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1. Comment 

The simultaneous application of the hypothesis of partially con- 
served axial vector current (PCAC) and the U(3): U(3) algebra of 
charges permits a large number of relations between various processes 
involving the emission and absorption of pions. The relationships 

I 
provided are usually of the type where the physical amplitude is con- 
tinued to an unphysical point where one or morg pj$ns have zero energy 
and momentum. In many cases the amplitudes rkaq” be Xssumed to 
have only a small variation in their value in goin& .from the physical 
to the non-physical point and the results which are estqbiished_ at the 
soft pion limit are presumed to apply for the physical pioc&s (i.e. the 
Goldberger-Treiman relatiorl which involves the pion nucleon coupling 
constailt evaluated at the nonphysical point of a zero mass pion and 
applied to the physical pion decay). 

In these lectures an attempt is made to elucidate some of the 
applications of these soft pion results. The method used here does not 
involve I‘-products or retarded commutators but rather makes use of 

only a single reduction of a pion where accordingly many ambiguities 
disappear, such as the u commutators and Schwinger terms. The main 
tool used is the analogue of the Kocther Theorem of statistical mechanics 
which is carried over here to quantum field theory. 

I A good set of references is given by N. Cabibbo in his Raporteurs 
\ Report of the 1906 Berkeley Conference on High Energy Physics. 

\ 2. Introduction 

1) ‘ l!f2<1LLCtiOil FOiTlUI~l 

Basic to the derivation of the soft pio;l thcore’rns is the reduction 
formula v;hich allo~.vs an S:nlatr-ix element which depends only on mass 

1 shell quanti!ks to be expressed as the Fourier transform of quantities 
/ which depend 01-l spxe and time. This step permits the introduction 

of currents about which physically reasonable statements can be made . 
and thus enriches the expression for th, 0 S-matrix elemeilt enormously. 

In its simplest form, which is all that is usec! in these notes, we 

. Fundamental. Par’iicle Phys its , ed. G. Takeda and Y. Hara, ld968, 
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express the S-matrix element involving a pion of type CT in the final 
state as 

<~xa(out)ln(in)>~i[~2~)3(2K)J-*~2 .~~4xeiK’K<b(out)~(O+mlce)cp”(x)[a(in)> _..._,._. -._---. s 
(1) 

where p(-G) is the interpolating pion field, Ii, the energy of the pion, 
and where we have supposed that no pion of type cy is contained in the 
initial state. Eq. (1) can be put in a slightly different form using 
translational invariance in the form 

fpc(x+a) =&P’agc(x)e-if”a 

where Pi is the momentum operator. Thus 

<bx”(out)/a(in)> =i[(2~)3(2h’)~-1~2(2n)464(~b+~~-~a) 1 
1 x (~~‘2-~~tn2><b(out)i~*~O)ln(in)> . (2) . 

,The above expression with the &function constraint is used in the 
soft pion theorems to define the S-matrix element even when K is not 
the physical pion momentum, i.e. when I{---+ 0. (We note that<bI$p(O)lcr> 
has a pole at K2=mx~, otherwise the S-matrix element would be zero 
for physical pions.) 

In the next section we. discuss the cornerstone of the soft pion 
procedur$, the Goldberger-Treiman relation. 

2) The Goidberger-Treiman Relation 
The G-T relation connects the pion decay rate with the axial vector 

coupling constant of &decay. 
We review here a few kinematic facts about the pion ‘decay and 

neutron decay. 
Leptcnic decays of strong particles are supposed to be described 

by an interaction Lagrangian which is the product of two currents, 
the lepton current and the hadron current, i.e., 

G 9’1.t=-=j,,(iepton)J,1(hadron), 
2/z 

GA4’P2=(1.023t0.002) x lo-’ . 9 

\?’ From /f-decay 

The lepton current, which only affects leptons, gives rise to the famous 
matrix element 

<e(p)vl j,(lepton) IO> = &4yd(l +y&, = L, 

where the electron (or muon) spinors and the gamma matrices are as 
usuai, 



The pion decay matrix element 

<@(/9433&> = <evIj, (lepton)lO> <OIJ,, (hadron)I;c> 

=Lr,<OIJ,l(hadron)Inj --$$ 
. 

Since the pion has no spin 
--- 

<Ol/Jllx> r=(const)q,,/1/2(2~)3~~=m.~‘rq,,l~2(2n)3EI (fK is dimensionless) , 
. 

The only vector available is qId, the momentum of the pion. Fur”t her 
since the pion is pseudo-scalar, 
contributes.. 

only the axial part of JI1 (hadron; 

The+ pion decay rate is readily expressed in terms of G and fK as 
I 

Fi-or-n the mekured rate of pion decay, the constant f# is found to 
have the ,,value . 

‘b 
.: -Y . f,=O.93 . 

For neuti-on-p-decay, the .axial vector current takes the form i 
’ 

‘. Y 
* : + <PIJ,,(hadron)l?z> =fi(P> [fAYJ1+fq,1]7.&z) 

where*q=&?~ and f,~, f’ are the axial and induced pseudo-scalar coupl- 
ing cc$stants. (Note that the Fermi constant G is an explicit factor 
in 9111t so that j’~=GnlG.) 

(Thus far we have ignored the Cabibbo angle which will ‘be taken 
into account when it is relevant.) 

Consider the process v+jz --;&)4-p, shown in the figure below 
(Fig. 1). 

Consider further the above process for ‘a value of momentum 
transfer q=v-p, 

. 



: which is unphysical and time-like (@>O) and approximately equal to IH~*. 
In this case, we know that the process, is dominated by the one-pion pole 
term shown in the next figure (Fig. 2). 

Fig. 2. Q=u-/~=P-- 

This does not mean to imply that such a pole is dominant in the 
physical region where @<O (spacelike). At the unphysical but readiiy 
imaginable point ~~““,m,~, there are two ways of writing the matrix 
element which are equal. 

4 <Pi];“‘ln>Lp . ’ 

\/2gK,,,, is pion nuclear coupling constant for a charge pion vertex with 

i ’ &,,,/4rr=14.6 , gxm=13.6 . 
Let us further consider the case of forward muons with finite energy 
oss (E;l#.EJ; then it is straightforward to show that L.,, is proportional 
:o qtt, i.e., 

L, = cq, 

vhere C-4 
J 

-z!$‘$ 
‘Y 

2 and where the muon mass has been neglected. 
* 

:or the forward ,lepton kinematic situation 

L,I <PI l;ecln> =o 

‘or a conserved vector current, and we have at the pion pole q2wu12 

The right-hand side of the above. equation comes from using the 
Xrac equation and applying 

._..- 
qp to ~(P>‘i7,lfA+q,rfP]rJtl(n) 

which is equivalent to considering the matrix element of the divergence ’ 



qp <.I’i J;“” 111>~i3,,<PIj:“*‘!?l> . * 

Now the G-T relation is gotten by the following assumption: (The 
assumption of pole dominance of the divergence of the axial current 
PDDAC). Let us suppose that the relation valid near the pole q2=mr2 

remains afi$vonim.ately true all the way to q2=0 ! 
Since there are no particles lighter than the pion, this could be a good 

approximation. In that case we would have 

2ivIfA=-?n.f,xmg*,* 

‘which is the G-T relation. 
Inserting the value of fn from this expression, one predicts the 

pion decay rate within lo%, which is a posteriori justification of the 
PDDAC hypothesis and gives us an idea gn what the errors might be 
in other applications. 

