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I. INTROGUCTION 

Recently the study of Feynman diagrams has shed new light on the origin and 
1 

behavior of Regge poles in relativistic quantum mechanics. Van Hove has sug- 

gested a simple model in which the aixplitude for Regge exchange is given by the 

sum of the one particle exchange diagrams for the set of particles lying on an 

infinitely rising Regge trajectory. Durand has emphasized the close correspond- 

ence between the daughter trajectories faund by Freedman and Wang in unequal 

2 

3 

mass scattering and the lower spin components that are carried by off-mass-shell 

Feynman propagators for particles with spin. 

We wish in this paper to show that the Van Hove model when studied for un- 

equal external masses and generalized to include self-energy insertions on the 

propagators of the exchanged particles leads to and gives information about mov- 

ing daughter trajectories. Our results,  while model dependent, suggest that only 

in accidental cases a r e  the daughter trajectories expected to move parallel to the 

parent trajectory. In particular we find the first daughter has negative slope a t  

t = 0 for cuD(0) > -  5 / 2 .  

Lest the reader get lost below in the technical details of higher spin, let us 

first state the plan and simple physical ideas of our work. We first consider the 

m + m 2  computed with bare Feynman unequal mass scattering m1 + m 

propagators for the exchanged particles. We find that the singularities a t  t = 0 

of the leading Rbgge pole contribution a r e  cancelled by fixed daughter poles. As 

is well known, fixed poles in the angular momentum plane a re  incompatible with 

2 

(t channel) unitarity. It is natura! to %ope, therefore, that when the Van Hove 

model is unitarized, the fixed d3: ;:it 1- p )ies will turn into moving daughter 

ixjeccories. Our calculations SI ,[; 3: his is precisely what happens, and we 

find an expression which determi c.s r ~ ( ,  lrst daughr;er trajectory. 



II. FIXED DAUGXTER POLES 

We begin by studying the unequal mass scattering m1 + ml-- m 2 2  + m as 

s-00 with momenta as defined ia Fig. i. in order to avoid undue complications 

we have throughout confined our attention Lo the leading and first daughter trajecL 

tories. The amplitude for the exchange of a spin J particle is 4 

where 
J 2  b(J) = (25 + 1) I ! /J !  = (2J + 1 )  ! / 2  (J!) 

5 and (-l)J yJ (m2(J)) is the numerator of the spin J Feynman propagator. 

The argument m2 in r (m ) means that the momentum factors appear as 

P / P2. Thus for P2 f ;  m 2 ( J ) , 3 ( J )  does not 

describe pure spin J exchange but has in addition spin J-1, 5-2,. . . components. 

These are present in precisely the right amounts to guarantee that?(J) is well 

behavedat P = 0. 

J 2  

P / m2 rather than p P cli 'j P i  "j 

2 

Equation (1) may be rewritten' in terms of a Legendre polynomial 

where 
2 t = P  

and 
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I;; order to reveal the angular momentum content of Eq. (2) it is useful to 

expand it in terms of Legendre functions of argument z, where z is the t channel 

ccnter-of-mass scattering angle: 

-2J pJ(F) = q2JPJ(z) - (25 - 1 j  
cl 4i m2( J) 

(5) 
2 The quantities q2 and z a r e  given by Eqs. (3) and (4) with m (J) replaced 

by t. 

The amplitude for Regge pole exchange is given then, according to Van Hove, 

2 
(ZtJ + l ) g  (J) co 

R = M(Regge) = M(J)  = q2J 
J =O m (J) - t 

g2(J+l)(2J+3)(m, 2 - m2)  2 2  
- I  = i[dJ(2J + I) 2 

s in  TJ (4t) m (J+1) 

(6b) 
2 We assume that the coupling g (J) has no singularities which prevent us  

from opening the contour C from its original position about the Re J 2 0 axis 

to some vertical line in the left hand J plane. The amplitude then takes the form 

da(t)  2a(t) 
s in  n.a(t) dt Pa(t)(-Z) R =  

(7) + ... . 
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The first term in Eq. (7) is the contribution of the leading Regge trajectory at 

m (J) - t = 0 ,  i. e. , at J = cu(t). The second term of Eq. (7) arises from the pole 

ia the integrand of Eq. (6b) at m (J+1) = 0. Its form is precisely that of the first 

daughter trajectory. Rather than a true moving trajectory, however, we have a 

fixed daughter pole at J = a(0) - 1. By carrying the expansion further in Eq. (6b), 

it is easy to show that the second, third, etc. daughter trajectories are also fixed 

poles in the simple Van Hove model. ' The presence of the daughter poles means 

that the usual high energy behavior is ohmined even at  t = 0. 

