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1. Comment

The simultaneous application of the hypothesis of partially con-
served axial vector current (PCAC) and the U(3)x<U(3) algebra of
charges permits a large number of relations between various processes
involving the emission and absorption of pions. - The relationships
provided are usually of the type where the physical amplitude is con-
tinued to an unphysical point where one or more pxons have zero energy
and momentum. In many cases the amphtudes may be dssumed to ‘
have only a small variation in their value in going from the physical
to the non-physical point and the results which are established at the
soft pion limit are presumed to apply for the physical process (i.e. the
Goldberger-Treiman relation which involves the pion nucleon coupling
constant evaluated at the nonphysical point of a zero mass pion and
applied to the physical pion decay). :

In these lectures an attéempt is made to elucidate some of the
applications of these soft pion results. The method used here does not
involve T-products or retarded commutators but rather makes use of
only a single reduction of a pion wherc accordingly many ambiguities
disappear, such as the ¢ commutators and Schwinger terms. The main
tool used is the analogue of the Noether Thecrem of statistical mechanics
which is carried over here to quantum field theory.

A goad set of references is given by N. Cabibbo in his Raporteurs
Report of the 1966 Berkeley Conference on High Energy Physics.

2. Introduction

Basic to the derivation of the soft pion theorems is the reduction
formula which allows an S-matrix element which depends only on mass
shell quantities to be expressed as the Fourier transform of quantities
which depend on space and time. This step permits the introduction
of currénts about which physically reasonable statements can be made

‘ and thus enriches the expression for the S-matrix element enormously.

In its simplest form, which is all that is used in these notes, we

\ 1) Reduction Formula
]
1
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(1967 Tokyo Summer Tectures in Theoretical Physics. Printed in -
Fundamental Particle Physics, ed. G. Takeda and Y. Hara, ]968
p. L43.)

U S

)



44 S. M. BerMAN

express the S-matrix element involving a pion of type a in the final
state as

<br(outyiain)> =z‘[(zm’(zml-*ﬂg.d'xefK~X<b<out>s<cJ+m,ﬁ><pa<x);a<in)> -

(1)

where ¢(x) is the interpolating pion field, Ko the energy of the pion,
and where we have supposed that no pion of type «a is contained in the
initial state. Eq. (1) can be put in a slightly different form using
translatxonal 1nvar1ance in the form

elx+ay=e'l " p(x)e-*""e
where P, is the momentum operator. Thus
- <brx"(out)/a(in)> =i [(2r)*(2K)]~Y*(2n)*0*( ps -+ K — pa) 1
| X (K t—med) <bloud) g™ lalin)> . (2)

' The above expression with the d:function constraint is used in the

soft pion theorems to define the S-matrix element even when X is not
the physical pion momentum, i.e. when KX —0. (We note that<ble(0)|a>
has a pole at K*=m.* otherwise the S-matrix element would be zero
- for physical pions.) :

In the next section we. discuss the cornerstone of the soft pxon
procedme the Goldberger-Treiman relation.

2) The Goldberger-Treiman Relation »

The G-T relation connects the pion decay rate with the axial vector
coupling constant of B-decay. ‘

We review here a few kinematic facts about the pion decay and
neutron decay.

Leptonic decays of strong particles are supposed to be described
by an interaction Lagrangian which is the product of two currents,
the lepton current and the hadron current, i.e.,

.Qﬂm:—\—/g-—z—«jﬂ(lepton)],l(hadron), GM,*=(1.023+0.002) X 10-* .

From y-decay

152

The lepton current, which only affects leptons, gives rise to the famous
matrix element

<e(p)v| ja(lepton) 0> = Fem¥a(l+7s)its = La

- where the electron (or muon) spinors and the gamma matrices are as

usuai,
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The pion decay matrix element

<e(1)vl LAl > = <evlj. (lepton)|0> <0} J, (hadron)iz> I/Q?

. =Lu<0] Juthadron)|z> :/.?
Since the pion has no spin
<O]]Il!n> -’-‘—"(Const)qll/\/ms—b:jr:mnfxq”/’\/—z—(m (fx iS dimensionless) ‘

The only vector available is ¢,, the momentum of the pion. Further,

since the pion is pseudo-scalar, only the axial part of Ju (hadron)
contributes.

The pion decay rate is readily expressed in terms of G and fx as

2 4 2712
1’,,..,,.,:( G i )(m,:)[ 1_( m,.) ] mufit .
8rn M Nix
F1om the measured rate of pion decay, the constant f+ is fournd to
have the value

¥ - f2=0.93 .
For neution f-decay, the axial vector current takes the form
v . <PlJuhadron)|n>=ia(P) [farn+ fraulrsuin)

wherg- q P—:n and fa, fp are the axial and induced pseudo-scalar coupl
ing constants (Note that the Fermi constant G is an explicit factor
in %7 SO that Sa=G4lG.)

 (Thus far we have ignored the Cab1bb0 angle which will be taken
into account when it is relevant.)

Consider the process u+n - u{e)+p, shown in the ﬁgure below
(Fig. 1). :

Consider further the above process for a value of momentum
transfer g=v—p, ' : :

i

Fig. 1.
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. which is unphysmal and time-like (4*>0) and approximately equal to ..
‘In this case, we know that the process is dominated by the one-pion pole
term shown in the next figure (Fig. 2).

’ 4
n-"

Fig. 2. q=w—p=P—n
This does not mean to imply that such a pole is dominant in the

physical region where ¢*<0 (spacelike). At the unphysical but readily

imaginable point ¢*~m,?, there are two ways of writing the matrix
element which are equal.

Mo fxQul

Ly Pyt G P i foas] s Lo
+<Pi};°°ln>L,. . ‘

v 2 gen IS pion nuclear coupling constant for a charge pion vertex with

[ ‘ Blml4n=14.6 , grmn=13.6..

l

_et us further consider the case of forward muons with finite energy

oss (E.#FE.); then it is straxghtforward to show that L, is proportional
-0 QI‘) 1 €.,

.L/chq,‘

vhere C=4 (E{:Jﬁ,)z and where the muon mass has been ﬁeglected.
‘or the forward lepton kinematic situation

Lu<P|]in>=0
or a conserved vector current, and we have at the pion pole gt~

3
“&%‘%\/—Z—gxnn=[2MfA+quP} .

The right-hand side of the above equation comes from using the
Dirac equation and applying

9u to AP rufatqufolrsuln)

which is equivalent to considering the matrix element of the divergence

PRI
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of the axial current matrix element
[]p<[)|j”“,[ﬁ> 1(7,.<P‘j""”}l/ .