Another useful procedure for employing the PDDAC hypothesis 
due to Feynman is the following: The divergence of the axial current 
6’,,A,, has the same Quantum numbers as the pion, i.e., I”=0-, odd G- 
parity and isovector. Hence, let us assume that 3,,AI, is proportional 
to the interpotating pion field, i.e., 

2r . . -v a’,,A,,(x) =a+) 
where: X(X) is ,‘the, pion field. Then consider A,,+ 

a + ~‘Pl~pAp+jn> =[2MfA+qzf~]2((p)rSu(n) 

. ;!a : , ! a, 
- f. =a<P17r+ln> = 

’ 4 
4l_a, 2 <PljA0 

n 
1 . 

a ---~~u(P)rJu(n)g*,,(q”> . , - 
1 q2-?n,” 

Agaip assuming the PDDAC hypothesis 

a*=- &h!!&-fA and a@=- ??&‘MfA 

gmn(0) g*nn(O) 

the factor .&!- being absent in the x0 case because 

. .___.----.---- -<-PIA,‘~I~~~-~~<PIA,*IP> 
by iso-spin rotation. 

l . 

The principle difference between the two methods is that in t&e 
latter the coupling constant g . nnn defined as the strength of the matrix 

, 



. . 

element <P/Jn[lt> evaluated at the 
evaluated by the Goldberger-Treiman 
compared with the experimental value 
11% error. 

point gnnn(0). The constant fr 
relation yields a value 0.83 to be l 

of 0.93 which indicates about an 

* 3. Charges, Noethcr Theorem 

1) Charges 

. 

Associated with every vector current operator j&z, t>* there is a 
scalar quantity known as the charge operator Q(L) which is found by 
integrating the time component of J,,(/o) over all space, i.e. 

at>= 
5 

d3XJo(X, t> * 

That Q is a scalar quantity can be made manifest by writing the above 
equation as a four .dimensional scalar product. To this end the notion 
of a surface element in four space is introduced. Consider any space- 
like surface rather than the flat space surface defined by fixed t as 
above. (The reader is reminded that on a space-like surface there are no 
two points which can be connected by a light siyna!.) The normal z,, 
to a space-1ik.e surface. is time-like and can be used to define a vector 
surface eiement in a similar manner to what one usually does in three 
dimensions. Thus an element of surface &II=?z,ldu defines a four-vector 
surface element with components in the t, X, y, z directions respectively 
as . 

{ch dy de, dt dy dz, dt dz dx, dt dx dy} . 
In the case where nlX has no space components and only a time com- 
ponent, cE(Y!~ has only a time component dxdqdx=d3x. If we write for 
the charge operator 

then the scalarity of Q(g) is clear. The charge operator Q(a) may have 
. a value which depends on the particular surface U. It is only when the. 
current J!, is conserved, i.e., 6’J!,=O that Q(a) does not depend on the 
‘choice of surface. “‘This last statement follows from the four-dimensional 
Gauss&s thecrem which ‘states ’ 

d’a a,J,, (x) = do,, J,, 
V s s 

-- 

where s is the surface enclosing the volume U. By choosing the curren’ts 



&- 

. 

For non conserved current this is not generally true and Q(a) varies 
from surface to surface. (The reader may think of Q(U) in the non- 
conserved case like a scalar temperature which varies from point to 
point.) 

Thus for conserved currents the matrix elements of Q(1) will be a 
numerical constant independent o f the time while for non-conserved 
current the matrix elements of Q(t) will yield a scalar function varying 
with time. 

2) Noether Theorem 

We consider next an extension of Noether’s theorem for classical 
fields (1921) which is applicable for quantum fields and which shall prove 

’ extremely useful. 
’ For any operator O(t, cr) where t is the time and N any other .variable 

the general quantum (Heisenberg) equation of motion states that . 
.i I c $- O(t, a)=-i[O(1, a), H(t)] - 

1’ 
. 

where I$($ is the total Hamiltonian H(t)= H(x, !)d3x. The theorem 
-L, i . 

loojts s&ilar to the Heisenberg equation of motion except that it >eals ’ 
with t’he Hamiltonian density H(x, t) and with O(t, a) replaced the charge 
opCi-aFor .Q(t). It states that under. certain conditions (to be stated 
b$ ow) j . - 

I 
i /,. 

_ l 
. :. W&, I)=%?(f), H(x, t>1 Noether Theorem 

where 

. ,’ 

If we integrate the Noether Theorem over al .l space and use the fact 

- 

that integration by parts yields 

I’-Jd3x=0 .,. .__--.C_ 

then we recover the Heisenblrg equations of motion for Q(t). Thus the 
Noether Theorem can be thought of as the unintegrated form gf the 
HeisenbFrg equation of motion. , 

l ’ 

‘. 
,-.-.- -‘. - :,- .~ 



The precise conditions under which the Koethcr Theorem is true 
are complicated but a sufiicient conditi on which suflices for the purposes 
of these lectures is that the commutator [Q, H(x, t)] be a scalar which 
is certainly JaCCi’UirL ’ -d if it is to be related to a,,J,, which is generally a 
scalar operator-. AppencIix I contains a rigorous proof of the Xoether 
Theo:-em based on Lorentz invariance, causaiity and the chiral S U(3) x 

S rJ (3) algebra betvJeen currents and charges. 
A rough pr-oaf of the theorem is as fol!ows: Consider the Heisen- 

berg equation of motion expressed as 

[d3x{[H(x. t>, Q(t)]-+ J&c, t+o . 
? 

The quantity under the integral sign is either zero or the three 
\ divergence of some current Jeer. 
i 1 i 
{ [FI(ry, t), Q(t)] 
“1 

+0(x, t> = -7 *J’(x, -t) . 

\ But if [H(x, t), Q(t)] is to be a Lorentz scalar then Jr must be identified 
f with J in order that e . 

1 be a scalar. 
-: ” Xow we have seen that whenever there are pions around the 
$ divergence of the asial current c?,,fl,, appears and through the Noether 
i Theorem this divergence gets related to equai time commutators. This 
a s reiation .is at the heart of current algebra relations and soft pion 
j 5eorems. 
1 
s Let us chec:c the Soether Thcore,m in a simple case where we 
i Irnow the answer. In the absence of electromagnetic interactions the $ 
zisospin current V,, is conserved. In particular we. have for the charged 
“s components of the current 

a, Yp’(x>=O . 
I 
!3ut we also kno:v that for chaged objects when the electromagnetic 

~..:.interaction is turned on that gauge invariance requires the minimal 
-’ L~-l~Yectromagnetic Eamil” ._. .-. - -. 1: k i l-onian be determined by the substitution ._ . 

