STUDY OF $\pi^{ \pm} \mathrm{p} 4$-PRONG INTERACTIONS AT $16 \mathrm{GeV} / \mathrm{c}^{*}$

J. Ballam, A. D. Brody, G. B. Chadwick, D. Fries, Z. G. T. Guiragossián, W. B. Johnson, R. R. La $a_{\perp} \operatorname{sen}$ and D. W. G. Leith

Stanford Linear Accelerator Center Stanford University, Stanford, California

We wish to report results from two experiments performed at $16 \mathrm{GeV} / \mathrm{c}$ in the Brookhaven National Laboratory 80 -inch hydrogen bubble chamber. In the first experiment a beam of π^{-}mesons was prepared using the rf separated beam in an unseparated mode; the nomentum resolution of this beam was $\pm 0.3 \%$. In the second experiment the rf beam was used in the separated mode to form a π^{+} beam with momentum resolution of $\pm 1 \%$.

A portion of the film was scanned for all kinds of events in order to compare topological cross sections between $\pi^{+} p$ and $\pi^{-} p$. As can be seen from Table I, their cross sections are strikingly similar. These data have been normalized to total cross section measurements. ${ }^{1}$

TABLE I

Class	$\sigma\left(\pi^{-} \mathrm{p}\right) \mathrm{mb}$	$\sigma\left(\pi^{+} \mathrm{p}\right) \mathrm{mb}$
2 prongs	8.7 ± 0.6	7.6 ± 0.6
4 prongs	8.8 ± 0.7	8.6 ± 0.6
6 prongs	4.6 ± 0.6	4.5 ± 0.5
8 prongs	1.5 ± 0.3	1.1 ± 0.3
10 prongs	$0 . \Omega \pm 0.1$	0.1 ± 0.05
${\text { Visible } \mathrm{V}^{\circ}}$	1.6 ± 0.3	2.1 ± 0.3

*Work supported by the U. S. Atomic Energy Commission. (Heidelberg International Conference on Elementary Particles, September 20-27, 1967)

We have measured slightly more than 10,000 events in the 4 -prong topology in the $\pi^{-} p$ experiment and 5,000 events in the $\pi^{+} p$ experiment. Kinematical fits have been made for the final states $p \pi^{ \pm} \pi^{+} \pi^{-}, p \pi^{ \pm} \pi^{+} \pi^{-} \pi^{\circ}$, and $n \pi^{ \pm} \pi^{+} \pi^{-} \pi^{+}$. All fits with greater than 1% confidence level have been checked for consistency with track ionization. Table II lists cross sections for these final states.

TABLE II

Reaction	$\sigma \mathrm{mb}$
$\pi^{-} \mathrm{p} \longrightarrow \mathrm{p} \pi^{-} \pi^{+} \pi^{-}$	1.08 ± 0.15
$\longrightarrow \mathrm{p} \pi^{-} \pi^{+} \pi^{-} \pi^{\circ}$	1.24 ± 0.15
$\longrightarrow \mathrm{n} \pi^{-} \pi^{+} \pi^{-} \pi^{+}$	0.62 ± 0.10
$\pi^{+} \mathrm{p} \longrightarrow \mathrm{p} \pi^{+} \pi^{+} \pi^{-}$	1.28 ± 0.15
$\longrightarrow \mathrm{p} \pi^{+} \pi^{+} \pi^{-} \pi^{\circ}$	1.28 ± 0.17
$\longrightarrow \mathrm{n} \pi^{+} \pi^{+} \pi^{-} \pi^{+}$	0.35 ± 0.10

In the four body final states we observe strong signals for $\mathrm{N}^{++}, \mathrm{N}^{*}, \rho^{\circ}$, and f°, and sizable enhancements in the A_{1} and A_{2} regions. Production cross sections for these processes are listed in Table III. In the case of A-meson

TABLE III

	$\sigma\left(\pi^{-} \mathrm{p}\right) \mathrm{mb}$	$\sigma\left(\pi^{+} \mathrm{p}\right) \mathrm{mb}$
Total N^{++}	0.24 ± 0.05	0.44 ± 0.10
Total $\mathrm{N}^{*}{ }^{+}$	0.05 ± 0.02	0.15 ± 0.04
Total ρ°	0.49 ± 0.11	0.41 ± 0.10
Total f°	0.08 ± 0.02	0.14 ± 0.03
$\pi^{ \pm} \mathrm{p} \longrightarrow \mathrm{A}_{1}^{ \pm} \mathrm{p}$	0.12 ± 0.03	0.04 ± 0.02
$\pi^{ \pm} \mathrm{p} \longrightarrow \mathrm{A}_{2}^{ \pm} \mathrm{p}$	0.09 ± 0.03	0.05 ± 0.02

production, cross section estimates are based upon a fit of the $\rho^{\circ} \pi^{ \pm}$spectra to. two Breit-Wigner forms with a background of the Deck type as calculated by Maor. ${ }^{2}$

Figure 1 depicts the mass spectra for the $\pi^{ \pm} \pi^{+} \pi^{-}$system in cach experiment. The shaded events are those with at least one $\pi^{+} \pi^{-}$combination in the ρ-moson region and no πp mass in the N^{*} region. There appears to be significantly less A $_{1}$ production in the $\pi^{+} p$ experiment than in $\pi^{-} p$, as was indicated by the cross section in Table III. The A_{2} signal also seems weaker, but limited statistics prevent a firm conclusion. The presence of a very strong N^{++}signal in the $\pi^{+} p$ data creates considerably more background in the uncut spectrum than is present in the π^{-}data and makes extraction of reliable A-meson cross sections considerably more difficult. Thesc data point out once again the mysterious character of the A_{1} enhancement whose production, if mediated by a neutral exchange in the t channel, one might expect to be equal in $\pi^{-} p$ and $\pi^{+} p$ collisions if it is a true resonant state.

Spectra for the effective mass of the $\pi^{+} p$ system are shown in Fig. 2. A strong N^{++}signal is seen in both experiments but especially in the π^{+}clata where it accounts for about one-third of the cross section in this channel. In addition there is evidence in the $\bar{\pi}^{+}$experiment for some N^{*} (1920) production.

Figure 3 shows the $\pi^{+} \pi^{-}$mass spectra. Here strong ρ° and f° signals appear in both experiments. In the $\pi^{-} p$ data, exclusion of events in the A regions (three pion masses less than 1.4 GeV) reduces the data to the histogram shown in Fig. 4. The solid curve in Fig. 4 renresents the prediction of the OPE model as calculated by Wolf. Agreement appears to be quite good. The success of this model in explaining the data outside the A regions gives us some confidence that its results will provide reliable estimates of the background in the A_{1} and A_{2} regions.

Since the level of background is relatively high in these regions, its presence seriously distorts the decay angular distributions of the A-mesons. We are working at present on subtraction of this background in order to obtain true distributions for these decays.

REFERENCES

1. William A. Love, Bulletin of the American Physical Society, Series II, Vol. 7, No. 4, p. 567.
2. U. Maor and T. A. ${ }^{\text { }}$ Halloran, Physics Letters 15 , 281, and subsequent preprint from U. Maor.

FIG. I

FIG. 2

FIG. 3

FIG. 4