III. MOVING DAUCXTER TRAJECTORIES 

2 

2 

0 

Let us  now extend the Van Hove model so that is satisfies two particle unitarity 

in the t channel. The technique for doing this is well known. We must replace the 

bare Feynman propagators in Eq. (1) by the full propagators. 

The full propagator for a particle oE integer spin, J , is given by (see Fig. 2): 

where p stands for 

The self -energy 

the set  of indices p l ,  p 2 ,  p g ,  . . . pJ, etc. 

function 
A; U 

(t) is symmetric under interchange of any of 

its indices. It can be written in terms of J + 1 invariant amplitudes in the form 

1 1  
r 

P l P I P  P g .. .g . . . g  J J  . . . g  
2 

J! 3 

J CJbI A. a. A j  Oj h , 4  

EJ(t)$ c I - -  - g (J) (25+1)(2J-l) 
1 J r = O  

... 
A .a. hi", 
11 where g means that the symbol g does not appear. The notation 
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is that of Durand. 2 9  The invariant amplitudes A" (t), (t),  . . . have 

no kinematic singularities. Each of them is an analytic function of t with a cut 

running from (ml + m 2 F  to infinity. In particular there a r e  no singularities a t  

t = 0 nor a r e  theret any relations among the amplitudes a t  that point. 

I * * *  I r J J 

In order to simplify the algebra it is convenient to introduce a different set 

of invariant amplitudes by writing A.U -.' (t) in terms of the orthogonal projection J 

operators 

ha h a  2 
7 = P P / P  

We have 

r ... e 
2 

J! (t) = - 
r=O 

\ai A;J\ 
r ... e ... e - - (2J+1)  B J ( t ) x  " 0  

J! 
i=l r-0 

-. 
0 . .  

,where 

B (t) = - + t YBJ(t) J 25 +1 

* 3  6 t EJ(t) + t 2 -  CJ(t) 
J (t) = (25+1)(25-1) xJ(t) + ( 2 5 - 1 )  

... . 
The amplitudes AJ(t), B (t), . . . have the same analytic properties as the twiddle 

amplitudes. However, there a r e  J relations among them a t  t = 0: 
J 

(13) 2J+1)(2J-1) CJ(0) = ... . 
3 

AJ(0) = (25 +1) BJ(0) = 
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These relations arise simply because we have expressed e ; O ( t )  in terms of the 

projection operators 0 p v  and T p v  which have poles a t  t = 0. Equation (13) 

merely insures that $;'(t) itself has no singularity a t  t = 0. J 
To study the leading Regge trajectory and the f i rs t  daughter it suffices to extract 

2 
the spin J and spin J -1 parts of AJ . To this end we expand rJ (m ) in p;V P;V 

the form 

(14) 
+ (operators which .- Y )nto statas with angular momentum 

J - 2 ,  5 - 3 ,  ... i i  

The first iwo terms on the right-knd sid; of Eq. (14) nre projection operators onto 

states of angular momentum J and 2 - I . respectively. They a r e  orthogonal to each 

other and t G  all other terms in the expansion of 

If we write 

-- 

as:! substitute Eqs. (ll), (14), and (15) h t o  Eq. ( 8 )  wz find 
1 

2 D (t) = 
- m2(J) + g (J) AJ(t) J 

It is clear from Eys. (16a) and (16b) L3at the relation 
7 

(W 

j 2 J  + l)BJ(0) =AJ(0)  is 

J precisely the one required to prevent A 

order l / t  singularities a r e  also cancej1c.d by virtue of the other relations of Eq. (13 ). 

from having a l / t  singularity. Higher 
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The full  propagator AJ (t) has a simple pole a t  t = M 2 (J) the physical (renormalized) 
p ;  v 

mass with a residue that fixes the coupling constant renormalization. These effects 

only come from D and are:  J 

In Eq. (18), G(J) denotes the refiormalized coupling constant. 

