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ABSTRACT

From a sum rule for backward v -p séattering, valid only
in the limit of large four-momentum transfer q2, \;ve obtain an
inequality for backward e -p inelastic scattering which depends
-upon the commutator of space components of isospin currents.
Given chiral U(6) X U(6) current algebra, the total backward
scattering at fixed large qz. is predicted to be at least as great

as that from a point Dirac particle with charge * e/2.
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Recently, from Adler's sum rule for neutrino processesl
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we have derived2 an inequality for electron and muon-nucleon scattering by

isospin manipulation
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This inequality is of some interest inasmuch as it predicts a large amount
of inelastic scatiering at high momentum transfer qz, something which can be
experimencaily tested. The magnitude is comparable to that resulting from
scattering off poin: charges; this result can be traced back to the assumption
of locality’ of the isospin current.

However, electron-nucleon scattering is described by two form factors, and
the sum rule, Eq. (2) involves only one of them, the "charge" form factor which
coatributes to forward scattering. There arises the question of whether there is
any such relation for the other forin factor which describes backward scattering.

The purpose of this paper is to provide a partial answer ror large qz. ‘We wrice
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Here E and E' are incideht and final lepton energy and ¢ the scattering argie;
qz =-4EE’' sin2 —g-and y =E -E', the laboratory energy of the virtual photon. All

nzdron states of appropriate momentum have been summed over in writing

2q. (3).



The old inequality i's2
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The new inequality is (as lqzl — o0 only)
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and j; is the plus component of isovector current, normalized such that the com-
mutator in Eq. (5) is unity for the U(6) X U(6) a.lgebra..3 Corresponding to Adler's

old neutrino sum rule’ [the f-sum rule] for o,
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we also find (as |q2| — oo only)
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0 Spin O constituents

J:(x) is now the full Cabbibo current (V-A, AS =0,1)., Although similar,
Eg. (7) is not Adler's a-sum rule, 1 which lacks the convergence factor q2/v 2.

As might be expected, the result depends upon the structure of the commu-
tator of space components of isovector currents. With the chiral U(6) X U(6)
a.lgebra3 the commutator on the right-hand side of Eq. (5) is unity, and we ex-
pect relatively large scattering. However, one can imagine models in which
tne isospin current is ca'rried by spinless objects; in this case
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the commutator vanishes and there is no lower bound to the backward scattering
cross sections. .

We start, as with the derivation of the forward-scattering inequality, Eq. (4),
with the amplitude Muv for scattering an isovector current j: (x) from a proton
in the forward direction.4 (See Fig. 1).

M ,(q,P)=[q2P#P - (4,7, +a P)q-P+(q-P)2g“]F (¢® qa-P)

+[quqv ’guqu]Fz(q - P) [_qyp — o g‘“’q : ®

+ [Polynomia.l]
ing and p

We include Born terms5 in the definition of F, and Foe Mp.v is defined (up to

normalization factors) such that when lepton pairs are att ached it is a piece of

the S-matrix. It is not necessarily the time-ordered product of currents. Notice
q”M”V = P” + [Polynomial in q and P) (9)

and
P, = P, ﬂp P> o’k (10)

The neutrino-(and antineutrino- proton scattering cross section is proportional

g (x)» 3, (0]

to Im F1 and Im Fz. The backward-scattering cross sections g, are proportional

to the coefficient of guv

Oy Im {(q . P)2 F1 - q2 Fz} (11)

Adler’s sum rule is obtained by demanding, as is suggested by Regge theory,6

asymptotic behavior for the coefficient of qu Pv less strong than constant.



Thus
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Regge behavior also suggestse’ 7 that F2 needs one subtraction. We shall assume

this is the case:
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We now study Muv as qo-—>ioo » 9 fixed. As in Ref. 4, the coefficient of

l/q0 is an equal-time commutator. In the limit q,—ice,
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The most reasonable estimate is that
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which would be rigorously true if Im Fy does not change sign. We assume that
w.ére are no delicate cancellations here and we may use Eq. (15). With this
estimate the terms involving .Fl are of order l/qi in the limit. Writing

77“ =(1,0,0,0), we find, barring pathological cancellations,
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[The axial part can be treated in a similar way] .

On the other hand, the term O<q—l> is
0

M
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Thus the term multiplying F2 (qz, O) contributes fo any operator Schwinger terms
involving [j-;, ]:] . A deviation of the eommutator of space components of the

currents from the chiral algebra prediction is measured by Im Fz. Indeed
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where we have used Eq. (12). The quantity in brackets is proportional to the

vector piece of agp (qz,u) or a; P a5 defined in Egs. (3) and (11). After a

routine struggle with normalization factors (most simply done by considering

free fields) one arrives at the sum. rule Eq. (7). The same isospin ma.nipulations2

as used in obtaining Eq. (4) from Eq. (6) are sufficient to get Eq. (5) from Eq. (7).
It is tempting to assume the result Eq. (7) to be generally valid for all qz.

However, consideration of the limit as q2 —0 gives
2 _
(up —nn) =1 (19)
in considerable disagreement with experiment.
The following physical picture of the result Eq. (5) suggests itself: If the

"elementary constituents" (if any) of the nucleon, which couple to isospin,

were spinless, there would be very little backward scatteringat |
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large qz, because backward scattering demands helicity flip. If the constituents
have spin 1/2 the scattering should be incoherent and proportional to the sum of
squares of the magnetic moments of the constituents. 8

Experimental verification of the inequality Eq. (5) may be difficult because
of the problems of radiative corrections.

The author thanks J. D. Walecka for asking the right question, his
colleagues at SLAC for discussions, and Helen Quinn and Sam Berman for a

reading of the manuscript.
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