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ABSTRACT 

Sets of t = 0 current algebra and superconvergence sum rules are 

treated as equations in the coupling constants and masses of states which 

are assumed to dominate the sum rules. The solutions of these sets lead 
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In a previous paper(') (hereafter denoted by I) we have suggested that the 

complete set of current algebra and superconvergence sum rules for forward 

scattering of pions on a hadronic target x leads to a determination of 

masses and coupling constants of various states which are assumed to domi- 

nate the sum rules. We have shown (1) that the complete set of n-p t = 0 

sum rules is approximately saturated by the JI, CL! and Al intermediate states 

and that the obtained predictions for mu, mAl' gcuo,r and I'(Al-+pn) are in 

good agreement with experiment. In this paper we analyse the algebraic 

structure of the t = 0 sum rules for 71-x scattering and apply our technique 

to a few additional cases. We use the same assumptions as in I and find: 

(a) If all t = 0 superconvergence and current algebra sum rules(*) 

for n-x scattering are saturated by states forming an irreducible represen- 

tation (IR) of the SU(2) X SU(2) chiral algebra of charges, the complete 

set of equations in the masses and coupling constants has a unique, non- 

trivial solution in the limit of zero pion mass. 

(b) If additional states contribute to the sum rules we always find 

a consistent solution. However, the uniqueness is lost and we can express 

all masses and coupling constants in terms of a few free parameters, cor- 

responding to the mixing coefficients of the additional IR's which contribute 

to the sum rules. 

(c) All states in a given IR of SU(2) X SU(2) have the same m2 value.(?) 

If the SU(2) X SU(2) states are mixtures of single particle states, their 

m2 values are given by the appropriate weighted averages of the m* value s 

of the mixed physical states. 

(d) The application of these considerations to various simple cases 

leads to many new mass relations among particles of different spins and 

parities. 
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As in I, we assume (1) chiral SU(2) X SU(2) algebra of charges, (2) 

[D~,Q$] ' * = 61JS where D1 * = & G$ (3) PCAC, (4) s 
qowq 

high energy be- 

havior for a t-channel amplitude with helicity change Ah and isospin I, 

where 0$(O) is the t = 0 intercept of the leading Regge trajectory, and 

(5) m,(o) < 0. 

The only non-vanishing s-channel helicity amplitudes for 71-x scattering 

at t = 0 are the amplitudes Aoh OA. The helicity crossing matrices indi- 
9 

cate that the only t-channel helicity amplitudes which may contribute to A Oh, OA 
at t=O are A 

00, PV 
where (p-V) is even. It is therefore convenient to divide 

all t = 0 superconvergence relations into two classes: Sum rules of class I 

involve amplitudes (with even & in the t-channel) which contribute to the 

non-vanishing helicity amplitudes at t = 0. These are "pure' t = 0 sum rules 

and the corresponding amplitudes can, in principle, be measured directly. 

Other sum rules ("class 11") involve amplitudes (corresponding to odd Lh 

in the t-channel) which do not vanish at t = 0 but do not contribute to any 

of the non-vanishing t = 0 helicity amplitudes. (4) In principle, such an 

amplitude B(s,O) can be determined only by extrapolating B(s,t) to t = 0. 

The algebraic analysis presented in this paper refers mainly to the "pure" 

(class I) sum rules which are the ones related to the physical forward scat- 

tering amplitude. Class II sum rules may, however, give additional infor- 

mation and enable us in a few cases to determine parameters (mixing angles) 

which are left free by the set of class I sum rules. 

The current algebra t = 0 sum rules can be derived only by using PCAC. 

We will therefore study the self-consistency of the complete set of equations 

only in the limit m p 0. We realize that the superconvergence relations can 

be derived without taking this limit. We find, however, that the overall 

ext consistency of the saturation assumption requires m = 0 even if we consider It 
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& the superconvergence relations. This may mean that to the extent that 

these relations give symmetry results, they do so only because of their con- 

nection to the algebra of currents. If this is really the case, we clearly 

have to consider all our sum rules in the limit implied by PCAC or by vector 

meson dominance which are the crucial links between the algebra of weak and 

electromagnetic currents and the strong interaction sum rules. Notice, how- 

ever, that whenever the pion appears as an intermediate state, its mass is 

not necessarily zero, and we consider it as an additional physical quantity. 

