plot F versus x 

with x = 2Nlv -. 

I I q2 
For x 2 3 we enter (in the quark picture) into the quasi-elastic 
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regions and since 

[$- F(x, q”) ry 1 
1 

F should somewhere be 2 1 for x 2 3 The data are shown in Fig. 5. 

1.0 

0.8 

0.6 

0,4 

002 

(7-l) 

Conjectured behavior 

Fig. 5 -- Comparison of theoretical expectations with experiment. 

The values of q2 lie between 2 and 4 (BeV/cf; the maximum value of v is 

3.2 BeV. Less than 10% of the quark sum rule (5.8) is accounted for here; for the 

strict inequality (5.7) (assuming u z un) less than half. Evidently large inelas- P 
ticities appear to be involved in this process in order to satisfy the sum rule. 
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The quasi-elastic quark model we described does not look too good. But we 

have not reached the diffraction region, and it will be of interest to look at very 

large inelasticity and dispose, without ambiguity, of the model completely. 

There is one experiment on inelastic muon scattering. 20 It is in fact well 

fit by a form which has the l/q4 asymptotic behavior, but the statistics are too 

sparse to draw any conclusion. 

A test of the neutrino sum rule itself at q2 N>l(BeV) 2 must probably await 

higher energy machines. One other possibility lies in the underground experi- 

ments, although this is a fairly desperate hope. In these experiments, what is 

observed is a secondary muon from a neutrino produced in an air shower which 

then travels through the earth and interacts near the detector. 21 The neutrino 

spectrum from this source has been computed with rather high certainty (s 30%) 

outto E- lo3 BeV; it falls off as E;” . With this spectrum, the neutrino sum 

rule, and an assumption of how it saturates (such as the quasi-elastic mechanism), 

a lower bound can be placed on the rate which is comparable to that observed. 
22 

If one in addition accepts the quasi-elastic picture, the spectrum of secondary 

muons can be estimated to go like the two factors of E relative to the 

E-3 
V 

neutrino spectrum coming for the following reasons: 

1. The linear rise of the total cross section with E 

the point-like assumption: 

, coming from 

du” ~ 

ds2 
$ <Nt> 

(7.2) 
2mE 3. 

U 
tot z 

/ 

* dq2 N $ (2mE) <Nt> 

0 dq2 
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2. The range of the secondary muon, which determines the effective 

thickness of the target is roughly proportional to energy. 

This picture predicts a relatively large number of muons ( N 20%) with energy 

greater than, say, 100 BeV, something which might be tested in the Utah experi- 

ment in particular. 

Helen Quinn 22 has computed the spectrum using the quark model, and vector 

boson exchange 

duFP G2 - - y <Nt> 
dq2 

(7.3) 

to cut off the linear rise of cross section with incident energy. Unfortunately, the 

distinction between various choices of Mw between 5 BeV and 00 is probably not large 

enough to draw any firm conclusion. In any case, more will be known about the sum 

rules from electromagnetic processes before these experiments have accumulated 

enough statistics, which is characteristically - 20 events/year D 

VIII. RADIATIVE CORRECTIONS TO THE FERMI COUPLING IN P-DECAY 

In this lecture we study radiative corrections to the vector (Fermi) -decay 

matrix element. The same locality assumption used to derive the sum rules here 

leads to the conclusion that the correction suffers the same logarithmic divergence 

as would be present in the absence of strong interactions. The coefficient of the 

divergent logarithm, however, is model-dependent, and it is possible to cancel the 

divergence in any model in which the “elementary constituents” (or fields) carrying 

isospin have I = i and mean charge - $. We will elaborate this later in doing 

the details 0 
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We assume that the corrections to P-decay come from three Feymnan ampli- 

tudes (we assume there is no vector boson) shown in Fig. 6. 

I 

N A P 

v I I I 
A N P 

(a) (c) 

Fig. 6 --Diagrams for p-decay radiative corrections. 

There is no trouble in computing (a) . It diverges logarithmically, except in 

Landau gauge; D = 
PV k-2(gpv - kpkv k-“) . For diagram (b) there are two con- 

tributions; the first comes from a combination of isovector photon and vector 

weak current, the other from axial current and isoscalar photon. This follows 

from looking at G-parity. Typical contributions are shown in Fig. 7: 

isovector 

Fig. 7-- Distinction between vector and axial contributions. 
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Diagram (c) can be evaluated using the Adler-Weisberger technique. 
1 What is 

found is the amazing result that all but the isoscalar-axial vector piece of (b) and 

some portions involving soft photons are independent of the details of strong inter- 

actions, and are furthermore logarithmically divergent, 
23,24,25 In addition, 

the isoscalar-axial piece is also divergent 
25,26,27 as we shall show by the 

q - i co method used for the backward sum rules for u VP VP 
0 2 and u2 . We outline 

the calculation for the divergent part. First of all, we put in a low energy cutoff 

on the photon propagator to suppress soft photons. That is, we write 

3 = $ 
A2 ( 1 h2 _ k2 + k2 -l,2 (8.1) 

We choose M2 >> h2 >> Mz , say ~-30 MeV. For k2 >> h2 the first term 

is small, and we can use for the nucleon part of the amplitude the Born terms only, 

since these dominate for low k2 e That calculation is in the literature, done by 

Berman and Sirlin. 28 The second part reduces to l/k2 for k2 >> h2 and is less 

singular as k2- 0 . In this part of the amplitude, we neglect the lepton momenta. 