: j 
‘y,d,here aP is the electromagnetic field and where the sign factor depends 
;ot sign of the charge of the current. Thus, in the presence--of electro- 
:&gnetism 

I 
a, v,#*((x) = t cu,, v,,* . 

. 

, 

/ 

: 
: : 



Acccr-c!inR to. the Xocthcr Thcorcm the divcrgcnce can also bc com- 
puted by taking the commutator of the associated charge’ :t 

Q*(t) = d3x Vo*(.y, 1) 
s 

and commuting it with the Hamiltonian. 
With the electromagnetic interaction turned off isospin is a good 

quantum number and the Xiamiltonian of the world is an isoscalar. 
Hence the charges Q* commute with the non electromagnetic part of 
the fiamiltonian. However, when the electromagnetic interactions are 
included this is no longer true. 

The interaction Lagrangean responsible .for electromagnetic inter- 
actions has the usual form 

(Since there are no derivatives in L, it is also-He.) J,, is the eiectro- 
magnetic current which is neutral, since Hamiltonians are always 
neutral, and is a sum of an isovector par’; and an isoscalar part 

],I = J,~“fj,~v=~pyr~,,+‘~+~~~~~~ - l - . . . ’ 

The Noether Theorem then states that 
/ z a,V,,*(n-)=-m,,(x) [Q*(t), J,,“(x, t)] 

(Note Q* ahd I.! are evaluated at the same time t and that J’ does 
not contribute .io the commutator.) 

The eIectromagnetic field (zP commutes with Q* at equal times bu; 
not at L different times. This is an assumption which is physicdiy 
motivated by causality arguments. Sinceeit takes a finite time for any 
signal fo! prop&gate, the electromagnetic field at time t cannot feel the 
influence of a, charge .Q at exactly the same time,. Therefore the 

‘operator4 must- commute. 

* 
4. Applications 

7. ) &oII-Ruderman Theorem. 

We begin our study of soft’pion theorems by.considering a relation 
first derived by Kroll and Ruderman which is purported to relate the 
threshold photo-pion ‘production to the pion nucleon coupling constant. 
The derivatio~-~iven-~h-wil~ &e.the ideas of J’DDAC but in fact the 
theorem does not really require this assumption and can be shown to 
fo!low just from gauge invariance. The gauge invariance argumew 
\vas used by Kroll and Ruderman in their original derivation but it is . a. 



. - ” . --. .- .~.1... _ .~ ., 1, -* ..*.-. 1- .,., 

0 . . . 

The derivative appearing above can be made to act on an exponential 
factor by using translational invariance and the overall conservation 
of momentum. This allows the S-matrix element to be written as 

s d4~ei~‘z(-q~+m,2)<~zj[q,~A,,+--ea~~A~+]j~P>~n. 

-. 
.’ _: 

__. 

In general this last expression is not any closer to a possible 
evaluation than the original equation. However, in its present form 
the above equation can be used to define an analytic expression for 
S rp-rx+, for all values of the pion momentum Q. Then what can be done 
is to give value for this S-matrix element evaluated at the unphysical. 
point q,,==O for all components. From then on appeal is made to hope 
and reason that this is a small region of extrapolation and that the 
resultant S-matrix may still be closely related to the precise physically 
observable matrix element. 

If there are no poles going as l/q in the limit of (I? 0 then the 
, first term inside ‘the matrix element will not contribute and 

Furthermori to first order in the fine structure content we can replace .* ._ 
the .pho’ton field all by n,,‘.” since the corrections to ar’” come from mai<mg 
pair _ and higher mass ‘states all of which require one more power of 
0-l/137. Thus . 

._ ,I * : 
ivlA,x+IP>ep 

_ l Q-0 - 

1 

. 

where eld is the photo’n linear polarization vector. This is the K-R 
theorem. The factors involving ~A=GA/G cancelled out in the Iast 
equation-and-t~e-result - isYndependent of the PDDAC although we 
used this assumption in the ‘derivation considered here. 

Calculating the cross-section from this matrix element gives 
d) 

. 



m UC I? rnr‘)re cornp~icatcx~ thnn the proof usinx I’DDAC. I IoVfevcr, in 
the iollo\~;irlg \vc‘ s!1n!l SCC that the K-R theorem clots not agree with 
espcrin:c,n: anti that the current algc!>ra approach with PDDAC can be 
used to mcncl this disagreement. 

The reaction under consideration is 

TP --f r:“1?y ) 

KPI --) qp2 (momenta) . 

Thus we want the S-matrix element 

S I*,-rr+n=ou‘<~+~Zlyp> In . 

If we use the reduction formula as developed in Section 2 then the 
pion may be “reduced ” out and the above expression becomes 

S Yp‘lC+tl= 
s 
d4x ci(l-2( O~~?ln3><121X+(x);).J)>In . , 

The pion field X+(X) is related to the divergence of the axial current 
as expressed in Section 2 \ 

a,‘A,*+=UX+ . 

This’ is true in the absence of electromagnetic interactions. However, 
this equation has to be modified in the presence of electromagnetism. 
ACCOI-?iilg t0 the Xoether Theorem there is the additional term which 
comei from tile commutator 

(Q/t+, Hclcc(X>] . 

The electromagnetic, Hamil tonian is as before 

KdX) =cn,~(x>(J,4”+J,t”] 
=&ql(x)[/,l*+ V,?] . 

Thus in the presence of electromagnetism 
a,,A,,+=n~+fen,,lQn+, V,a3] 

==m+-eenpA,t" 

where we have evaluated the commutator 

,‘.’ 
(--)[Qn+, V,Fj=A,l+ l 

That this is indeed,the correct commutator is supported by the fact ’ 
that the result for apA,+ given above is just what one finds by the 
usual minimal substitution ap -+ a,--ea,,. * _-- 

The divergence conciition on A,, then allows us to “solve ” for the 
pion field and insert this expression in the S-matrix element for the 



This is a factor of 2 larger than the experimentaliy lowest momentum 
value measured. We consider how to use the’ current algebra methods 
to resoIve this discrepancy in Appendix 3 and consider now the problem 
of the term in the photoproduction amplitude which has the form 

What has been statecl above was that this term vanished in the limit of 
q-0. it’is thi- ., feature which permits something useful to be calculated 
from the S-matrix element. In general for finite q the above expression 
is just unknown as the ortginal photoproduction amplitude 5ut because 
of the explicit factor of (I in the term it could go to zero. (Note that one 
takes al1 components of q11 to zero.) The statement “ could go ” must be 
emphasized because it might happen that the matrix ekment <zIA,,f~P> 
had, a pole in q going as 4-l. There is a general procedure which may 
be applied to aii cases which can test for the existence of such poles 
whic’h is the following: 

( 1) Such po1cs can only occur when the mass of a possible inter- 
mediate state is the same as the initial or Sinai mass. This is analogous 
to the case of 2 vanishing energy denominator in non-relativistic pcr- 
turbation theory and the proof, omitted here, would folIow along similar 
lines. , 

(2). To check whether there is a pole contribution the special 
interlmediate states has to be put in by hand and the Feynman diagram 
esplicity calculated. 

