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GENERALIZED PDDAC, CURRENT ALGEBRA AND S-WAVE K+P SCATTERING* 

Probir Roy 

Stanford Linear Accelerator Center, Stanford University, Stanford, California 

A test of generalized PDDAC (pole-dominance-of-the-divergence-of- 
+ 

the-axial-current) for A: is made by calculating the S-wave scattering 

length and effective range for K+P scattering using current-algebra 

techniques. First-order corrections in the kaon four-momentum are shown 

to be zero for the scattering length and small for the effective range. 

From a comparison with experiment, PDDAC for the K-meson seems to be 

good within 30$. 

(To be submitted to Physical Review) 
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INTRODUCTION 

The traditional way to test the pole-dominance hypothesis for the 
f 

divergence of the axial current A: = AZ ? i AZ would be to examine directly 

the equivalent of the Goldberger-Treiman relation linking f,(A) to gNM. 

Both of these quantities are, however, poorly known, at present, from direct 

experiment. The value of gNllK from K-nucleon forward scattering dispersion 

calculations depends very sensitively on the correct parametrization of the 

experimental data on low-energy !?N scattering and different authors (1) have 

proposed different values of g2 NN(_/4fl ranging from 4.8 + 1.0 to 15.3 + 1.5. 

On the other hand, the rate for A --+Pev hyperonic decay (2) is (2.96 + .55) 

x 10 -7 sec., whereas from an analysis of the angular distribution it has 

been found(?) that (GA/Gv,h= 1.14 Ti*',z, hence fA(n) = 1.21 2 .35. The . 

Goldberger-Treiman relation then leads to giM/4a = 19.9 * 10.3, as compared 

with the above values. In view of the uncertainties and the large errors 

involved, an independent test of generalized PDDAC is necessary in order to 

determine the reliability of the hypothesis. The data on low-energjr K'P 

scattering, which is resonance-free, are quite accurate and a comparison 

with experiment of the values of the scattering length and the effective 

range at threshold, calculated from current-algebra, would test PDDAC for 

liKk. Balachandran (4) et al. have calculated the scattering length, but they 
CL 

ignored symmetry-breaking in their numerical computation, so that their 

value cannot be used for this test. In this paper, we calculate the S-wave 

K'P scattering length and effective range taking the violation of SU(3) into 

account, except in some correction-terms where symmetry-breaking effects 

will not be regarded as significant. Apart from extrapolations in the kaon 

four-momentum connected with PDDAC, our only assumption is that BV= QA 
(5J3) 
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for the bare parameters in the Cabibbo Hamiltonian. Our results agree 

with experiment within about 30$,and we argue that theoretical uncertain- 

ties, introduced in our values by approximations involved in the extra- 

polation, are of similar order. 

In Section I we separate out the current-algebra term from the invar- 

iant amplitude and call the remainder the "weak amplitude". We relate 

the S-matrix to the & = 0 partial wave amplitude f. and express the scat- 

tering length and the effective range in terms of fo. In Section II we 

discuss the details of the extrapolation in the kaon four-momentum neces- 

sary in the use of PDDAC, and include a first order correction to the soft 

K (k -+O) limit that involves evaluating the 'weak amplitude" by taking 

the single-particle contributions. In section III we show that the scat- 

tering length is given solely by the current-algebra term to first order 

in k and estimate the order of magnitude of the quadratic correction. In 

Section IV we calculate the current-algebra contribution to the effective 

range and also the corrections due to the terms that are first order in k 

in the "weak amplitude". In Section V the different parameters that appear 

in our formulas are evaluated from various data and our results are com- 

pared with experiment. The final Section VI summarizes the conclusions. 