Now the G-T relation is gotten by the following assumption: (The
assumption of pole dominance of the divergence of the axial current
PDDAC). Let us suppose that the relation valid near the pole gt=m1,*

id
@M fatafri=" =

residue= m,’f,n/ 2 Grnn

remains approximately true all the way to ¢*=0
Since there are no particles lighter than the pion, this could be a good
approximation. In that case we would have

. ZIV[fA="‘7nxf;r\/§-gxnn
‘'which is the G-T relation.

Inserting the value of fx from this expression, one predicts the
pion decay rate within 10%, which is a posteriori justification of the
PDDAC hypothesis and gives us an idea on what the errors rmgh‘ be
in other applications.

Another useful procedure for employing the PDDAC hypothesis
due to Feynman is the following: The divergence of the axial current
d,Au has the same quantum numbers as the pion, i.e., J°=0-, odd G-
parity and isovector. Hence, let us assume that d,A, is proportional
to the mterpolatmg pion field, i.e.,

- OpAn(x)=an(x) ’
where’ n(x) is. the pion field. Then consider A,*

<Pl6‘,.A,‘+ln >= [ZMfA“l‘quP]l‘(P)Tsu(n)

4’ . ,'f‘. i —a<PIn+I72>=-&;——;—<P1jg+ln>
S o — .
. _ .
' q*—
Agaip assuming the PDDAC hypothesxs
e mEMV 2 fa o mtMfa
¢ grmn(O) and = g:rnn(O)

the factor v/ 2 being absent in the =° case because
__f_’_....._———-——f—cp}m SIS =2 <PlALIP>
by iso-spin rotation. |

The principle difference between the two methods is that in the
latter the couphng constant Zenn deﬁned as the strength of the matrix
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element <P|/./n> evaluated at the poirit gmn(0). The constant f.
evaluated by the Goldberger-Treiman relation yields a value 0.83 to be

compared with the experimental value of 0.93 which indicates about an
11% error.

3. Charges, Noether Theorem

1 ) Charges

Associated with every vector current operator J.(x,f)- there is a
scalar quantity known as the charge operator Q(¢f) which is found by
integrating the time component of /.(/o) over all space, i.e.

Q(t):-gd“x]o(x, 1 .

That @ is a scalar quantity can be made manifest by writing the above
~equation as a four dimensional scalar product. To this end the notion
of a surface element in four space is introduced. Consider any space-
like surface rather than the flat space surface defined by fixed ¢ as
above. (The reader is reminded that on a space-like surface there are no
two points which can be connected by a light signal.)) The normal 2,
to a space-lire surface is time-like and can be used to define a vector
surface element in a similar manner to what one usually does in three
dimensions. Thus an element of surface doy,=#n,.dv defines a four-vector
surface element with components in the ¢, x, v, z directions respectively
as

{dx dy dz, dt dy dz, dt dz dx, dt dx dy}.

In the case where 7, has no space components and only a time com-
ponent, d¢, has only a time component dxdydx=d*x. If we write for
the charge operator

Q(o)=g do, ] u(x)

then the scalarity of €(o) is clear. The charge operator @(s) may have
.a value which depends on the particular surface ¢. It is only when the.
current Ju is conserved, i.e., 9,/,=0 that Q(¢) does not depend on the
‘choice’ of surface. This last statement follows from the four-dimensional
Gausses thecrem which states’ :

g dadn ()= S do,],

where s is the surface enclosing the volume v. By choosing the currents
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to vanish at large spacial distances and choosing the volume to be a
{our dimensional rectangle whose top and bottom are at !’ and { while
v the sides are at infinite special points yields Dy Gausses theorem that
2 . - L\ ¥
¥ QUN— Q)0 . '
By For non conserved current this is not generally true and Q(o) varies
: from surface to surface. (The reader may think of @{s) in the non-
conserved case like a scalar temperature which varies from point to
point.)

. Thus for conserved currents the matrix elements of Q(f) will be a
numerical constant independent of the time while for non-conserved

current the matrix elements of Q(f) will yield a scalar function varying
with time. :

2) Noether Theorem

We consider next an extension of Noether's theorem for classical
fields (1921) which is applicable for quantum fields and which shall prove
" extremely useful.
*  For any operator 0(¢, «) where £ is the time and a any other.variable
the general quantum (Heisenberg) equation of motion states that

) AR
P 3 e s e

g B

s

where H(t) is the total Hamiltonian H(Z)—SH(x f)d’x The theorem

L ~

looks sxmﬂar to the Heisenberg equation of motion except that it deals
with the Hamiltonian density H(x, t) and with 0{¢, a) replaced the charge
operator Q(f). It states that under.certain conditions (to be stated
below) <« ' T

;' ‘ ‘ 0, Jn(x, )=i[Q(t), H(x, 1) Noether Theorem

where

. Q(t>=§d=x_/<x.¢> .

If we integrate the Noether Theorem over all space and use the fact
that integration by parts yields

[

SV-Jd’sz

then we recover the Heisenberg equations of motion for Q(t) Thus the
Noether Theorem can be thought of as the unintegrated form of the
Heisenberg equation of motion.

e
e e s

»
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The precise conditions under which the Noether Theorem is true
‘are complicated but a sufficient condition which suffices for the purposes
of these lectures is that the commutator [@, A (x, )] be a scalar which
. is certainly required if it is to be related to 8,,],. which is generally a
E ' scalar operator. Appendix 1 contains a rigorous proof of the Noether
’ Theorem based on Lorentz invariance, causality and the chiral SU(3) X
SU3) algebra between currents and charges.

£

A rough proof of the theorem is as follows: Consider the Heisen-
berg equation of motion expressed as

~

zczsx{ (. B, Q) —— Jitx, z’>}=o

Ci

The quantity under the integral sign is either zero or the three
1 divergence of scme current Ju'.
Lo

(e, ), QUI——Tix, == - J'(x, D)

But if [H(x, ), Q)] is to be a Lorentz scalar then J/ must be identified
with J in order that

itmx, =T ]z, ¢

be a scalar.

Now we have seen that whenever there are pions around the
divergence of the axial current 0,4, appears and through the Noether
Theorem this divergence gets related to equal time commutators. This
relation -is at the heart of current algebra relations and soft pion
theorems.

Let us check the Noether Theorem in a simple case where we
Znow the answer. In the absence of electromagnetic interactions the
isospin current V. is conserved. In particular we have for the charged
components of the current '

0 Vut(x)=0.

But we also know that for chaged objects when the electromagnetic
mheraCuOn is turned on that gauge invariance requires the minimal

+

zecgromagnetxc Hamiltonian be determined by the substitution

l [ —

| : ' ' . a -> 3,,+eay

. l

.‘v’—xere ap is the el%t'*omagnetxc ﬁexd and where the sign factor depends
cw sign of the charge of the current. Thus, in the presence-of electro-

maénetxsm

i

eVt (x)=xca,V,* .

e i T s v
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Accerding to the Noether Theorem the divergence can also be com-
puted by taking the commutator of the associated charge’

Q) = gd%c Vo*(a, 1)

and commuting it with the Hamiltonian.