For the photo pion production there is only one such intermediate 
state which is indicated by the diagram below (Fig.3 ). The intermediate 
proton has the same mass as the initial proton (naturally) and this 
could give a term of order q-l. 

Fig. 3. 
Xf we calculated the proton intermediate state explicitly then this _--- 

matrix element takes the form--- 

/: 

, 
: 

i 

I : :;:.,. ~-,. _ 

_: 

. 



*,$‘llt?I.C C<O\!j>!ilIR co11stnn: fnctor’s hnvc t>cw1 (Ir~opptd. The nuclcon- 
rl:~zlcon axial vector current vcrtcx has only the term rr~, anc!.no term 
q,ri since WC arc going to pass to the limit as q ---) 0 and this ~~oultl be 
higher order. Similarly only the photon protor~ charge coup!inF: is taken 
(no magnetic coupling) since the magnetic coupling again brings in 
momentum factors. The term (YZ-& ’ looks as if there might be a q-’ 
contribution but will actually be cancelled because the numerator will 
contain at best one power of Q. The precise statement however still 
requires a little more’ care. We note that when q --+O if the overall 
conservation of momentum P+k=q+n is to remain as true as possible 
for physical neutron and proton then k must also go to zero. Thus we 
really want to consider <nlA,lrfi> both as q and k go to zero. In that 
case, using P+k=?z+q and the Dirac equation yields 

Choosing a gauge whe.re the poIarization e has only space components 
and working in the initial proton rest frame so that pee=0 we get 
q,jhf,8=0 ‘to lowest order -in (I and k. 

There was no special way of knowing that ~,lAZP -+ 0 other than just 
working it out, althou$h in all known examples it always vanishes. i 

2) The Caflan-T,reiman RcZation 
Callan and Treiman derived a relation between the decays I’-+ ,MJ 

and K-b ,uJ?~ or ‘&h ever where the pion is considered soft in a similar * 
manner to the Kroll-Ruder-man theorem. 

’ The dec.ay ‘-lr;j /AA is described by a constant f~ defined by 
. 

. I.! .- i* Mx+~~+~=,~~~~,~fxri,i7(~)~~(l+Ir)u(v) 
’ $ f. 
. l 

--- --JGi<OiA,-IK+>Lp 

where K,, is the K-meso; momentum and LP is just the lepton spinor 
factor. l 

The decay K+ ,UYX has the matrix element (consider iY+ -+ /l-%-r0 for 
definitness) f 

G . =~-~[F+(KtP)p+F-(II--P):IIT(~)~r(l+rl)ll(vf 
d 

where K and p are the K-meson and n:meson momenta. The form . 



I 
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factors F+ and F- are functions of the invariant momentum transfer 
q2=(IC--p)2 and the meson masses, i.e. 

F~=F*(wLK~, IIZ~', (1') t 

Following il:r +hp same procedure as was used in the photoproduction 
example we reduce the pion in the K+ + @+’ decay, hence 

il!if[i4pvn z f : 
3 
d’XC ‘“.r([?+?tz,2)<L’-I~O(X)II~+> . 

’ The pion field is then related to the divergence of the axial current by 

* 3,,A,,O(x) =aox”(x)- [QsO, Fi5+)] 

01- 

x0(7)=+ A "(x)+[QsO .r I' I' , H,Y(T)]} - , .2MfA . (10 gKNN 

Thus we need the commutator [QsO, Hw(x)]. Fortunately we know a good 
phenomenological form of UW(X) 3s given by the Cabibbo theory and 
which appears to be in reasonable agreement with ex;,eriment. In this 
case, the leptonic fiecay Hamiltonian is given by the sum of two parts; 
a strangeness conserving part HI and a strangeness changing part 1$1/z 
where the subscripts refer to the isospin. Thus : 

Erw = n-1 --I- III /2 

where 
, 
I Til'-clsU(L,.+~V,,-+A,,-)+L,-(V,,++A,,+)IG/J-i. I 

and the currents Y,,” and A,,* transform as isovector-s. Some notation i 
is necessary to clarify this point which we write as V,,“(X*), A,,*(l;*), , : 
the appearance of K* is to emphasize the isospin one strangeness con- / 

serving aspect. The strangeness changing part can then ‘be written as / 
Ht/z=sin Oi,,‘.[ ‘/,,-(I~-) +A,,-(I{-)] +L,,[ V,,+(K+) $ A,,+(P)]G/J?!- . 

The IT* appear-in:; in parenthesis indicates the isospinor and strangeness 
changing quality. 

For the decays considered here it is N1,2 which is responsible and’ 
the commutator iQsO, I<i/z] is required. Just as in the previous example 
on photoproduction the leptonic part is not involved in the commutator 
and it may be factored out\ However, c +here is both I,+ and L and since 
t’ncre is ,positiv2ly charged .lepton in the first state we want L*. The 
convention chosen here shall be that the currents transform like creation 
operators, i.e. 

L+lo>=IL+> . . 



. I 

The commutator that is required is then 

[Qs”, (V&Y-) +&-(I?-))~ . ’ 

Using the fact that the algebra of charges and currents is to be *closed . 
the above commutator must then be of the,form [If,,-(K-)+A,,-(K-11 on 
grounds of charge and strangeness. To get the correct coefficient we , 
can integrate the commutator 

[Qs’, ( V,l-(K-) + A,,-(Km))]= (coeff)[ T/,-W-) +A14-(I(-)] 

and then sandwich the charge part between a <K-l state and the vacuum. 
In which case the coefficient is readily seen to be -l/Z. 

‘Thus 

h’~K+rr= d’x(-p*+m.*) 5 <L+ 1 [p,,A,s” 

-&L,,+[Qs 0, V,,-(K-)+A,-(I<-)]k+> 

to proceed further we pass to the limit of p.4 0 and note that there are 
no pole terms at all so* that the fi,,A,,O term will vanish. In fact there 
are no one particle states of, the type which appeared in the photo- ’ 
production problem.“ If we note further that to lowest order in the \ 
weak coupling G the leptons may be treated as free particles and that I 
the matrix element SO1 V,,jK> =O by parity then inserting the commutator . 
gives : 

-.. . 

But on the other hand from the definition of the matrix element ~~-+w 
and the form factors r;lt- and F- we have 

Combining these equations we have the Callan-Treiman relation 

n;;; fx=[F+(my ,, * 0, o)+F-h@, 0, O)j. . 