These renormalizations a r e  most easily handled by writing a dispersion relation 

for A (t) twice subtracted a t  t = M 2 (J). We have then 
J 

2 G2B)  

g (J) DJ(t) = [t - xzii [i + ( t - M?(J)) G ~ ( J )  xJ(t)] 
(19) 

where 

It is convenient also to write a dispersior' relatioii fo r  B (t) once subtracted 
J 

at t = O  
A J(0) 

BJ(t) = - + tB:(t) 25 + 1 u 

and Eq. (13) has 

ImBJ(t') 
BJ(t) = 7r /" dt' 

(m1+m2)% tyt '  -- t) 

been used to fix the subtraction cons'tant. Finally we write 
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For Regge exchange we have in place of Eq. (6b) 

+ ... I 
J 

When we open the contour C we pick up the leading Regge pole a t  J = a( t ) ,  where 

M = t ,  from the first term on the right-hand side of Eq. (23). In principle 

we could compute M (J) from Eq. (17), and hence a ( t ) ,  once m (J) and g (J) 

were given. Since AJ(M ) has a cut for h” 1 (ml+m 

trajectory would properly become complex above threshold, t = (m 1 2  +m ) . Here 

we will simply take a ( t )  as given and, moreover, assume sufficient analyticity in 

G (J) to permit deformation of the contour. 

a!(t) 
2 2 2 

2 (  ) 
2 we note that the resulting 2 

2 

2 

From the second term on the right hand side of Eq. (23) we pick up a pole a t  

Solving Eq. (24) for J gives the t;-aje t;ii.ir of the first  daughter9 J = a (t). D 

M i l e  i t  is essentially imposs.h!e ,a s d v e  for a! (t) exactly some properties D 
a r e  clear. At t = 0, Eq. (24) is sz .;si G~ y d ( J  +lg = 0 which gives the expected 

result a (0) = a(0) - 1. This follows dii-ectly from Eq. (13); i. e. , from the fact D 
T 

that A’ (0) is finite. 
I.1; V 

The factor t g  J+l(t) in Eq. (24) guarantees that the daughter trajectory will 

move as a function of t . From the overall sign of the second term in Eq. (23) it 

is clear that if aD(t)  were to reach zero,  it would give rise to a ghost state. Thus 
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it is of interest to study the slope of a=. For small t we can write 

a,(t) = a(0) - 1 + %(O) t + . . . , 
and we find 

' 

Lnl order to proceed it is necessary to adopt a model which will enable u s  to say 

something about (t). Since we a r e  inkrested in small values of t we shall J 
make the physical assumption that the dispersion integral for 2 (t) [Eq. (21)] 

is dominated by the%wo-particle intermediate states. In other words, we shall 

require that the scattering amplitude satisfies two -particle unitarity exactly in 

the t-channel , but neglect multiparticle iritermediate states. This requirement 

uniquely determines Im cJ' (t). We have 

J 

A. Q 10 

OJ 
A 0  . 6+((;P-k? - r n i ) k  Al k Az ... k J 1  k ... k 

s o  that 
q( t fJ+l  

@- Im AJ(t) = 
87r t 

where 

(27) 

- 
For J 1 3 the dispersion integrals for (t i 2nd B (t) will diverge. In a more 

sophisticated model this divergence is presumably removed by the form factor 
J J 
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associated with the m(J)- m + m vertex. Such a form factor is generated by 

the many particle intermediate state contributions to the vertex. Here we shall 

merely crudely simulate this by cutting off all divergent integrals. 

1 2  

Since a(0)  5 1 we can let the cut-off go to infinity in Eq. (26) and then have 

So,  for a(0 )  > - 1/2 , the slope of the first daughter is negative at t = 0 ,  and is 

therefGre unlikely to-give r ise  to a ghost. 