With the electromagnetic interaction turned off isospin is a good
quantum number and the Hamiltonian of the world is an isoscalar.
Hence the charges Q% commute with the non electromagnetic part of
~ the Hamiltonian. However, when the electromagnetic interactions are
included this is no longer true.

The interaction Lagrangean responsible for electromagnetic inter-
actions has the usual form

L.=eap],,= —H,

(Since there are no derivatives in L. it is also-H,.) J, is the electro--
magnetic current which is neutral, since Hamiltonians are always
neutral, and is a sum of an isovector part and an isoscalar part

b ]1«:].u':#]:x"2951)7'#‘/'1»‘('9//'2*7’#9{’2*’%‘ :
h The Noether Theorem then states that
- v a,;v,.io;-).—.-—ea,.('x)[Q*(r) Tw'(x, 1]

(Note Q* and ]." are evaluated at the same time ¢ and that J* does
not contribute ¥o the commutator.) -

The eIectromagnetxc field @, commutes with @* at equal times but
not at' different times. This is an assumption which is physically
motivated by causality arguments. Since.it takes a finite time for any
signal to. propa@ate the electromagnetic field at time ¢ cannot feel the
mﬂueqce of as charge @ at exactly the same time.. Therefore the
-opcrators must commute.

4. Applications

1) B‘Z'roll-Ruderman Theorem-

We begin our study of soft'pion theorems by considering a relation
first derived by Kroll and Ruderman which is purported to relate the
threshold photo-pion productxon to_the pion nucleon coupling constant.
The derivation given here will use the ideas of PDDAC but in fact the
theorem does not really require this assumption and can be shown to
follow just from gauge invariance. The gauge invariance argumend
was used by -Kroll and Ruderman in their original derivation but it is

-
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phatepion proauction,
Thus

Sr,,..xn::—}ﬂd‘x e (O4+m) <nlop At —carApt}lT P> .

The derivative appearing above can be made to act on an exponential
factor by using translational invariance and the overall conservation
of momentum. This allows the S-matrix element to be written as

Srp-x+n=%; Sd‘x ¢ (— gt md) <nl{qu A —ean AP > 1n

In general this last expression is not any closer to a possible
evaluation than the original equation. However, in its present form
the above equation can be used to define an analytic expression for
Sypartn for all values of the pion momentum ¢. Then what can be done

is to give value for this S-matrix element evaluated at the unphysical-

point ¢,=0 for all components. From then on appeal is made to hope
and reason that this is a small region of extrapolation and that the
resultant S-matrix may still be closely related to the precise physically
observable matrix element.

If there are no poles going as 1/(1 in the limit of ¢— 0 then the
L first term inside the matrix element will not contribute and

. nl
Iim Srp—m*}'n: K
q~0 a

gd‘x<nla,,AF+lrp>:n .

Furthermore to first order in the fine structure content we can replace
the photon field @, by a@,'" since the corrections to a,!" come from making
pair and higher mass states all of which require one more power of

a~1/137. Thus .
S —eNlx"
¢ lim Sr))-m'f‘n— o <71}A/1+;P>eﬂ
. g0 - a
‘ — e >

M
5

=Tffxﬁ(n)rnrsu<1))ep X 60 (—pa-tpptDr)

:Gg;rNN
20
where ¢, is the photon linear polarization vector. This is the K-R
theorem. The factors involving f4u=Ga/G cancelled out in the last
equation—andthe result “is” independent of the PDDAC although we
used this assumption in the ‘derivation considered here.
Calculatmg the cross-section from this matrix element gives

am)yursu(p)es

-]

.
4

.
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much more complicated than the proof using PDDAC. However, in
the following we shall see that the K-R theorem does not agree with
experiment and that the current algebra approach with PDDAC can be
used to mend this disagreement.

The reaction under consideration is

Th ot
K pi— qp: (momenta) .
Thus we want the S-matrix element
Srpartn=ou <TR|ITP>1n .

If we use the reduction formula as déveloped in Section 2 then the
pion may be “reduced” out and the above expression becomes

1

Srpartn= Ed‘x ¢+ m) <nlat (P> .

The pion field n*+(x) is related to the divergence of the axial current .
as expressed in Section 2

(7,:A,;+=d7r+ .
This is true in the absence of electromagnetic interactions. However,
this equation has to be modified in the presence of electromagnetism.
According to the Noether Theorem there is the additional term which
comes from the commutator

’ {QAJ“, Heluc(x)} .
The eleqtromagneticHamiltonian is as before
Heteelx) =ca, () Ju*+ ] "]
=ea () + Vi .
Thus in the presence of electromagnetism
0rAt=art+eanQa*, Vi
=ant—ea, At
where we have evaluated the commutator
v (=)@Qa*, Vill=A .
That this is indeed ‘the correct commutator is supported by the fact
that the result for 9.A,* given above is just what one finds by the
usual minimal substitution 0, = du—eau. e

The divergence condition on A, then allows us to “solve ” for the
pion field and insert this expression in the S-matrix element for the
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fim 1B __d7__ . =/-"—)(—~1 X—g”z”L>
ko Tl dem. TP TRE G N ) i ) :

3 . . ' . v

i Thisis a factor of 2 larger than the experimentally lowest momentum
i . . . . . .

i value measured. We consider how to use the current algebra methods
t to resolve this discrepancy in Appendix 3 and consider now the problem
|
Yl
1
|
;

of the term in the photoproduction amplitude which has the form

g\'e"""(—q”—km,ﬁ)<nifhu4n+!7'l)>!n :

i
o~

. What has been stated above was that this term vanished in the limit of
g—0. It is this feature which permits something useful to be calculated
from the S-matrix element. In general for finite ¢ the above expression
is just unknown as the original photoproduction amplitude but because
of the explicit factor of ¢ in the term it could go to zero. (Note that one _
takes all components of gu to zero.) The statement “could go” must be |
emphasized because it might happen that the matrix element <n|A4,lyp> ‘:
had a pole in ¢ going as ¢~'. There is a general procedure which may
be applied to all cases which can test for the existence of such poles
| which is the following:

(1) Such poles can only occur when the mass of a possible inter- :
mediate state is the same as the initial or final mass. This is analogous S
to the case of a vanishing energy denominator in non-relativistic per-
turbation theory and the proof, omitted here, would follow along similar ‘;
lines. | ‘

(2)- To check whether there is a pole contribution the special "
intermediate states has to be put in by hand and the Feynman diagram
explicity calculated.