The arguments of the form factors, are displayed explicitly because th;! 

. 

. 

. . 
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K-Y ltvl: my . c trix element has been evaluated at $J -0 hence the pion has 
zero mass and zero momentum. 

To compare with experiment one would like to have the form factors 
F+ and F- at the extrapolated points indicated above. Since this is __. experimental!y not possible one can try to compare with the data on 
the form factors and hope that the extrapolation wiil be reasonable. 
If we compare \vith the Trilling report of the Argonne Weak interac- 
tion Conference (1X5), Callan and Treiman find with f~=O.07O-tO.O01 that 

which indicates rather good agreement. 
[The above comparison used the value F=F-IF+= +-0.41?~:~~ as determined 
by comparing the rates of Kc, and .K,,3. Polarization experiments in 
Kfj3 decay indicate that E is more likely in the neighborhood’ of -1 
which wou!d set’ the Callan-Treiman relation in disagreement with 
esperin;cnt. In that case it is most likely that the extrapolation to the 
physical region would be incorrect.] . 

3’ / The IL’ Decays 
A very nice application of soft pion theorems is given by the decay 

modes , 
i 
i I{+ --) 77+7re+Y , K0 -4 noTi-e’lJ , 

IT+ 3 7r07ioc+v , 1-0 -+ x”n+e-c. . 

Since the energy release is not large in these decays, we employ the 
soft pion theorem on each of th: final pions separately.. This yields 
enough information to reIate all the decay parameters at the extra- 
polated point to K+, decay and I& decay. Assuming that the amplitudes 
do not vary by very much from the extrapolated points to the physical 
region, the Iceed decay rate can be calculated and for the x+n- mode is 
in good agreement with experiment. (The other channels have not yet 
been measured.) 

The original theoretical work on the K, decays was’ done by 
S. Weinberg. ix* 

~onsi<er first the decay , 

L+ 
K+(K) --) n’(P)7r-(q)eZ 

where the momentum labels have been placed in parentheses after the 
ptitrticlc. The rtccay matrix cicmcnt can bc cxprcssctl on the form 



In general, the various form factors FL-r depend on all the possible 
invariants in the I(nn system, i.e., 

Fi=Fi(7qtK2, ~t.rr+~, 77t,r2, K-q, K-p, 9-p) , ’ i=l, 2,3,‘4 . 

The form factor F, will be droppecl in the considerations here since ii 
multiplies a second order tensor in pion momenta while the other forrr 
factors multiply first order’ tensors. Furthermore, by use of the Dirac 
equation on the lepton spinor Fa will come in proportional to the electror 
mass and ‘will bc negligible in its contribution tg the rate. 

Reducing the X+ then, as usual, we have 0 

<L+K+;~~IK+> = e’P..(-p2+mr2); <L+T~-I{P,~~,~-+[Qs-, ri&v]} I Kb > . 

If there are no poles, a point we return to below, the limit as p--,( 
may be taken and the p,,A,, term will vanish. (Note that since the x2 
was among the ji7ml particles the operator is Qs- rather than Qs+.) 
The weak Han-d tonian 

“I 

. 

L -k 
r-r,,=~~[L,*+/,‘-+L,-~,,+l 

. 
will contrib%te only a part G/d/Lp+Jp- since the leptons carry a positive 
charge. ‘.However, the commutator 

., 
c 

.: 

;.I _I 
A . \ 

[QJ-, J/t--] =o 
since {here &-e no doubly charged currents and the matrix element musi 
vani,sh in this limit, b 

lim <7r+rL+IX+> =0 p + 0 

‘, .=~~L,[(F~-~~jq,,+K(K-qq),.l . 

The coefficients of KP and q,, must vanish separately giving 

l F~(TzK~, 0, 7~-~, K-q, 0, O)=F~,(KVK~, 0, mx-', K.4, 0, 0) 
\ 

and Fa(l-nK2, 0, 77zZn2, K-q, 0, 0)=0 . 

‘Another conclitioi on the form factors may be found by reducing 
t!lc ::- rather than the x+. In this case, we have 

. . 
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<L+rr+rjK+> = e ‘~.‘(-q2+,~~,2).~<L-L~+~(g,,A,,++[Q~+, Hw]}IK+> . 

In the limit as (I---’ 0 and if pole terms do not arise (as we show below) 
the matrix element is proportional to the commutator 

. . -. .- --__ [Qs+, h-1 =[Q+, IPI 

which does not vanish. (Ag ain, we use the fact that [V-!-A, V-A]=O.) 
“he comrkutc?tor may be evaluated between the 7;+ and I<+ states as i 

<~+jiQ-~J,,--J,,-Qf]jr~C> = <r+;Q”J,,-I/~+> 
zd2-<7r~\J,,-j,lP-> 

= 1/~[F.,.(K+j+ -t- F-(K-p),,] 

where F+ ancl F.- are the two form factors of the ice, decay. 
Thus, we have in the q--b0 limit 

(F~~-~~)~,,~F~(li-p),.=~~~~~z[r;,(K+P),,+li-(i(-P),,] ’ 

or 

F,(m,c2, :PZ~~, 0, 0, K-P, O)-t-F2(m2, ?w2, 0, 0, I'% 0) 

and 
i ’ 
, (I;;.+1;-)~~,)1,2/n=Fa(??zK2, 71Zn+2;“0, 0, IC$, 0) . 

The limit of p and q going to zero are compatible with FI and 1;12 being 
their respective variables but FS might not be smooth functions of 

because of the one K-meson intermediate state which gives rise to a 
pole when both @ and q vanish. 

l 

e+ 

ail. 4. Pole contribution to Fa of JL, decay. 



. .- .,...- .., .,_ ., _, ” . _ . ~. 
Y 

,’ 1 {O~VCVCJ-, for the con(?itions p --) 0 antI i~z~~r:t~rr* or (7 --) 0, /J“? 7~:~’ iv!liCh 

arc the tivo limits takCJl qbovc the h’z elastic scattering vanishes. 
This is because oE the Adler consistency condition which is merely a 
statement that !,iyO Pll<cliAltlb> =O provided that ‘at least one of the 

momenta nP or b,l is continued thus allowing the overall d-function of” ; 
momentum conservation. Thus the pole part of FS does not contribute 
at the two limits. If F3 is expanded as a pole term plus a constant 
this constant must vanish since Fa is zero at one limit. This means 
that F3 is then zero at the (13 0 limit and as a result we have that 

F+(vzK”, mx2, p*If)=-F-(m~', tit.',P.k') ' 

which is for their respective physical values. In addition the form 
factors F+, F- are approximately constant in the physical region of -& 
decay if we take F, and Fz as approximately constant in their respective 
variables in going from the physical region of Iii, decay to the p -+ 0 
and q ---) 0 limits. 0 

The relation F+=F- in the physical region is not compatible. with 
the Callan-Treiman relation at the point p-+0 if we assume that both 
i?; and F-‘are smooth functions in all their variables. Since F+ is 
related to FL and Fz which are assumed approximately constant the 
non-smooth behavior can only be in F-. A simple espression for F.+ 
and F- which exhibits all the desired properties is that F+(wK~, P2, IC-Plb 
=no and F-(II~K~, p", K*p)=[- nof'(F~lFlr)(P2--111n2)/17z,2] where a! is a, ;; 
constant. i 

. To see h&v good an approximation it is to have Fl=Fz=constant 
we can comeute the rate for Iii, decay from the equation FI=Fz= - 

’ (~%1,2/fL)~+(?Wi2, IIL~, 1C.p) in which case the experimental value is 
:. . c (F,h'~)=1.26+0.26 

while1 the theoretical value from the dbove equation is . 
I ’ h‘ F,/d/2=0.85+0.05 

in qualitative agreement. 