I - S-MATRIX AND KINIZMATICS 

+' ' 
The non-trivial part of the scattering amplitude for K+P -+K P 

be written, following Weinberg (6) J as 

Sfi’ 6 fi = - 
(k2- <)(k12- 6) 

I I 

2 
aK 

1 (2~)~6(~)(p' + k' -P- k) 

can 

4 +ik’*z jdze < p'[ k"k'T A;+(z),A; 
- 1 

(0) -ik~~(zo)[A~'(z),A~-(0)llp > , 
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where we have ignored the commutator between a current-density and a diver- 

gence (u-term) invoking the Adler consistency condition. (7) In the above 

expression a~= f&, where 

= lJ- aKmK+and <-O[AE+ (O)l$ > = (&)3'2 

From the SU(3) X SU(3) algebra of current densities, as proposed 

by Gell-Mann (8) , we have 

[A;+bh$-@)I = - v;(z)d3+f) - ~~~(~)~(3)(;), Go= 0) 

Thus 

S - 6 fi fi = - (&)' )(p'+ k'- p - k > 
(k2- <)(kf2- <) 

Id 
2 

I d4z e ik'.z 
< p'I+ k"kYT A;+(z),A;-(0) 

i 
+&?+z) @)(;)lp >, 

I 

-I- J7vp8(z) h(3) + 1 (z) is the current-algebra term and 

A;-(O)\ is the llweak amplitude" contribution. Eq. (1) can 

be written as 

sfi- 6 l6 MN fi = -(T;)~- (2n)4iS(4)(kf+ P'- k - P)(TC' TR)fi 

where Tc is the current-algebra contribution and TR is the remainder. If 

i, 1 = Tc+ 'TR has the form 

c(p’)(- A + B ++ u(p) Y (2) 

then the S-wave contribution to the scattering amplitude is given by (9) 
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sin 6 1 

f. - 
9 r 

d(cos ~9; "2 cos 8 -- 7 (3) 

where 6 C= S-wave phase shift, q = relative momentum in the CM frame, 

E = nucleon energy in the same, W = invariant mass of the system. If a 

and r are the S-wave scattering length and the effective range respectively, 

we have the well-known relation 

12 qcot6C=a+,qr, 

hence 

a= 
q=o 

which we shall evaluate at q = 0. 

II. EXTRAPOLATIONS AND LOWEST ORDER CORRECTIONS 

+ -i- 
The principle of PDDAC for A; includes the relation a'AE = aK'P 

Kf plus 

suitable smooth extrapolations of the matrix element concerned in the kaon 

four-momentum. First, let us consider the limit of Tfi, under K-pole 

dominance, as k -+ 0. In that limit k' +p - p', a space-like four-vector. 

The "weak amplitude" term vanishes only under this strict limit. We now 

extrapolate the matrix element from k 12= (p - P')~ to k12= 0, and then 

assume a smooth continuation in the first power k' o to its time-like value 

on the mass-shell, while k' 
2 is kept at zero because of K'-pole dominance. 

Thus only the current algebra term contributes in this approximation, and 

we write 

TC = c2nj3 m “K4 ~~4~ .ik'.z 
8 

-- 

' kKj2 

k%(')(z) < p'i":z) +J?-V'(i)(p > , 
P 

where everything is now on the mass-shell. 
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If we want to estimate the first order correction to the soft K(k +O) 

limit, we should keep quantities linear in k in the "weak amplitude" and 

then extrapolate these back to the mass-shell. To first order in k, we 

can evaluate the "weak amplitude" term by taking only the single-particle 

contributions. Schnitzer(") has shown that the intermediate single 

particles that can contribute must have spin-parity l/2 ',3/p +. Thus the 

known nearby resonances, whose contributions we have to consider, arei 

4 co, YE(1405) and Yt(l385). Now,neglecting the widths of the resonances, 

we can write: 

r- 4 I 
TR= (,P~)~ -!$b % I I c 

N.a 
+ < p'(k"kVT(A~-(0)~n > < n/AF'(z)\ip > 

K n=A,C', 
y"o,q 

with the understanding that we keep terms linear in k only. Since Y: is 

l/2 - and Y: is 312 +, the single-particle contributions to TR equal 

c 
p- Jt t- Mj Id’- $ + My” 

3P') 
j=A,CO 

fAW2$ Y5 
(~'-k)~- M; 

$‘Y5 + fA(Y*o)2$ O P 
(P'- k)2- M$ 

0 

+ gA(y;)2 
I(‘$ + My” 

1 

ip'-d++2 
k-k'- + >c p- -+ ( p'-k).k(p-k')*k' (4) 

+ k*(p'-k)$'-k'*(p-k')$ 
u(p), 

(See Fig. 1) 