For the photo pion production there is only one such intermediate
~ state which is indicated by the diagram below (Fig.3 ). The intermediate ,
| proton has the same mass as the initial proton (naturally) and this oo
 could give a term of order ¢-!. o

A

«—\/
AY
A

\

\

A}

AY

<

' ‘ Fig. 3.

If we calculated the proton intermediate state explicitly then this
matrix element takes the form- '

<nlAurp> = M=) "‘T’(T'”f; 9 o ) :
7 )

A
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where coupling  constant factors have been dropped. The nucleon-
mucieon axial vector current vertex has only the term jurs and-no term
g»7s SINCE Wwe are going to pass to the limit as ¢ —0 and this would be
higher order. Similarly only the photon proton charge coupling is taken
(no magnetic coupling) since the magnetic coupling again brings in
momentum factors. The term (n-¢)~' looks as if there might be a ¢!
contribution but will actually be cancelled because the numerator will
contain at best one power of ¢. The precise statement however still
requires a little more care. We note that when ¢—0 if the overall
conservation of momentum p-+k=¢g-+n is to remain as true as possible
for physical neutron and proton then % must also go to zero. Thus we
really want to consider <#n|A.lrp> both as g and % go to zero. In that
case, using p-+k=n-+¢ and the Dirac equation yields

M, —u(n)r;«rs-—p——(f’2—u(p)+0(k) .

Choosing a gauge where the polarization e has only space components
and working in the initial proton rest frame so that p-e=0 we 'Tet
- @uMu=0 to lowest order-in ¢ and 2.

There was no special way of knowing that ¢.M,.— 0 other than just
working it out, although in all known examples it always vanishes.

2) The Callan-T‘reiman Relation

Callan and Treiman derived a relation between the decays K — uv
and K— pvr or K—> evr where the pion is considered soft in a similar
manner to .the. Kroll Ruderman theorem.

" The decay K -;> wv is described by a constant fx defined by

Bt Fm R R Tal+79)
’ = Q-<OIA,,—IK+>L,.

V) .
where K, is the K—meson momentum and L, is just the lepton spinor
factor. *

The decay K — pvr has the matrix elemernt (consider K*— ptun® for
definitness) =~ - ‘

x%qo; I K> Lu= < Lo KC+>

G PR 1yt = DTG 1)

MK—opwr-—-

SIS e o

where K and »p are the K-meson and nm-meson momenta. The form

L]
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factors F, and F- are functions of the invariant momentum transfer
7*=(K—p)* and the meson masses, i.e.

Fi’—‘Fi(sz, mat, q%) .
Following the same procedure as was used in the photoproduction
example we recduce the pion in the K*— ptur® decay, hence

I‘Vﬁr{f-a/wx"—: gd‘xeiﬂ‘z(m +’77’1x2) <L+l ﬂo(x) l I{+ > .

The pion field is then related to the divergence of the axial current by
. Ou A (x)y=aom®(x)—[Qs°, Hiw(x)]
or
b4
) = A 1@, He@]), e

l— . gKNJV

Thus we need the commutator [Qs°, Hw(x)]. Fortunately we know a good
phenomenological form of Hw(x) as given by the Cabibbo theory and
which appears to be in reasonable agreement with experiment. In this
case, the leptonic decay Hamiltonian is given by the sum of two parts;
a strangeness conserving part H: and a strangeness changing part Hiye
where the subscripis re‘er to the isospin. Thus
A HW———][L—‘-I /2
where

. '
i
f

[ Hi==cos O[ L, H V= + A7)+ L (Vat+ A)GIV 2

and the currents V,.* and A,* transform as isovectors. Some notation
is necessary to clarify this point which we write as V,*(zx*), A, *(7%),
the appearance of =* is to emphasize the isospin one strangeness con-

re

serving aspect. The strangeness changing part can then be written as
Hup=sin 0L [V (K7 + Ay~ (K + Ll Vit (K9 + A EDIGIVE

The J* appearing in parenthesis indicates the isospinor and strangeness
changing quality. :

t

For the decays considered here it is Ii: which is responsible and

the commutator (@s°, Hi/2) is required. Just as in the previous example
on photoproduction the leptonic part is not involved in the commutator
and it may be factored out. However, there is both L+ and L and since
there is positively charged-lepton in the first state we want L*. The
convention chosen here shall be that the currents transform like creation

_operators, i.e.

LH0> =|L*> .




{re could choome the opposite vanvention just as well but the o cuvention
chosen here is compatible with the usual choice of signs of the com-
mutation rules.

The commutator that is required is then

[Qs°, (Vi (K7)+ A~ (KN .

Using the fact that the algebra of charges and currents is to be closed .
the above commutator must then be of the form [V~ (K + A, (X)) on
grounds of charge and strangeness. To get the correct coefficient we |
can integrate the commutator

[Qf’o) (Vl‘_(K—) ~+- A[l_(K_))] = (Coeff)[ Vy—(K—) + A/Aa(I{_)]

and then sandwich the charge part between a <X~ state and the vacuum,

In which case the coefficient is readily seen to be —1/2.
*Thus

»

Mrape= ﬂdu-(—— Pt —e;”— <LH [ prAnd
A 0

1
| = LAQs, V(K + A (K K>
to proceed further we pass to the limit of p— 0 and note that there are
no pole terms at all so'that the p,A,° term will vanish. In fact there
are no one particle states of the type which appeared in the photo- )
production problem.” If we note further that to lowest order in the
weak coupling G the leptons may be treated as free particles and that
the matrix element <Ol ValK> =0 by parity then inserting the commutator

gives .

L Nt G 1 S
—- g = iz | e . L‘
i, M =0 ( 2>§oxA, K> L,
‘."i“ ”: . 7;’lnz G .
e = KuLy) .
sz T ~ 2a \/‘Z[meK wln)

But on the other hand from the definition of the matrix element MK pur
and the form factors Iy and F- we have

lim, [Fy(p+ K e P(K - p),J] e (P P \/GELFK,..

Combining these equations we have the Callan-Treiman relation

MKENN ¢ s 3 2 :
M fe=[Fu(mx*, 0, 0)+F-(mu*, 0, 0.

The arguments of the form factors,are displayed explicitly because the



58 ‘ S. M. BERMAN

K — pwr matrix element has been evaluated at p—>0 hence the pion has
zZero mass and zero momentum.

To compare with experiment one would like to have the form factors
F. and F. at thé extrapolated points indicated above. Since this is
" exper pnmtdl’v not possible cne can try to compare with the data on
the form {factors and hope that the extrapolation will be reasonable.
If we c’o‘mpq*e with the Trilling report of the Argonne Weak Interac-
tion Conference (1965), Callan and Treiman find with fK 0.07040.001 that

2Mfa

2 [+ F]=0.074+0.014
MELNN

which incicates rather good agreement.