. 

. 

. 

. . 



. 

62 

Appendix 1. 

Complete Proof of the Divergence Conditions 
___r-_--- -. and the Noether Theorem __~ . _ -...-. 

(Taken from Physical Review Article of 
S. IN. BERXAN and Y. FRISHMAN) 

In this Appendix, we show that Lorentz invariance, locality and the 
SU(3) x SC;(Z) commutators between charges and charge densities, coupled 
with PCAC and the usual electromagnetic and weak I-kmiltonians, 
allow clivcrgence equations for vector ancl axial-vector currents V,, and 
A,, of the form” 

a~‘V,,a=-icb.n”V,,‘+CL”‘Cg,(V,,~-A,.R) , ’ (la) 
WI,, a=a~n-iicb”a~‘A,“-GL~‘rC,“,( V,P--A,P) (lb) . 

where the indices a, 1, y refer to ,internal degrees of freedom (7’ is a 
chzirge index; for (x, /I, see Ref. I), all and L, are the electromagnetic 
field and lepton current, respectively, b” and C;, arc numerical constants, 
and zn the pion fields. 

The low energy theorems involving soft pions follow simply from 
Eq. (lb). ( For example, consider the decbJ 1~~ K--j XCY, with the S-matrix 

’ eiemerit .,!,<rmlZi> In. Reducing the pion and replacing the interpolating 
pion fie!d 54’ . 

y == - 1 {m,“-Hx”‘c;,( V,F-A,tp)} 
n 

Ieads immediately to the results of Calian and Treiman in the limit 
where the pion four-momentum vanishes. All low energy theorems 
follow in a similar manner. 

Eq-S. (la)-(lb) were postulated by Veitman”) as independent of 
current aigei3ra3’. We show here that those equations follow essentially 
from the commutators of charges with charge densities. Thus ETC 
contains more information than do the “ divergence conditions ” (hi)-(lb), 
in case of commutators which yields Schwinger terms. The fact that 
the ,low energy theorems may be derived from (la)-(lb) directly shows 
that the Schwinger terms in the ETC do not affect the low energy 
resuits.” 

Eqs. (Ia)- are derived in the following manner: 
Given a current j,“(xt), \ve construct its charge Q”(1) as 



I 

l 

.Q*(t>= d3xjo”(xt) . (2’) 

Let H(xt) be the energy density. Then 

Pj,,“(xt)=i.[H(xt), Q”(t)]+ 2 o?+l~ 9 •iWRvla...~no..-.o(~t) (32 < 
nza m 

where Yi are 1, 2, 3 (space) indices. This form follo;s from space- 
rotation invariance and the requirement. that 

a”Qa(t) =i [H, Q”(t)] - _I (4) 

where I- is the total Hamiltonian.“) The fact that the summation on 
the right-hand side of Eq. (3) starts from n=2 follows from the vector 
transformation property of j,,“(Xt> under Lorentz transformations (the 
generator of a Lorentz transformation in the I< direction is MoK=~PK- 

s 
d3~~~lI(~t)). The summation is usually over a finite number of terms.6) .I 

Suppose now that 
li(xt)=Ho(xt)+Iil(xt) (5) 

such that 0 

[Ho(t), Q”(t)] =0 (6) 
P 

’ where Ho(t).= daxHo(xt). Then, ‘with Eq. (3), 3 ! I. 

, We now show how to get the “divergence equations” essentially ’ 
from the ‘charge-charge density commutation relations. Let us start 
with the kase where 

; :“, _I . . K(xt) =H-qXt) =ej,deqxt)aqct) (3) 
’ s ! 

and let Q”(t) be an axial charge. We neglect for the moment other 
contributions to, HI. We want to calculate the commutator [HC.“‘.(x?, 
Q:(t)]. To this end we note that , 

, 

and 

IQ:(t), W-. (xl)l:=b"A,,"(~l)-t-~,fl,~ C 21 ... WL,...r,o..&?) . (10) n 
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From Eqs. (7)-(IO), we get 

iPA,,” = - ieb~‘A,~(...t) 

-I-{-ied(xt)~ 31 - -,- 3rnNiTrI...r,0~(xt) 
n 
m m 

+ 2 81 * * * a7n i?:,.. .r,o.. *o 
-( 

xt)} . (12) 
?%>I 

tn ?n 

Since the expression in curly brackets cannot be a Lorentz-scalar 
field, it has to vanish. Thus 

PA,,“(xt) = - iell”d’Apa(xt) (13) 

as the contribution of electromagnetism to the divergence of the A,,” 
current. Similarly, we can calculate the contribution from the weak 
Hami!tonian , adding to H,(xt) of Eq. (Sj a term G/V’?? (lepton current) 
x (hadron current), with the hadron current given as in Ref. 7),’ and 
assuming that the ‘.hadron charges commute with the lepton current I 
(analogous 50 Eq. (9) for electromagnetisn~).8) The term a ;ia in the 
expression ior Wl,‘a is ciue to the PCAC hypothesis. 

Finally, we may further note that each of the two terms in the 
curly brackets in Eq. ‘(12) must vanish, due to the fact that one is a 
total &~er,ge;~cc, while t’ne other is not. This in turn inlplies that the 
SchkvingFr terms in the commutator [Ao”(x:t), ix”.“,(ut)] vanish after the 
x integrktion, as follows from Eq. (IO), and that a”i,,“(xt)=i[Hl(xt), Q”(t)], 
as follows from Eq. (7). 

XCcfcrcnccs for Appendix 1. 

1) We consider the diver.yences of strangeness conserving (Js=O) currents only. 
That means t!~t (I in Eqs. (la)-(lb) corresponds to As=0 only. The index p 
on the rizhf-hand side, however, includes 11s+O. If one wants to consider 
the dive:;:ence of a strangeness changing current, one has to include, in the 
right-hand side, contributions due to the medium-strong Hamiltonian. We 
also do not consider contributions due to non-leptonic weak decays. 