We now proceed to discuss a few specific sets of sum rules which enable 

us both to demonstrate our general conclusions and to present those predic- 

tions which can be immediately tested by experiment. 

(a) We first discuss the case of a pure IR of SU(2) X SU(2). We con- 

sider the set of t = 0 sum rules for fl-p scattering (1) and assume that the 

n and u) intermediate states saturate the sum rules. We solve the set of 

equations in masses and coupling constants and find (5): 

m =m =m (1) 2-t Lu P 

2‘ 
gwfl 

4g:m 8 =---=A 
2 

P 
(2) 

mP 

While it is clear that Eqs. (l),(2) do not agree very well with experi- 

ment, it is interesting to understand algebrically why we have obtained such 

a solution. In order to do so we notice that our saturation assumption is 

equivalent to assuming that, at infinite momentum, the h = 1 components of 

p and w are in the ($,$) IR of SU(2) X SU(2) while the h = 0 p and TI are in 

(LO) f Km* In this case, the axial charge & 
5’ 

which is a generator of 

the algebra, connects p only to w and 71. The matrix elements of the operator 
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Di between particle states at infinite momentum satisfy (6): 

(3) 

If (al$\S) = 0 a& (alC,$S) # 0, Eq. (3) leads to mS = rnti The commutation 
. . 

relation [Di, $1 ** = 6iJS implies that the operators Di and S transform 

according to the (-$,%) representation SU(2) X SU(2). Consequently, for any 

IR (k,@: 

( (k,t> IDi 1 (k,t> > = 0 (4) 

We conclude that if p and CD (or p and JI, for h = 0) are in the same 

sup) x sup) representation, (ollD/"l) = 0 and (pa/D/x) = 0 where the sub- 

scripts denote the helicities. Eq. (3) then leads to the prediction of 

equal masses for p,w and ?I (Eq. 1) . This is actually a much more general 

result: If we saturate all t = 0 sum rules (2) for K-X scattering by states 

forming an IR of SU(2) X SU(2), we find that all matrix elements of D 

vanish. The masses of all intermediate states are then predicted to be the 

same as the mass of x and the sum rules for I = 2 t-channel amplitudes be- 

come trivial identities while the I = 1 sum rules lead to the ordinary pre- 

dictions of the charge algebra. 

(b) In order to study the case of a reducible, finite, representation 

we now allow the rp meson to contribute to the same set of fl-p sum rules. 

The solution is not unique and it depends on a free parameter 8 which we 

define by: 

(5) 
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The general solution is: 

2 2 2 m =m =m cos2G + m* sin'@ 3-l P CJJ cp 

4g:nfl 
2 2 

gwfl -z-z g~~fi 8 
2 2 

-=- 
2 2 m cos 8 sin.8 f 

P II 

(6) 

(7) 

We immediately see that as g 
9PJ-i 

+O, 8 --+O, mp+mco. The predictions for 

m 3-c and g 
PflJI 

are not affected by 9 since cp contributes only to the trans- 

verse sum rules while 7[ contributes only to longitudinal sum rules. 

From the algebraic point of view the solution (6)-(7) can be under- 

stood in the following way: The addition of cp is equivalent to assigning 

the h = 1 LD and cp to orthogonal mixtures of the ($-,4) and (0,O) IR’s while 

%JPO 
and fl are classified as before. We define: 

IT1 > = COS Ql(O,O) > -I- sin 01(+,+) > (8) 

ILul > = -sin e/(0,0) > f cos 8 I(+,$-) > (9) 

Q5 
connects pl only to states in the ($,$) representation while D connects 

pl only to (0,O). We therefore find: 

(oIIQ;l'pl) = tan @ 

(P; IQ; I+ 

b; ID+ 1~~) 
(p;lD+)y) = - Cot ’ 

(10) 

01) 

Eq. (10) is identical to (5) and leads to (7). Eq. (11) together with (3) 

leads to Eq. (6). The angle 8 that was arbitrarily introduced in Eq. (5) 
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is now interpreted as the mixing angle between the (*,$) and (0,O) repre- 

sentations. Its experimental value is close to zero, and the absence of 

cp +psr decay therefore leads to the approximate equality between m and m 
P 0’ 