[The above comparison used the value §=F"/F,=-+0.41%227 as determined
by comparing the rates of K., and K,.,. Polarization e\<penmems in
Ky, decay mdicate that & is more likely in the neighborhood of —1
which would set the Callan-Treiman relation in disagreement with
experiment. In that case it is most likely that the extrapolation to the
physical region would be incorrect.]

3) The I, Decays

A very nice application of soft pion theorems is given by the decay
modes .
{

{ Kt — ntr-ety K®— nr—e¢ty,
K+ — nnoety K°®— antre v,

Since the energy release is not large in these decays, we employ the
soft pion thcorem on each of the final pions separately.. This yields
enough information te relate all the decay parameters at the extra-
polated point to K., decay and K, decay. Assuming that the amplitudes
do not vary by very much from the extrapolated points to the physical
region, the Kc_,_ decay rate can be calculated and for the ntm— mode is
in good agreement with experiment. (The other channels have not yet
been measured.) -
The original theoretxcal work on the K., decays was done by
S. Weinbera., .
Consider first the decay |
. L+
U
K*K) = n*(p)n=(q)etv
whacere the momentum labels have been placed in parentheses after the
particle. The decay matrix element can be expressed on the form

T T T Morey
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G LR D@t Falp=h FsK—p—a)

<Ltzta-\ K> __\_/i

+F4€/-»or/),-(]»1{.-] '
" La=Ul@r(+r)U0) .

In general, the various form factors Fi-: depend on all the possible
invariants in the K=r system, i.e.,

i Fi:Fi(TnKZ, 77’lx+2, 771;1:_2; [{'Q- K'p' Q'p) s ' i:l, 2’ 3’04 .

The form factor / will be dropped in the considerations here since it
multiplies a second order tensor in pion momenta while the other form
factors multiply first order tensors. Furthermore, by use of the Dirac
equation on the lepton spinor I3 will come in proportional to the electror
mass and will be negligible in its contribution tp the rate.

Reducing the =+ then, as usual, we have ’

<.L+7r+7rflK+> :Xef”"(—/)2+zi'z,2)—16-l- <Ltn~{ppAp~+{Qs™, He}IK*> .

f there are no poles, a point we return to below, the limit as p —(
may be taken and the p,A, term will vanish. (Note that since the =
was among the final particles the operator is @s~ rather than @s*.)
The weak Hamiltonian .

G _ _
. : f[w=7=2=[L/1+]11 + L~ Jut]
will contribute only a part G/~ 2 L.t J.~ since the leptons carry a positive
charge. ‘However, the commutator
L Q5™ Jx)=0 |
sincé there are no doubly charged currents and the matrix element mus!
vanish in this limit,
lim <ztr-L+[K+>=0

p—0 .
= L(F—Fige+ F(E—a))
The coefficients of K, and gx must vanish separately giving
Fima®, 0, ma-t, K-q, 0, 0)=Falms?, 0, me?, K-q,0, 0)
and Fiy(mxk?, 0, m., K-q, 0, 0)=0.

Another condition on the form factors may be found by reducing
the =~ rather than the =*. In this case, we have
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<Lintam | [(h> = Se"""‘(——qz-#m.z)i <L+rr+1{q,.A,.++[Qs+. Hw )l K>

In the limit as ¢ —0 and if pole terms do not arise (as we show below)
the matrix eMnent‘ is proportional to the commutator

S (5 i S R
which does not vanish. (Again, we use the fact that [V+A4, V—A]=0.)
The commutator may be evaluated between the =* and K+ states as
<A QY m— QK> = <atQY I K>
=~ 2 <l Ju I K>
=~/ D[ F K+ P+ F(K—p)u)

where F, and F- are the two form factors of the K., decay.
Thus, we have in the ¢—0 limit

Wit

(r'x*Fz\P;wrFa(F ]5),:“—"—“—«/ 2 [F.,.(I{—%—‘D,/:-LF—(I{—p),:]

or
Fi(mx?, maet, 0,0, K-p, O) -+ Fa(ink?, m,f+2 0,0, K:p,0
2\/27”" Folmx?, na+t, A p)
and . . |

f‘ (Fr+ FO)V 2 matla=Fs(mg?, me?"0,0, 9, 0) .

The limit of p and ¢ going to zero are compatible with /i and [ being
smooth functions of their respective variables but I3 might not be
because of the one K-meson intermediate state which gives rise to a
pole when both p and ¢ vanish. ' '

Fig. 4. ?ole contribution to F3 of K., decay.
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. However, for the conditions p— 0 and ¢*=m. or q ), pr=mt which.
are the two limits taken above the K= elastic scattering vanishes.
This is because of the Adler consistency condition which is merely a
statement that lim p.<a|Aub>=0 provided that at least one of the

7;—»0

momenta au or b, is continued thus allowing the overall o-function of”
momentum conservation. Thus the pole part of I3 does not contrlbute
at the two limits. If F: is expanded as a pole term plus a constant
this constant must vanish since Fs is zero at one limit. This means
that Fa is then zero at the ¢ — 0 limit and as a_result we have that

Foomg®, met, p-K)=—F_(mx?, md, p-K)

which is for their respective physical values. In addition the form

factors F., F- are approximately constant in the physical region of X,

decay if we take [\ and F: as approximately constant in their respective
variables in going from the physical region of Ki, decay to the p—0
and ¢— 0 limits. °
The relation Fy=F- in the physical region is not compatlble wit

the Callan-Treiman relation at the point p — 0 if we assume that both
F. and F-"are smooth functions in all their variables. Since Fi is
related to . and F: which are assumed approximately constant the
non-smooth behavior can only be in F_. A simple expression for I

and F- which exhibits all the desired properties is that Fi(mx?, pt, K- D)

=ao and F-(nk?, pt, K-p)={—ac+(Fx/F)(pr—m:)/ms*] where ao is a i
constant. , : ;,

. To see how good an approximation it is to have [i=I[:=constant
we can compute the rate for Ki, decay from the equation IN=I,=
(V72 &mx’/a)F (mx®, msd, K-p) in which case the experimental value is

. (F\/V2)=1.26+0.26
whxleu the theoxetxcal value from the above equation is
Ty

e ' F\/v/2 =0.85+0.05

in Qualitative agreement.

B ° ) * W
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Appendix 1.