We now show that the vector part of the amplitude is logarithmically divergent 

and independent of details of hadron structure. We choose Feynman gauge 

( 
D =g k -2 

) 
for the calculation and start with diagram (b) . The correction, 

PV PV 
from the vector current only is (ignoring now the soft-photon piece) ’ 

ue y (1 - Y5) uv r,: (PA) (8.2) 

where r3+ 
PV 

is the charge exchange amplitude for scattering a vector current 

from a nucleon of momentum P . We average the nucleon spin. f 3+ is TV 
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symmetric by PT invariance, and normalized such that its divergence condition 

is 

kp r3+ = 2 = kv r3+ 
PV PV 

We assume the absence of polynomials in k and P , as discussed in section Vi 

(6.2); I$+ is then the matrix element (Fourier transformed) of the time ordered 

product of J (V) x 
CL 0 and J”, (0) between spin averaged nucleons. The normal- 

ization is such that 

M = MO + 6M “G = G cos 0, 

(8.4) 
Because f 3’ 

PV 
is symmetric, we may write 

and therefore, after some algebra 

(8.5) 

Turning 

limit of 

to diagram 

small q 

(c) 9 we consider first the amplitude shown in Fig. 8, in the 

+4 

I 
(8.6) 

Fig. 8 -- Computation of diagram (c). 
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The wavy lines are photons, and the blob is the time-ordered product of two elec- 

tromagnetic and one vector current Gv, (Ww) 0 

The divergence condition, obtained from the expression for the T-product, is 

(after some work!!) 

q” qva (P,k,q) = 5;;” (PA+ q) -5;’ (P,k) 

Because the right-hand side is regular in the neighborhood of q = 0, we can write 

This is not an obvious result, because individual diagrams in r are of order 
/Jva 

-1 
q as q- 0 ; this result shows that the singular terms cancel out (Fig, 9): 

Fig. 9 -- Singular contributions to 6Mc . 

With this result we can write 

6M = C 

(8.9) 

The factor l/2 comes from the identity of the two photons; we would double-count 

otherwise. 

An integration by parts now gives us the final result. To do this we first 

rotate the contour of the k 0 integration (Fig. 10) to the imaginary axis, pos- 

sible from the structure of the Low equation (6.2). 
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4 Im k. 

A 
I After 

I Before 

Fig. lO-- Contour rotation in the k. plane. 

Weget 
( 
ko= ikb; E=$ 

) 

(8.10) 

This must be joined onto SMb , evaluated with the same contour integration: 

6Mb + 6M C 
i \ 

(8.11) 

A2 “N -$ ?ie 6 (1 - y5) uv (g) log 7 + soft photons 

where we have put in an ultraviolet cutoff A . The structure-dependent term 

c!f t-3 
l-v 

is rapidly convergent, and can be evaluated using the Born terms for 

r +3 
l-G l 

To this must be added 6Ma 

A2 6M, g - &- log 2 M 
A O 

(8.12) 
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leaving, for the vector-isovector contribution 

+ soft photons (8.13) 

The correction is universal, that is, structure independent. Therefore, for a 

given cutoff A the correction must be the same as the Berman-Sirlin calculation, 

based on structureless nucleons (the current algebra and assumptions of asymptotic 

growth are satisfied in that model). Thus to obtain the correct numerical contri- 

bution, all we must do is to set gA = 0 in their calculation and extract their cor- 

rection, now for a cutoff A independent of nucleon structure. 

The isoscalar-axial contribution must now be considered. We shall argue that 

this term also diverges logarithmically by using the qo-iw method. Only in 

6Mb does it contribute and there we have 

6M Axial = 
b 

(8.14) 

rAxial p k 
PV ( 1 , is given by a time-ordered product of axial current and electro- 

magnetic current and has the general form 

r Axial 
W ( ) P,k = E pVaP P” kp F(k2, k.P) 

- 
= c <pi j;m(o)/n>< niJfxial(o)IP> (27r)363kn-&-_P) 

k, + Ep - En 
(8.15) 

n 

k, j -J Axial 
P v 
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From its structure as time-ordered product, as ko- im (k= 0) we have 23 

I-- I- <P@jrn(o), Jvki~$o)] (P> d3x 
PV kO J 

kO 
-im 

We assume, as Regge exchange of p would suggest, that F k , k-P satisfies t2 ) 

an unsubtracted dispersion relation 

(8.16) 

and as in the derivation of the backward sum rules 

F 1 -- 7r J 
5 Im F(k2,v’) = F(k2,0) 

k -+im 
0 

(8.18) 