The degeneracy of rnfl and mp was removed in I by introducing the Al 

as an additional state in the sum rules. The experimental value for 

I'(p +T[~I) determined the n-Al mixing angle (denoted by q in I) to be 

approximately 45' and the components of the h = 0, (l,O)-(0,l) represen- 

tation of SU(2) X SU(2) to be 1 Ifi' > + -& IAt >. 
$ J- 

The obtained mass 
2 2 

formula is consequently: 

-$(rnE + m2Al) = rn: (12) 

(c) Our third example is the set of all (2) t = 0 sum rules for 

fiN -+ TIN, nN + nN*, nN* 3+ -;rcN* where N* is the F resonance at 1236 MeV. If 

we saturate these sum rules by N and N* only we find a unique solution in 

which 5~ = mN+ and all coupling constants satisfy the usual chiral algebra 

(or SU(~)) relations such as G 5 (7) A = 7 etc. We know, however, that the 

saturation by one IR does not agree with experiment and that many addi- 

tional states have non-negligible contributions. The mixing coefficients 

for N and N* can be determined from the experimental weak, electromagnetic 

and pionic transitions. These indicate (8) that the h = 4, (1,s) repre- 

sentation of SU(2) X SU(2) includes the "pure" ~*(1236) and a mixed I = 4 

state {cos 6lN > + sin @IX >3 h w ere X includes components from the Pll(1400), 

D13(1530), S,,(l550), F15(1688), D15(1688), S,,(l700) I = + nucleon reson- 

ances. We therefore obtain the following mass formula: 

cos 8 ‘4 -f- sin 0 * <=<* (13) 
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where is a weighted average of the m2 -values of the I = -& resonances. 

The actual contribution of any one of these states can be determined only 

from the so far unknown decay rates NT -+ N*(1236) + J[. Substituting the 

experimental values of mN' %* 
and(8? the cos 8 = 0.8 we predict mX = 1.64 

BeV, clearly within the expected mass range. 

(d) We next consider all t = 0 sum rules for n-6 scattering where 6 

P + isaJ =0,1 CG = l+- state which may or may not be identified with the 

observed narrow peak at 960 MeV. (9) We have only two such sum rules, one 

for the I = 1 and one for the I = 2 t-channel amplitudes. The only known 

particles that could contribute 00) are 7 ,and x0(960). The saturated sum 

rules read: 
8 +g* z2 

l-&X0 f x 
(14) 

(15) 

If I'(6 -+ ~7) < 5 MeV (as is the case if 6 is the 960 MeV state) we find 

that 7 contributes less than $ of the sum rule (14). Eq. (15) then leads 

in strong support of the assignment of the 960 MeV peak. The 

SU(2) X SU(2) classification then assigns 8 and X0 to (sJ$) while 7 is 

mostly in (0,O). This allows us to determine the sign of the 7-X' octet- 

singlet mixing angle. The sign is the one 

almost pure h'i; quark structure while X0 is 

(e) Our last example is the set of t 

There are five sum rules (including one of 

which identifies the q as an 

mostly p, f G. 

= 0 sum rules for 

class II) similar 

7l-A 1 scattering. 

to the five 

n-p sum rules. (1) We assume that the sum rules are dominated by the fol- 

lowing states (11) + : o(J'= 0 ,I CG= O++) p D(J’, 1+ ICG, O*) 
J J ? J 

B(J'= l+,ICG= l-+). We use the Al and p couplings and masses abtained in I, 
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and find a unique solution for the n-Al sum rules. The masses of a,D,B 

are predicted to satisfy: 

mg=mD (1-7) 

The coupling constant relations are cumbersome and cannot be directly 

tested. We will present them elsewhere, together with a detailed dis- 

cussion of the sum rules. At this point we only remark that there are some 
(12) 

vague indications for a u-type resonance around the p-mass which, if verified, 

will agree with Eq. (16). The D-particle is the isosinglet of the Al 

octet (or nonet) and therefore will probably be found in the 1.1 - 1.2 BeV 

region, not very far from the B mass. 

Additional applications and analysis of the t = 0 sets of sum rules 

may enable us to have a better understanding of the mass spectrum of the 

various resonances and of their chiral algebra classification. A particu- 

larly interesting (and open) question is the role played by the class II 

t = 0 superconvergence relations with respect to the determination of free 

mixing angles of the chiral algebra. We hope to return to this problem in 

a future publication. 
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