Im B (t) could not be changed by including multiparticle intermediate states. The 

sign of ~ ' ( 0 )  can only be changed if it is necessary to make a second subtraction D 

It should be noted that the sign of 

J 

12 in B (t). J 
From Eqs. (27) and (28) we see that Irn B (t) will always be proportional to J 

as long as we take into accouc'c oidy two particle intermediate states. 

As  a result ,  in the equal mass case 2.2 d::ughter trajectory will only move if we 

take into account multiparticle eK,eis. 

IE general it is difficult to say much zbout CY (t) away from t =O. In the D 

weak coupling limit we can solve Eq. (24) to f i rs t  order in G2 

(30) 

In this case we note that as t-km the daughter trajectory goes to a constant 

even though the leading trajectory may be infinitely rising 

a (fw) =a!  (-00) 
D D 
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provided a ! ( O ) < l .  For the case a(0) = 1 the dispersion integral in Eq. (31) is 

logaritliimically divergent indicating a sensitivity to the detailed behavior a t  large 

t about which we can say nothing with coiifidence. 

IV. CONCLUSIONS 

We have generalized the Van Hove model of Regge poles and used i t  to study the 

first  daughter trajectory away from t = G. Our result'' is that, under the assump- 

tion that the self-energy functions for a spin J particle a r e  dominated a t  t = 0 by 

the two particle intermediate state coitributions , the first  daughter trajectory has 

negative slope a t  t = 0. This eliminates the worry that this daughter trajectory 

would introduce a ghost state should i t  cross a! (t) = 0. D 

The mass dependence of our results is perhaps worthy of a few comments. 

If the external masses a r e  set equal, the daughter trajectories a r e  uncoupled from 

the scattering amplitude. On the other harrd, if the internal particle masses a r e  se t  

equal, the daughters become fixed poles in the angular momerAtum plane. This is not 

surprising since a model with unequal mass external particles and equal mass in- 

ternal particles violates t- channel uriihrity. Simikr  behavior was also obtained 

by Swift'' who studied the Bethe-Salpeter equation for unequal mass scattering. 

Also,like Swift, we find that %(O)-G ~ ' ( 0 )  with the great difference that 2 

oi;)(O) < 0 in our case. 

the leading and daughter trajectories a r i se  very asymmetrically in the Van Hove 

model, whereas in the Bethe-Salpeter case of Swift they a r e  both potential-like 

trajectories which,as the coupling constant is increased, grow out of the fixed 

singularities at J = -1, -2 , etc. of the Born amplitude. 

This difference is not completely amazing,however, since 

It is trivial to extend our results to the generzl case of four unequal masses 

m 1 + M  3dm2+m4* In this case the self-energy functions A J,  BJ, ... receive 
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additive contributions from the thresholds st (m + m2)2 and (m3 + m4) 2 . The 
1 

general properties of the resulting first  daaghter trajectory are completely unchanged. 

The second and further daughter trajectories caii cf course also be studied by 

our  melhod. For the second daughter the relevant ;,a:-ts of the self-energy equation 

[Ey. (S)] reduce to a 2 X 2 matrix equation. For further daughters the complexity 

excalatcs rapidly. Since the second dacghtcr t ra jectoq will involve, among other 

Ch.hgs, the function C ,(t) [ Eq. (ll)] whose imagiriary part  is positive, one may 

expect it io have positive slope at t = 0. It will also be interesting to study the 

generalized Van Hove model in cases i i i  which the external particles have spin. In 

such C ~ S C S  the fixed conspirator poles foulid by Taylor 7 will turn into moving con- 

spiratoi. trajectories. 
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Our rules for vertices follow from an effective interaction Hamiltonian 

2. 
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4. 

where Q and q2 a r e  the Hermitian fields of the particles 

m(J) ,  ml,  and m2 , respectively. The factor of Jbo has been introduced 
Pl”‘PJ’  ‘1 

to simplify subsequent formdae. i t  seems 

assume that ,,g (J) rather than g (J) b(J) 

5. I fwe  define G = - p p /m2 then: 

2 2 

P P  gPu /.l y 

natural in the Van Hove model to 

has good analyticity in J. 