2) M. Veltman, Phys. Rev. Letters 17, 553 (1966). 
3) In Ref. 2j, thes- ‘0 equations were also written with W-meson fields replacing 

the iepto:? currrn::,’ It is not clear from that reference what was the formalism 
employed for the vector fields, This is of importance in applying the reduc- 
tion technique. See D. G. Eoulwate and L. S. Brown, Phys. Rev. 156, 1724 
(1967). See n!so S. G. I3rown, Phys. Rev. 158, 1444 (l%?),. 

4) AI. SaUtnkFrK (i’hyS. Rev. .154, 1455 (1957)) showed that the electromagnetic 
contributions !o the divcrgcncc equations imply cornmutation relations of the . 
>;cc:or chnrk:c ticnsity v:i:h vector anti axial CUrrt!IlihJ, with ccrtnin Scllwinwr 



terms. D. G. 13oulware and I.. S. I!rown (I’hys. Rev. 156. 1724 (1%‘)) showed 
that the weak contributions to the divergence equations, with IY-meson ficids 
replacing the lepton currents, lead to commutation relations between vector . 
and axial-vector charge densities with all currents, with certain Schwingeg 

1‘ terms. 
5) We assume that surface terms at spatial infinity may be neglected, when 

forming matrix elements. 
6) When an infinite number appears, certain relations among the various terms 

have to hold, in order not to spoil causality. 
7) N. Cabibbo, Phys. Rev. Letters 10, 531 (1963). 
8) When VJmeson fields are used instead of lepton currents, this no longer 

holds in general. For exampie, in a non-abelian gauge formalism (T. D. Lee, 
S. Weinberg and B. Zumino, Phys. Rev. Letters lS, 1029 (1967)), we have 

where ?no is the bare mass of the IrJ-meson. However, this introduces G2 terms 
in the divergence Eqs. (la) and (lb), and does not affect lowest order results. 
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Appenclix 2. 

The Kilbcrt space of states is defined by the in or out states with 
definite particle numlber, momentum, spin, isospin, etc.. In particular, 
there are the isospin operators P, I---, I3 which raise, lower and yield 
the isospin ‘kigcnvaiue of these states respectively. Invoking a fieId 
theoretic idea we ma!te the assumption that these operators can be written 
as the space i~te~~ra!s of densities. But if these operators are to be 
mly space ii’ttcg;ra:s and to ako operate on the asymptotic states then 
the-+ should be time independent. The charge cicfined as the integral 
of the fourth component of a conserved current is just the perfect 
canclidate, i.e. it is a scaIar and is time independent. Thus we identify 
the operators (I+, 1-, 1”) with the “ charges” (a;+, Qv-, Qv”) formed by 
integrating the isospin current density 

The weak current which multiplies the !epton current ill to yie!d 
the leptonic decay Hamiltonian is, in fact, composed of two separate 
parts: a part J,, -A-hich transforms as an isovectors (IJI =l> and which 
is responsible for mm strangeness changing decays and a part A-,, which 
transforms as an isospinor (/J] =1/Z). It is known that these two kinds 
of decays have ciii:erent rates and that to emperically incorporate’ this 
into the wea!k Eamiltonian it is written as 

-__ -~~~P+~,,--t-herm. conj. 

where 

I’ -=aJp-fbKp- . 
If &$y*-.,I : 

i’\’ z 
arq to form an .SUt algebra then there results a condition 

on the constants a and b. The condition is that 

\a\2+ lb\*=1 . 

Thus Cabibbo introduced his angle defining . 



n=coso, b=sinO . . s . 

Kate that this means’there in only one angle and that f)v=O~ for-the 
vector and axial vector parts. Note further that OV and 0.4 are phenome- 

nologica! parameters which are non operator constant quantities which ,I 
are always the same regardless of any “symmetry breaking effects . 

To prove the condition that \a~2i-lb\z=1 some assumption has to 

be made about the commutator of a *IT,, type current with itself. Only; 
one assumption will lead to the above condition which is that the k 
type charges commute among themselves according to the rules of an 
S U3 algebra. We state what the SUS result without proof and leave 
this as an exercise to the reader with a casual familiarity with the subject. 
We have 

[QK,, Q~rel=1(3/2)6=pYC(T~n.QJ)] 
. 
where Y is the hypercharge operator and where the subscripts a and 
p refer to the charge state of the k’ charge, i.e. . 

, [Qx+ , Qn-]=2Qno , ’ 
[QK+ , &K-I= Qco+$Y , 

‘* [Qx+ , .QK-]=&i? , t- (T=a). 

J ;> .1&r-- , QK+] , . 

.\- * [QK+ , Qz] =--8x+ , . 
‘r .,’ -. 

[QKO , Qa+]=Q~+ . / 
. -e . 

. 
. 

‘) 
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Appendix 3. 

Low-Errergy Theorem for Pion Photoproduction 

_. _. ---- ‘- _- _-... -. Tram the PCAC Hypothesis 

by 
G. W. GAFFNEY 

Stunford University 

1. Introduction 

As was first shown by IQ-o11 and Ruderman,‘) the pion photoproduc- 
tion amplitude at threshold is given, to all orders in the pion-nucleon 
coupiing-cons;ant g, simply by the Earn approximation amplitude in the 
limit as the pion-nucleon mass ratio I?trc/l‘t/iN approaches zero. For POiitiVe 

pion production from protons, 7-i-p -+ ?2-l-n+, t’he calculated cross section . 
in the c.m. system gives at threshold, / 

23.1 /l barns/ster. 

where jkj and lgl are the photon and pion c.m. momenta, respectively, 
c” 1 ----&------ 
4rr 137: 

is the fine structure constant, and R2 --14.4. 
47i. 

However, the experimental result2) is 
& n’cr ---(r+j~ -+ ~2+~+)=(15.6+0.5) /I barns/ster., 
jql fi’i? c.rn. 

at threshoid, which suggests that corrections to the Kroll-Ruderman 
theorem of or-cle- vzn/lSI,~ may not be neglected. 

The proof 0, 6 G-011 and Ruderman is based essentially on the gauge 
invariance of the photoproduction amplitude. Their result can also be 
obtained by relating the pion field to the divergence of the weak axial 
current through the partially conserved axial current hypothesis3) 
(PCAC). we \vish to point out here that by using both gauge invariance 
and PCAC, the $rSt. order terms in an expansion of the threshold 
amplitude in powers of ??h/I$N may also be calculated. The agreement 
with the espzrimantal results is then considerably improved. 

2. The Low-Energy Theorem 

Consider the process r-i-p --) U-+X+. The S-matrix amplitude has 
the foi-m 



l 

<r+?I~f OUtirkPI, in> =i(2;r)4ii’4~(p+It-pf-~)~~ 

where &‘+- =<n,,~ljn+(0)17.k P,in> and j&) is the source of the pion 
field &+(x), i.e., (U+mKz) &+(x)==j,+(x). According to the PCAC hype- * 

* thesis, including electromagnetic interactions to first order in e, 3: 

dpA+p(x)+ie 94,,(x)A+Qz) =ia qL+(x) (1) 

where A+%) is the positive-charged component of the weak axial : : 
current, SF’&) is the electromagnetic potential* and :- :.. -‘:. o :, ~. . -: 

a = d~ilfhon,zF~(0)/g(O) . 