Complete Proof of the Divergence Conditions
... and the Noecther Theorem

{Taken from Physical Review Article of
S. M. BERMAN and Y. FRISHMAN)

In this Appendix, we show that Lorentz invariance, locality and the
SU(3)x SU(2) commutators between charges and charge densities, coupled
with PCAC and the usual electromagnetic and weak Hamiltonians,

allow divergence equations for vector and axial-vector currents V. and
Ap of the form?

a‘“ V/‘n = ——ieb"a" V[t"+ GLMC;T( V/‘ﬂ— Al‘ﬁ> ’ ' (13)
’3":4,4"Zan‘”—-ieb"a"A,:"——GL"rC;r( Vl'ﬂ_AI‘B) (1b) .

where the indices «, f,r refer to internal degrees of freedom (r is a
charge index; for «a, 8, see Ref. 1), 2, and L. are the electromagnetic
field and lepton current, respectively, 0™ and Cj, are numerical constants,
and =® the pion fields.

The low energy theorems involving soft pions follow sxmply from
Eq. (Ib). For e xample, consider the decay K — wev, with the S-matrix

element o <mev|/{>im. Reducing the pion and replacing the interpolating
pion field by

~—-— (68 A+ GLITCo (VP — A,P))

leads immediately to the results of Callan and Treiman in the limit
where the plon four-momentum vanishes. All low energy theorems
follow in a similar manner.

Eqs. (1a)-(Ih) were postulated by Veltman® as independent of
current algebra¥. We show here that those equations follow essentially
from the commutators of charges with charge densities. Thus ETC
contains more information than do the “divergence conditions” (la)-{Ib),
in case of commutators which yields Schwinger terms. The fact that
the low energy theorems may be derived from (la)-(1b) directly shows

at the Schwinger terms in the ETC do not affect the low energy
resuits.” B

Egs. (12)-(1b) are derived in the following manner:
Given a current j."(x¢!), we construct its charge QR(!) as
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Q)= Sd’xjo"(xt) . (2)

Let H(xt) be the energy density. Then ‘
a"j,,‘;’(xt)zi.[H(xt), QD]+ 223"1- . 'a""er"...rﬂo:\‘._?(xt) (3) v

m

where 7»; are 1,2, 3 (spate) indices. This form follows from space-
rotation invariance and the requirement that

0°Q()=1{H, Q)] - » (4)

where H is the total Hamiltonian. The fact that the summation on
the right-hand side of Eq. (3) starts from n=2 follows from the vector
transformation property of 7.(x¢) under Lorentz transformations (the
generator of a Lorentz transformation in the K direction is Mox=/Px—

M

Sd“xxxH(xt)). The summation is usually over a finite number of terms.®

~ Suppose now that \
H(xt)=Ho(xt)+ Hi(xt) - (5)
such that - °
(HL(®), Q(0]=0 (8

4

. where Ho(t):gdaxHo(xt). Then, with Eq. (3), -

017 (xct) =1 [Hi(xt), Q)+ X 07 -+ a"nﬁ:l.'..rno:;o(xt) . (7 )l

-
A3 n>1 m

. We néw show how to get the “divergence equations” essentially ‘

from the *charge-charge density commutation relations. Let us start
with the case where

Hi(xt)=H*m(xt)=ej ™ (xtia(xt) (8)

[
and let Q«(¢) be an axial charge. We neglect for the moment other
contributions to Hi. We want to calculate the commutator [H*-™(x¢),
Q4()]. To this end we note that | ;

Qi) aulx)]=0 | (9)
and - '

(Q:‘(t), j,:‘-"‘-(xt)] -’—"—b"A,-"(x[)-.‘-g,." E arl ere a'"Nkrl.-.rno;:;O(xt) . (10)

This form is dictated by space rotation invariance and by ‘
[Qart)y jor-m(xhi] =l Ao xt) . (1)

1
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From Egs. (7)-(10), we get
a‘"A/rﬂ<3:t> = _‘ieb"a,‘Ap"(xt)

+{—iea*(xt) 397 - -+ 8'nN;i',,...r,‘ow(xt)

m m

B R (D) (12)

Since the expression in curly brackets cannot be a Lorentz-scalar
field, it has to vanish. Thus

o* A (xt)=—1eba" Ap~(xt) (13)

as the contribution of electromagnetism to the divergence of the A,°
current. Similarly, we can calculate the contribution from the weak
Hamiltonian, adding to Hi(xt) of Eq. (8) a term G/+ 2 (lepton current)

% (hadron current), with the hadron current given as in Ref. 7),1 and
assuming that the hadron charges commute with the lepton current
(anaxogouq to Eq. (9) for electromagnetism).® The term a z* in the
expression for A4, is due to the PCAC hypothesis.

Finally, we may further note that each of the two terms in the
curly brackets in Eq.(12) must vanish, due to the fact that one is a
total diverges:ice, while the other is not. This in turn implies that the
Sch wmger terms in the commutator [A.“(xf), jx*- ™ (yt)] vanish after the

X integration, as foillows from Eq. (10), and that otj e (xt) =i Hi(xt), @8],
as follows from XZq. (7).

References for Appendix 1.

1) We consider the divergences of strangeness conserving (ds=0) currents only.
That means that « in Egs. (1a)-(1b) corresponds to 4s=0 only. The index g
on the right-hand side, however, includes Js+£0, If one wants to consider
the diversence of a strangeness changing current, one has to include, in the
right-hand sice, contributions due to the medium-strong Hamiltonian. We
also do not consider contributions due to non-leptonic weak decays.

2) M. Veltman, Phys. Rev. Letters 17, 553 (1966). ,

3) In Ref. 2), these equations were also written with W-meson fields replacing
the lepton curreniy It is not clear from that reference what was the formalism
employed for 'ne vector felds, This is of importance in applying the reduc-
tion technique. See D.G. Boulware and L. S. Brown, Phys. Rev. 156, 1724
(1967). Sec also S. G. Brown, Phys. Rev. 158, 1444 (1 57)...

4) M. Nauenberyg (Phys. Rev. '15%, 1455 (1967)) showed that the electromagnetic
"contributions to the divergence equations imply commutation relations of the

vector charpe density with vector and axial currents, with certain Schwinger
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5)
6)

7
8)
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terms. D. G. Boulware and L. S. Brown (Phys, Rev. 1536, 1724 (1967)) showed
that the weak contributions to the divergence equations, with ¥-meson ficlds
replacing the lepton currents, lead to commutation relations between vector
and axial-vector charge densities with all cu'rrents, with certain Schwirger
terms. v

We assume that surface terms at spacial infinity may be neglected, when
forming matrix elements.

When an infinite number appears, certain relations among the various terms
have to hold, in order not to spoil causality.