1 r 0 =I, r 1 = G  F 2 = $ ( G  G + G  G - -G 
P V ’  

etc. For an expression for general J see footnote 8 of Ref. 2. 
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6. For convenience we will ignore the trivial complications of signature; it can 
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easily be added a t  the end. Since the daughter trajectory serves to cancel a 

term from the leading trajectory it clearly must have the same phase, and 

hence the opposite si-mture. 

7. J. C. Taylor (to be published) has already examined the Van Hove model in 

the unequal mass case without self-energy insertions but has described his 

(correct) results, equivalent to our Eq. (7), in what we feel is a somewhat 

misleading manner. If one does not expand P ( y )  in terms ‘of P (z), as 

we do in Eq. (5), one finds that the Regge high-energy behavior is achieved 

a t  t = 0 by virtue of a contribution from the J plane cut of PJ(z). This 

cut is not, however, a cut in the complex angular momentum (Regge) plane 

J J 

of the partial wave amplitude. Instead the structure is that of a se t  of fixed 

daughter poles as we have described. Thus TaylorJs statement that there are 

no daughter or  conspirator particles (trajectories ? )  is wrong; the situation 

is just the opposite. The case studied by Taylor has also been studied inde- 

pendently by J. D. Bjorken, long ago, and by M. B. Halpern more recently 

(private communication). 

hJa:2 is a product of J ,g symbols symmetrized I r  8. The brack,et ... g 

wiih respect to either the Ai o r  0.. 

g is interchanged with the right iiidex of the other g 

This interclqnge is to be done in all distinct ways. 

In r distinct pairs ,  the left index of one 
hiOi h.0. h.h. 6.G. 

1 

g J J  -g g ”. 

9. I;; obtaining our results we have assumed thzt the factor [ 1 +(t -m 2 (JOG 2 (J)xJ(t)] 

in the first denominator of Eq. (23) never vanishes. This is satisfied provided 
2 2 g (J) considered as a function of the renormalized coupling constant G (J), 

through Eq. (18), satisfies g2(J) > 0. Such a requirement sets an upper 

bound on G (J) and is the usual requirement that the theory has no ghosts. 2 



We remark also that this same condition guaraiitees that the coefficient of 

M2(J +1) in Eq. (24) is always positive and hence that the daughter term of 

Ec;. (23) is also ghost free. 

IO. The requirement that the amplitude satisfy two particle unitarity is equivalent, 

in iiie language of Feynman d iagrxm ,to including only the contribution of the 

bubble diagrams in z i ; O ( t ) .  In :his approxirr,ation x;;O(t) is given by 

the divergent integral 

Proceedirig formally we could obtain Eq. (13) from the O(4) invariance of the 

Feynman integral a t  t = 0, and Eqs. (27) and (28) from Cutkosky's rules. 

This result actually holds for intercepts of the leading trajectory down to il. 

a(0)  > - 3/2. To see this ,note t k t  the integral in Eq. (29) has a simple pole 

at  a(0) = - 1/2 coming from the lower limit of integration. Thus the com- 

is positive for 1 Z a ( 0 )  > - 3/2. For - 3/2 > a(0) > - 5/2 the first daughter 

has positive slope a t  t = 0 ,  but the pole at  J = -3/2 of 5 (0) prevents ar,(O) 

from ever getting above -5/2.  So again the attempt of the first daughter t ra-  
J 

jectory to iptroduce a ghost into the theory is thwarted. 

12. It should be emphasized that the fact we write the dispersion relation for 

B (t) with one subtraction is not just  a luxury, but is also a necessity. Eq. (28) J 

'. Since 1.m A is positive 1 -m2) J shows Im B is negative and proportional to (m J 
and does not vanish as ml-m it is impossible to satisfy the relation 2' 

A (9) = (2J+ 1) B (0) with unsubtracted dispersion relations for both AJ and BJ. J J 
13. Arthur R. Swift, Phys. Rev. Letters - 18, 813(1967), and Phys. Rev. to be published. 
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1. Spin J exchange contribution to m1 + ml- m2 + m scattering . 
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