+ + 
Here k"AF(j) = fA(j)Tj#'y5$p for j = A,C", k"AE(Yc) = fA(Y*o)~Y+$'$p 

0 
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+ 
and k"lAF(Yxl) = i gA(YT)~*k~Qp("), with all the form-factors evaluated 

1 
at zero momentum-transfer. The expression (4) can be written as 

c 2 fA(j) 
2 (k-p’- i’$#> (k-p’- q, + gA(‘Tj2 

j=A, Co + 2 fA(y:)2 MY8 + s MY;- s 

I- k'(p-p') + $ $(-&fir) + -+ k*p'p*(p-p') + k*p'('-21;;(P-p')*P'- 

I 

u(p)+O(k2). 

3Mu, 
* 

1 1 

We write now: 

2Fl(0)yCL 
iF2(Oh 

+ 
MN 

p 'J?P'- P), u(p) 
I 

, 

where Fl(0) = 1, F2(0) = 1, pp = 1.79, and the arguments of Fl,F2 have gone 

to zero in the extrapolation connected with FDDAC. Moreover, 

4 

gAP;f f 
-+ “li;- % ( -k*(P-P') + 3 k(+$') + -+ k.p'p.(p-p') 

3%* 1 

+ k.p'(p-p')-(p-p').p$ 

3%* 
u(p) I- O(k2). 

1 

Thus, comparing with Eq. (2), we have 
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2 c 2 k*p' 
j=A, Co 

fA(j) M - 2 fA(Y6)2 

k.(p-p') + 5 k-p' 
2 

k-p'p- (p-P'> + O(k2) , 

1 2YLJ + P' (P-P') My” 
i 1: 

At threshold, 

I + O(k2) 8 

III. SCATTERING LENGTH 

2 

Thus from Eq. (3), 

C C 11 
"I=1 = aK+P = - 2n 

1+"" $y 
MN 

Similarly, a;_, = 0 and a' 
KoP -+ K+N 

= $ a:, so that a(K"P +K+N)/o(K'P + K+P) 

should be l/4 at threshold. 

We also have, at threshold, 

AR - (W-$)BR = 0 + O(k2). 

Thus the current-algebra calculation of the scattering length is correct 

to first order in k and the lowest order correction comes from the k2 term 



in the 'weak amplitude". There is no justification for evaluating the 

quadratic correction by taking only the single-particle states in the 

"weak amplitude", but we assume that we can estimate the error from the 

quadratic contribution to the Born term. Since 

Y(P')$ 75 
j'- $ + Mj 

(p'-k)2- M; 
P 75 a?> 

= U(p') 
2(~+ Mj)(k*p'- M$)+(2p'*k-k2)# - (J'$' Mj)k2 

'3 r) Q u(p) 
$ - M; _ 2p’k + kL 

at threshold, the quadratic term is N k'/(s+ Mj). Thus the Born part of 

the quadratic correction is N mK/(s+ Mj), i.e. N 25$, relative to the 

current algebra term, and this is the order of magnitude of the theoretical 

uncertainty in our result. 

IV. EFFECTIVE RANGE 

Off threshold, we write k = (uJ,~), p = (E,-<), k' = (uJ,~~), p' = (E,-G) 

in the CM frame where fi.$' = cos 8 = x. Thus 

q2(l +x) , 

2 2- 
AR= "x 

( )[I 
2 c f,(j j2 

j=A,CO 7 - 
f*O"o,2 

Id 
a j- s My; + l$ CUE 4- q2x) + My*' p$ 

I 

pn(yp2 

1 

I q2(l - x) + 5 (cuE + q2x) (uE f q2x)q2(1-x) -I- O(k2) , 



Let us now substitute these in (3). Then 

"K3 1 = - 
27~ a 

I I 
2 

K mK 
l+r 

and 

Moreover, 

mK f (Y*)2 
.- )+ A O - 3) 

My;;' yy mKcl MN MN’ 

2 
mK = - 

27~ a 
I I 

2 
K 

and 

q=o= 

fK2 

"K 1 
2 

1 mK +!k -- 
2s2 'MN 

Thus(le) rc = 2r((l + (1 . 

rR and 
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v. COMPARISON WITH EXPERIMENT 

To compute a1 and r from the theoretical expressions, we first need 

to know fK. From K + pV decay, one knows that fK sin BA = .070. In this 

we substitute the experimental value of Bv (13) , as obtained from Kt3decay (l,Qo 

which gives sin 8 V = ,221 * .006, noting that the vector coupling constants 

are free from symmetry-breaking effects to first order by the Ademollo- 

Gatto theorem. (15) Thus, fK = .317 + .008. - 

In order to compute rR we need f,(j) for j=A,C", fA(YE) and gA(YP). 