N. Cabibbo, Phys. Rev. Letters 10, 531 (1963).

When W-meson fields are used instead of lepton currents, this no longer
holds in general. For example, in a non-abelian gauge formalism (T. D. Lee,
S. Weinberg and B. Zumino, Phys. Rev. Letters 18, 1029 (1967)), we have

[jo‘”<x5). Woﬁwt)]:icw G ) o—y) ,

mo®
where m, is the bare mass of the W-meson. However, this introduces G2 terms
in the divergence Egs. (1a) and (1b), and does not affect lowest order results.

ey

o5

!{ \)v‘ 2

e e i
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Appendix 2.

Remarks on Isospin Generators and Cabibbo Theory

The Hilbert space of states is defined by the in or out states with
definite particle number, momentum, spin, isospin, etc.. In particular,
there are the isospin operators [*, I=, I* which raise, lower and yield
the isospin eigenvalue of these states respectively. Invoking a field
theoretic idea we make the assumption that these operators can be written
as the space integrals of densities. But if these operators are to be
only space integrals and to also operate on the asymptotic states then
they should be time independent. The charge defined as the integral
of the fourth component of a conserved current is just the perfect
candidate, i.e. it is a scalar and is time independent. Thus we identify
the operators (/*, /-, I®) with the “charges” (@Qv*, Qv~, Qv?) formed by
integrating the isospin current density )

+

I?= Qﬁ:S Vot“(x, Hddx .

Geil-Mann, Ne’eman Remark on the Cabibbo Theory

he weak current which multiplies the lepton current j. to vield
the leptonic décay Hamiltonian is, in fact, composed of two separate
parts; a part /. which transforms as an isovectors (IJ]=1) and which
is responsible for non strangeness changing decays and a part & which
transforms as an isospinor (JJ}=1/2). It is known that these two kinds
of decays have different rates and that to emperically incorporate this
into the weak Hamiltonian it is written as ’

Hw= G-j,.+(a],,'+bK,,‘}+herm. conj.
; 2
= G~j,,+/,,—+herm. conj.
A 2 :

where
N f/n—:a]y.—'{"b[{p“ .

If j R ar> to form an .S Us algebra then there results a condition
on the constants a and b. The condition is that

lalr4-10ir=1.

Thus Cabibbo introduced his angle defining .
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a=cos, b=sindl .

Note that this means there in only one angle and that Nv=04 for the
vector and axial vector parts. Note further that fv and #4 are phenome-
nological parameters which are non operator constant quantities which
are always the same regardless of any “symrnetry breaking effects”.
To prove the condition that lal?+1b12=1 some assumption has to
be made about the commutator of a <K, type current with itself. Only
one assumption will lead to the above condition which is that the K
type charges commute among themselves according to the rules of an
SU, algebra. We state what the SU, result without proof and leave

this as an exercise to the reader with a casual familiarity with the subject.
- 'We have -

{QK‘,’ Qkﬂ] :[(3/2)5aﬂy+(Tf5u . QJ)]

where Y is the hypercharge operator and where the subscripts « and
B refer to the charge state of the K charge, i.e.

L]

K+ ~ (K-
K“=<1<°>. K”"<K°>-,

! (@« , Qn"‘]ZZon '
[Qk+, Qx-1=Q+3Y,
Qe Q-]=Qk0
[Qe-, Qu+l=—@Qx2,
[Qx+, Qrol=—-Qx+,
S (ko , Qe+]=Qxk+ .

(T=a).

5 ' °
M
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Appehdix 3.

Low-Energy Theorem for Pion Photoproduction
... from the PCAC Hypothesis

. by
G. W. GAFFNEY
Stenford University

1. Introduction

As was first shown by Kroll and Ruderman,® the pion photoproduc-
“tion amplitude at threshold is given, to all orders in the pion-nucleon
coupling-constant g, simply by the Born approximation amplitude in the
limit as the pion-nucleon mass ratio m./Mny approaches zero. For positive

pion production from protons, r+p-->n--7*, the calculated cross section
"in the c.m. system gives at threshold, /

1 Y. 2 2
el do e 1

- (5 p—wz-v-n*)— & ~=23.1 ptbarns/ster.

lql dfc.m. 4 4 2DMIN*
¢ and ¢! are the photon and pion c¢.m. momenta, respectively,

et 1 . %
— is the fine structure constant, and '&——vati.él.
4r 137; 4r

However, the experimental result® is

\er de

(7 +p o n+rt)=(15.6£0.5) s£barns/ster.,
tgl df2com.

at threshold, which suggests that corrections to the Kroll- Rudexman
theorem of order ni./My may not be neglected.

The proof of Kroll and Ruderman is based essentially on the gauge
invariance of the photoproduction amplitude. Their result can also be
obtained by relating the pion field to the divergence of the weak axial
current through the partially conserved axial current hypothesis®
(PCAC). We wish to point out here that by using both gauge invariance
and PCAC the frst order terms in an expansion of the threshold
amplitude in powers of m./My may also be calculated. The agreement
with the e,\p:rhnamal results is then considerably improved.

2. The Low-Energy Theorem

Consider the process r-+p—n-+n*., The S-matrix amplitude has
the form
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La*ap outirePyin> =i(2r)'G N (p+h—p' —q) A

where _Z+=<np|j+O)y Pprin> and j«{x) is the source of the pion
field der(x), i.€., ((O+ma?) Per(x)=7o+(x). According to the PCAC hypo- .,
thesis, including electromagnetic interactions to first order in e, Y

OuAt(x)+ie S W(x) Art(x) =ia per(x) (1)

where A."x) is the positive-charged component of the weak axial T
current, 7 «(x) is the electromagnetic potential, and B

a:‘\/.é—]k’IN)nszA(O)/g(O) .

Fa(0)=1.18 is the weak axial coupling constant and g(0) is the off-mass-
shell pion-nucleon coupling constant {g*(m.2)/dr~14.4].

Taking matrix elements of this expression between states <z} and
l7«P»in>, we have

1

@~ <ol OBy in> = —¢" <my | A O)lpePp in>

e
>

+e<ny ' S (O)AHLQYrePrin> . (2)

In the first term on the right side of Eq. (2) we separate out the
pion pole contribution to the axial current matrix element, o

@< A O pePyin> =T Y ZMEAO) <yt OePoin> 17
R Mt—q g0

; - —(1"<7’2p lAp*(O)l?‘ka in>' -

whexc the prime on the second term indicates that the pion pole term
has bpen subtracted. Inserting this in Eq. (2), we then obtain

-

9 ‘].zf‘(O)l.kap in> :Z = —g"<np'| A (0)]7xPp in> ¢
+e<n7"lMF(O)A‘F”(O)(Tka in> . (3)
To lowest order in e, & Xx)=_¥ ""(x), so that"’ i

e<np| 7 (O AH(O)|1ePp in> =eeu(k) <apr LA+*(0)| P> +0(e?)