We find, then, that 

F(k2,0)-- 
k2,-wk’, 

d3x< PI / ’ jim(o), J~~~~(~,o)]JP> 

E PZ 
xyzo 

(8.19) 

To study the commutator, we choose a model in which there is a single isospin 

doublet of spin l/2 fields, all other fields having isospin zero. Then if the doub- 

let has charge 73 Q = a + 2 

J,““(z,o)] = e’(o) G [ax, r’ay ‘y5] fi (0) s”(:) 

(8.20) 
ZZ 27$ &+(Yz +63(_xj = 2a f (0) ““(4 

vector 
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and inserting into (8 0 19)) we find (spin l/2 models only!!) 

F(k2,0) - - 
r) 

(8.21) 

We now go back to 6exia1, insert the general form for r Axial 
PV ’ 

do the spin 

algebra and rotate the k. contour to the imaginary axis as before. To do the spin 

algebra, observe on general grounds 

and evaluate C by letting Pp = (l,OOO), kr” = (0, l,O,O) obtaining 

2Y2YlY3E 2301 (- 1) = c y5yo 

or 

We get 

C = 2i 

(8.22) 

(8.23) 

d4k (- 2i) ce (v (1 - y5)uv F(k’, koP) 

9 F(k2, k*P) 

(8.24) 

We can only evaluate the integral for large k2. However, we again can approxi- 

mate in this region F k ( 2, k-P) by F(k2, o) . This is because after the contour 

.rotation, we can write 

kOP = i J-z -k Mcos8 withlcosel <l (8.25) 
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I I k2 Then Ik*PI<(klM<< m which is the threshold of the dispersion integral 

in (8.17). So we finally find for the contribution from large kt2 =lko12+1d2 

(8.26) 

The lower limit cannot be determined on general grounds, but we expect it to be of 

order of the nucleon mass. Therefore the final expression for the correction is 

+ soft photon portion 

I 
+ small corrections 

from axial Born term 

(8.27) 

For a = - i the correction is convergent, a fact which has stimulated models 

of the hadrons designed to avoid this divergence. 26,27 However, I do not believe 

that the disaster exhibited here is all so serious. I believe an upper limit on the 

cutoff is somewhere such that GA2 N 1 , say A N 300 BeV. For if nothing new 

has happened by that time, higher orders of weak interaction, neglected in this 

calculation, will become important. If we cut off at 300 BeV, the determination 

of the Fermi constant is modified by 1%. That is, in the past, using a 1 BeV cut- 

off, one compared 

E = G cos 19;~) ( ) 1+6 

with experiment (decay of 014) and obtained 
29 

cos ,(‘) = 0 978 . C 
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If we replace 5 by 6 + z (l+2q log $ with s = $ (quark model) 

and A - 300 BeV, we decrease cos 6” by u0 010 and get cos ec (@ = .968. 

The value of cos ec determined from Ke3 decay is 30 

cos eLk) z .975 

so that the agreement is still better than 1%. 

In any case, the origin of the logarithmic divergence lies in the assumption of 

a local current algebra, and just as the nature of the states (if any) which saturate 

the high-q2 sum rules is very obscure, so also are the states responsible for this 

divergent correction. It is a challenge to both theoretical and experimental physics 

to improve this situation. 
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PROBLEMS 

1. Given the form for weak and electromagnetic interactions in the lecture notes, 

compute the differential cross section for inelastic electron scattering in terms of 

9 and (T 2’ 

2. Using current conservation qh jElv = 0 , show that as q2-0 

( ) 
cr (v) cr1q2,v - - q2 +- +6 

and therefore that the inelastic electron-scattering cross section is proportional 

to the photo absorption cross section my(v) 0 

3. (a) Extract the vector (as opposed to axial) AS = 0 piece of the Adler neutrino 

sum rule. 

(b) Evaluate the elastic contribution to olv proportional to 6 in 

in terms of isovector electromagnetic form factors, defined as follows 

P 
$ <N[J~(o)/P> = 6 (N) (K-KJ 

ypPlv(q2)+ w ups qv F2~ u(P) 
(c) By considering the limit q2- 0 , derive the Cabibbo-Radicati sum rule 

+ <r2>Fl - kP - Kn)z = $!$ [“-(v)J+(;)J 
4M2 0 

with gy* (v) defined as in (b) . 

4. Consider Coulomb scattering of a relativistic electron from a system of iden- 

tical point charges (non-relativistic) bound by a static potential V 
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charge density operator is 

jo(z) = 2 6 (Z-&J 
i=l 

Derive the sum rule 

cos2 8 2 

and determine fc 

system. 

in ternis of the ground state wave function of the Z-particle 

5. Consider a single particle in a one-dimensional harmonic oscillator potential 

and discuss how the sum rule in problem 4 is satisfied. In particular what are 

the important states at high q2 ? ? 
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