F~(o)al.lS is the weak axial coupling constant and g(0) is the off-mass- 1 
shell pion-nucleon coupling constant [gz(m,2)/~7r-14.4]. 

Taking matrix elements of this expression between states <n,#l and 
17’kP,, in>, we have 0 

1 a 
r&+--q2 

<?2,,lli,+(O>lYkPyin> =-q”<np,IA,+(o)lYkPE, in> 

+e<n,v: J@,~(o>A+“(o)I~li~~, in> 

In the first term on the right side of Eq. (2) we separate 
pion pole contribution to the axial current matrix element, 

. (2) 

out the 
4 

. 
; 
:* ~qp<?zp~~&+(0)~~k~p in>’ 7 

I 

where ‘the prime on the second term indicates that the pion pole term 
has been subtracted. Inserting this in Eq. (2), we then obtain . c 

,~~'~lp'ijnf(o)I./kPpin> 'n= -q”<~zp~~~p+(0)~~k~p in>’ 

f. 
??2Xf2 

\ 6 

I-e<rz,~I~C(0)A+B(O)irkPP in> . (31 

To lowest order in F?, ,&‘~~~)=JY’~*~(x), so that ’ ifi , t. 
e<n,ll~l,(O>A+“(0)IykP, in> =e~,,(~><?~~~lA+~(O)l~~> +0(e2) 

. 

: 

__ ---. Z.‘. _- ._ 

._ ..- 

:.. 

. . 
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- assuming F,~(((J---/~)~)=F~(O)+O k7-‘)” 
LGG-). 

Here cp(k) is the polarizatidn 

vector of the photon (k.c=O). 

Also, by isolating the Born contribution to the first term on the right 
-in Eq. (3), we may write” 

-- -- 

where hp and K,, are the proton and neutron anomalous moments. The. 
non-Born amplitude IV,,, is finite as 4, k -+ 0 (with ?IZ~~=@ --) 0) so we have 

q~1~~y=q~l~,IIY(q2=m,2=0, q=o, j+(j)+&&) L?L!!- . ’ 
N MN 2 > . 

Combining Eqs. (3), (4) and (5), we obtain 
. 

i +q”cvv$,~(q2=0, q”=k’j=O)+O 
( 
I$$ , -Q/L1 + O(e’) . 

MN21 
w . 

Xow, writing J-/%/+ =<frill+f’, gauge invariance of the S-matrix amplitude * 
requires that LJ”M,~+=O. Since the first term in Eq. (6) is separately 
gauge invariant, we must have 

kvN,,y(q2=0, qf’=k”=O)=O, which ‘implies Nf,r(q2=0. qf’=k”=O)=O . 

Thus, we- have shown that, neglecting terms of order $ 
N2 

and 

q*h 5~ , the S-matrix amplitude J/+, for y+p--+~z-I-x+, is given by the 
N 

first’ term in Eq. (t;), which can be re-written in the form . 

* The lnst term in (5) comes from the Corn term involving the n-y-axial vectof 
vcrtcx which is cvn!uatcd usinK PCAC for the axial vector current. 



ivhcrc we have assumer1 tha; g(0)=g(~~zx2)-t 0 The factor in 

square brackets is just the usual Born amplitude. The additional term 

’ is of order (kp+kn) a,. 
MN 

which may be neglected since (/ipi-xn)2’L < 
MN 

The anomalous moment terms in the Born amplitude also 

contribute to the cross section a. term of order (K;+x,,)*, and hence 
MN 

they may be ignored. 

3. Comparison with ExperimentaL Results 

A. z+ Production 
0 0 

f I I I I I I I 

Y 

81 I I I I I I 
150 160 170 180 190 200 210 

Fig. 5. The differential cross section in the c.m. system (times a 
kinematical factor lkl//ql) for photoproduction of X+ mesons from 
protons near threshold. The momentum transfer is held fixed at 
its vaiue at threshold as the photon” energy is varied. The 
experimenta points are taken from Ref. 2). 

The differential cross section in the C.F. system obtained from Eq. 
(7) I7ivcs 

. . 
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Fig. 5 shows the ‘esperimantal data2) for i/Cl cln - -~ near threshold 
Iq/ d.Qc.m. 

for the momentum transfer fixed at its value at the threshold, together 
with the theoretical curve predicted by Eq. (8). At threshold (lq\=O), 
we snd from Zc;. (S), 

/ 1.1 A c?o 

iql dRc.m. 
(r-!-p --+ n+x+)=15.5 /jb/ster.. 

This value is consistent with the experimental result2’ of (15.GtO.5),&/ 
ster.. 

We see from Fig. 5 that Eq. (S) correctly predicts the slope of the cross 
section near threshold. The angular distribution has been observed 
cspcrimentallq 7’) in the region just above threshold and it does not agree 
.with Eq. (8). Hol,veGer, since the angular variations are small, this 
discrepancy is not surprising, due to the approximate nature of the 
PCAC. relation. The observed distribution is presumably clue to the 
tail of the IV+’ (1%) resonance: 

. 

B. 7-r Produrtion 

A calculation for r- photoproduction from neutrons similar to the. 
one in Section 2 gives the result 

cl0 
--__ (y+H -+ p+n-) 

R -i!?.!?% 

-- (r+p --+ n+x+) 
dJ2c.m. 

-1.3 at threshold. 

A ,recent experimental value2’ is 
R=1.265+0.075 

Lvhich agrees v~it’h our result, whereas the Kroll-Ruderman limit gives 
R=l. 
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lkl. do, at threshold. Furthermore, - 
lql dQc.m. 

should be approximately con- 

stant as a function of photon energy just above threshold. Experimental- 

1~s) this is not the case. - lk;1 dt7 
lfjl dQc.m. 

increases quadratically with la\, 

and at 160 MeV is still over twice as large as Eq. (9). Also the angular 
distribution disagrees with the calculated result, Clearly, then, for ~9’ 
production near threshold, the N* resonance may not be ignored because 
of the vanishing of the Born amplitude in the limit as ?‘&thfN -+“k. 

4. Conclusion 

We have shownG1 that, by using gauge invariance and the PCAC 
hypothesis, one is justified using the Born approximation for pion photo- 

production near threshold if we neglect terms of order - V?r,n2 
ikIN 

and (n,+kJ 
?)I.,7 

’ ibfN 
- and’ if the N*(1236) resonance can be ignored. For charged 

pion production the agreement with experiment .is good,‘showing our 
assumptions are justified. 
the Born amplitude, 

For neutral pions, due to the smallness of 

threshold. 
the N* resonance apparently dominates near 

*- 
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