- =eeuR) UPN)| r*rsFa( (g—k)? +<q—k)"—w—”?i@7n
(q—1F)*—11x

+ 0(-%;;’{12—)]&(19” Oc)*

o 2Mxq-c (g—h) .
cn(ow(p)[ et 2N ]U(pH (4=~ )—L()m( )
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assuming FA(((] k)?)= FA(O)-%-O((O‘M k)? ) Here e,‘(/é) is the polarization
N

vector of the photon (k-e=0).
Also, by isolating the Born contribution to the first term on the right
in Eq. (3), we may write*

g <ny' |AXO) .xPpm>’-—eU(f)’)rr q7sr'p+r.k+MN< e

”P__\. ok
(p+1)—DMnt e 2M N reer />.
. 7 /)’—T‘/e-%—f%N I 2 nev
o T a7 | UDFAG 4N

+ eq- )almd) V2 g U rsUp)math—aq—11"" (5)

where r, and . are the proton and neutron anomalous moments. The
non-Born amplitude N, is finite as ¢q, £ — 0 (with m.*=¢*—0) so we have

‘ 2 ./) ‘
/‘V v:(’"xf\/w I= "Z:O, :O’ k:O O/ q ’ T ) .
q 4 M { ! (q m q )+ \MNz j’VINZ

" Combining Eqs. (3), (4) and (5), we obtain

0 N 2Mnq-
-A/+-—<"P *(O)lTka1n>"e\/£;J<A)4N (P)[T'ers—— .q:.v(/ -

. f)-l—”n-r—MN< > T P—rk--Mny
7+qrs T op 7€— zMrfrk 2”T er-k “onh rqrs]U(p)
{ Hev T“/ 2____ o (/“ \ 9 ’
N =0, gh= 0>+O<Mﬂ L T )oE . (6)

Now, writing 7 +=¢.M4", gauge invariance of the S-matrix amplitude

requires that 2'M,+t=0. Since the first term in Eq. (6) is separately

gauge mvar‘am, we must have ' ,
E*N(q¢*=0, q*=F~k"=0)=0, which 1mp11es Nuwlq*=0. ¢"=k"=0)=0.

2

Thus, we have shown that, neglecting terms of order 7;][ - and
VAN
—;—i/l',kz , the S-matrix amplitude _#+, for r+p—n-+r*, is given by the
N .

first term in Eq. (6), which can be re-written in the form

[r-er-k <i>-6 q-€ )__ Ky reqreer-k

Ar==T £eU )]

L 2p: % \p-k qk) 2My 2pk
Kn 7067 Rr-q7)  Eptka U 7
e 2p ]—}— i DT k}'T (9) (7)

* The last term in (5) comes from the Born term involving the r-y-axial vector
.wvertex which is evaluated using PCAC for the axial vector current,
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where we have assumed tha-t g(O)=g(nu’_)-i~O<—f€}i—!; . The factor_ in
square brackets is just the usual Born amplitude. The additional term
' is of order (xp+xn) —;\—’4,1—;—,. which may be negkle.cted since (xp+£n) —;{/}";—<
(-ﬁ; >z. The anomalous moment tefms in the Born amplitude also

contribute to the cross section a term of order (£5-+£a)

123

Mn

, and hence

they may be ignored.

3. Comparison with Experimental Results

A. =t Production

18 : 1.

! ! I

8 . ! | !
150 160 170 180 190 200 210
Ko (MeV) .

Fig. 5. The differential cross section in the ¢.m. system (times a
kinematical factor |k|/|q|) for photoproduction of n+ mesons from
protons near threshold. The momentum transfer is held fixed at
‘its value at threshold as the photon® energy is varied. The
experimental points are taken from Ref. 2).

The differential cross section in the c.m. system obtained from Eq.
(7) gives ' ’
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1kl do gt 1 [0k (P" g* \*
- —_ -+ —-—-__...
gl @ T T S L p ok +3 2\ q-/e> ];
' (8)
. . ) %! do |
Fig, 5 shows the experimantal data® for near threshold
gl dfc.m.

for the momentum transfer fixed at its value at the threshold, together
with the theoretical curve predicted by Eq. (8). At threshold (l¢|=0),
we find from Eq. (8),

| do
gl df2c.m.

(r+/) —> 71_{_71""):15,5 /lb/Ster..

This value is consistent with the experimental result? of (15.6+0.5)ub/
ster..

We see from Fig. 5 that Eq. (8) correctly predicts the slope of the cross
section near threshold. The angular distribution has been observed
experimentally” in the region just above threshold and it does not agree
with Eq. (8). However, since the angular variations are small, this
discrepancy is not surprising, due to the approximate nature of the
PCAC relation. The observed distribution is presumably due to the
tail of the N* (1236) resonance.

B. 7~ Produrtiion

A calculation for = photoproduction from neutrons similar to the.
one in Section 2 gives the result

o

(r+7z—>j)+7r‘)
de

(,,,(/
dflc.m.

. 2
( /?,/Z > ~1.3 at threshold.

(r++p—n+nt)

A recent experimental value? is
R=1.265+0.075

which agrees with our result, whereas the Kroll-Ruderman hmxt gives
R= 1

C. m° Production

[N

For =° photoproduction the ‘amplitude vanishes in zeroth order (the
i\rn\l Ruderman mit). Calculation of the first order terms gives

e I .t Y ) ' 1

ey LA { . n -

W ] H .w.{: A e :Al,; ‘(‘} R s SE .....{ ":\ RS IR ’V';) Wler, (‘.’ }
tgn de e dr A AN Mo



- -

Soft Pions and Current Algebras ' 73

at threshold. Furthermore, K] ._do should be approximately con-
: _ lgl df2c.m. ‘
stant as a function of photon energy just above threshold. Experimental-
|k do

ly® this is not the case. increases quadratically with |ql,

gl dfc.m.
and at 160 MeV is still over twice as large as Eq. (9). Also the angular
distribution disagrees with the calculated result. Clearly, then, for =°
production near threshold, the N* resonance may not be ignored because
of the vanishing of the Born amplitude in the limit as #./My — 0.

4. Conclusion

We have shown® that, by using gauge invariance and the PCAC
‘hypothesis, one is justified using the Born approximation for pion photo-

v 2 5
ot and (e

‘x]%}”ﬁ and if the V*(1236) resonance can be ignored. For charged

. .
. N ° .

pion production the agreement with experiment is good, showing our

assumptions are justified. For neutral pions, due to the smallness of

the Born amplitude, the N* resonance apparently dominates near
threshold. ' )

production near threshold if we neglect terms of order
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