We now use the value f,(A) = .68 + .07 (17) predicted from Cabibbo theory 

with available experimental numbers for F and D. Using the estimate of 

fA@” > 1 ,103 * ,022 
'F =J; .213 rt .oo7 made by Brene et al.('), on the basis of Cabibbo 

theory, we obtain fA(C') = .23 + .08. Yg decays physically into CJC and 

from the width one obtains (16) that g2 o o/47( = 0.045 + 0.007. If we 
Y",C l-i 

write g 2 = a g2 then according to Weil("), cx can be shown to be 
Y;tPK- Y~~oxo’ 

between 4.8 and 13.8 depending on the model he chooses. Now using the 

Goldberger-Treiman relation for the axial coupling between Yz and P, one 

can obtain fA(Yc). The contribution of the state YE to rK is then seen 

to be absolutely negligible for CX N 10. For YT, we calculate its rate for 

going into fk" using PDDAC and obtain from the experimental width that 

gA(y;ho)2 = .67 + .05. To compute gA(Y';PK-), for reasons explained below, 

we use the exact SU(3) relation 

gA (Y;PK- J2 = 2 gA(Y;1ho)2 , 

hence gA(Y;PK)2 = .45 k .04. 

We have three reasons for using the exact SU(3) relation for gA(YT) 
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and for selecting the estimate of fA(A) made .from F, D values: 

1. There are no other estimates of fA(A) and gA(Yy) that are free 

from large experimental errors or model uncertainties. 

2. We are considering a correction that is already small because the 

contributions from A and YT have opposite signs. On the basis of what we 

know about mass-splittings in the baryon octet and decuplet, the effect 

of symmetry-breaking (which is partly taken-care of by our PCAC constant 

aK) on this difference is not expected to affect our conclusions signi- 

ficantly. 

3. We know that in the leptonic decay of A, the use of SU(3) (Cabibbo 

theory) is in reasonable agreement with experiment. 

Putting in all these numbers, we finally obtain aIzl, rc 
R and r . 

Table I shows the results in comparison with experiment. In view of the 

R C 
small magnitude of r , we expect the current algebra value for r to be 

close to the experimental value. 

VI. CONCLUSION 

We claim that the disagreement between al and a exp 
K+P 

is mainly due to 

quadratic and higher order corrections in the extrapolation of the kaon 

four momentum. The fact that the current-algebra result for r gives a 

fairly good value in comparison with experiment illustrates two points: 

1. The "weak amplitude" term TR can only contribute through the 

exchange pole here, and not through the direct pole (whose effects are 

more dominant) as in nN scattering. (10) Even in the crossed channel pole 

contribution to the first order term in k, the intermediate A and Y* 1 

to cancel each other's effects. 

1 / \ 
d2f, 2 

tend 

2. Since r = - % , the quadratic corrections to a- and to 
a 
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( ) d2fo 

dq2 
seem to be compensating each other. 

q=o 

Finally, our results indicate that, despite the large extrapolations 

involved, PDDAC for the K-meson appears to be in fairly good standing. 
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TABLE: I 

S-WAVE SCATTERING L.ENGTHS 1 EFFECTIVE RANGE 

N SCATTERING 

"1 

(fermis) 
aO 

(fermis) 

rK+P 

(fermis) 

XPERIMENTAL 

'HEORETICAL 

- 0.29 k .02 W .04 * .04 09) 0.5 * 0.15 (18) 

- 0.31 f .Ol (19) 

rc = 0.40 + .02 
correction - 0.41 f .02 0 2: ~ rR = c 0.09 

(The errors quoted in the theoretical values of a1 and rb are due to errors in sin Q.) 
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FIG. 1 - Exchange Poles in the "Weak fmplitude". 


