DETERMINATION OF THE QUALITY OF MULTIPOLE MAGNETS

J. K. Cobb, A. W. Burfine, and D. R. Jensen Stanford Linear Accelerator Center Stanford, California

(To be printed in Proceedings of the Second International Conference on Magnet Technology, Oxford, England, July 1967.)

Introduction

The techniques for analyzing the quality of multipole fields by spectroscopy have previcusly ${ }^{1}$ been described. It has been shown that one can use the results to express the vector magnetic induction of a multipole magnet in closed analytical form. As a practical matter, as the techniques for fabrication of multipole magnets have been improved with the inclusion of hyperbolic pole shapes, one must more than ever consider the quality of the multipole as a whole, taking into consideration the perturbation from the ideal field caused by end effects of the element. This quantity is the linearity of the gradient field integrated over the length of the element. In general, the deviation of the gradient over the length can be considerably different than tho deviation at ono longitudinal position. This condition is caused by the vector sum of the higher harmonics, and by differences in phase along the longitudinal axis which changes the magnitude and phase of each integrated harmonic.

We have analyzed a great number of multipole magnets and have developed methods of final representation that give in functional form

$$
\int_{-\infty}^{+\infty} \frac{\delta \mathrm{BdZ}}{\mathrm{~B}}=\mathrm{f}(\mathrm{r}, \theta) \quad \text { and } \quad \int_{-\infty}^{+\infty} \cdot \frac{\delta \mathrm{GdZ}}{\mathrm{G}_{\mathrm{o}}}=\mathrm{g}(\mathrm{r}, \theta) \quad \text { for the elements, }
$$

where $\delta B=B-G_{O} r$ and G_{O} is the gradient at the center. We have written a computer program that uses as input data the directly read harmonic amplitudes at many discrete longitudinal positions and then computes the total integrated perturbation at various positions across the aperture. Output from the computer is in the form of tables and graphs of the above functions which allow easy analysis of quality and can be used in beam transport calculations directly.

Mathematical Basis

Using the results of multipole spectroscopy it has been shown that the vector magnetic induction may be expressed in closed analytical form as:

$$
\begin{aligned}
& \mathrm{B}_{\mathrm{r}}=-\mu_{0} \sum_{\mathrm{n}=2}^{\infty} \sum_{\mathrm{m}=2}^{\infty} \nu_{\mathrm{mn}}\left(\frac{\mathrm{k}_{\mathrm{mn}}}{\mathrm{k}_{22}}\left(2 \mathrm{~K}_{22}\right)\right) \mathrm{r}^{\mathrm{n}-1} \sin \left(\mathrm{n} \theta-\alpha_{\mathrm{mn}}\right) \\
& \mathrm{B}_{\theta}=-\mu_{0} \sum_{\mathrm{n}=2}^{\infty} \sum_{\mathrm{m}=2}^{\infty} \nu_{\mathrm{mn}}\left(\frac{\mathrm{k}_{\mathrm{mn}}}{\mathrm{k}_{22}}\left(2 \mathrm{~K}_{22}\right)\right) \mathrm{r}^{\mathrm{n}-1} \cos \left(\mathrm{n} \theta-\alpha_{\mathrm{mn}}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& \nu_{\mathrm{mn}}= \begin{cases}1 & \text { for } \mathrm{n}=\mathrm{m}, \mathrm{n}=3 \mathrm{~m}, \mathrm{n}=5 \mathrm{n}, \mathrm{n}=7 \mathrm{~m}, \ldots \text { etc. } \\
0 & \text { for all other } \mathrm{n}\end{cases} \\
& \mathrm{k}_{\mathrm{mn}}=\text { voltage amplitude for harmonic } \mathrm{mn} \\
& \alpha_{\mathrm{mn}}=\text { orientation angle for harmonic } \mathrm{mn}
\end{aligned}
$$

[^0]For the coordinate systems used, refer to Fig. 1.
One usually expresses the quality of a quadrupole lens graphically as the deviations of field B and gradient G in the following manner: For $\theta=0, \pi / 2, \pi, 3 \pi / 2$,

$$
\frac{B_{Y}-G_{0} X}{G_{0} X}=f_{0}(X) ; \quad \frac{B_{X}-G_{0} Y}{G_{0} Y}=g_{0}(Y) \quad \text { for ficld deviations }
$$

and

$$
\frac{G_{X}-G_{0}}{G_{0}}=f_{1}(X) ; \quad \frac{G_{Y}-G_{0}}{G_{0}}=g_{1}(Y) \quad \text { for gradient deviations }
$$

Also for $0=\pi / 4,3 \pi / 4,5 \pi / 4,7 \pi / 4$

$$
\frac{B_{x}-G_{0} x}{G_{0} x}=h_{0}(x) ; \quad \frac{B_{y}-G_{0} y}{G_{0} y}=j_{0}(y)
$$

and

$$
\frac{G_{x}-G_{o}}{G_{0}}=h_{1}(x) ; \frac{G_{y}-G_{o}}{G_{o}}=j_{1}(y)
$$

Since along $\theta=0$ we are interested in the Y component of fields and gradients, then B_{Y} is the expression for B_{θ} when $\theta=0$. So

$$
\begin{aligned}
& B_{Y}=-\mu_{o} \sum_{n=2}^{\infty} \sum_{m=2}^{\infty} \nu_{m n}\left(\frac{k_{m n}}{k_{22}}\left(2 K_{22}\right)\right) X^{n-1} \cos \left(\alpha_{m n}\right) \\
& G_{X}=\frac{\partial B_{Y}}{\partial X}=-\mu_{o} \sum_{n=2}^{\infty} \sum_{m=2}^{\infty} \nu_{m n}\left(\frac{k_{m n}}{k_{22}}\left(2 K_{22}\right)\right)(n-1) X^{n-2} \cos \left(\alpha_{m n}\right)
\end{aligned}
$$

at

$$
\begin{aligned}
& \mathrm{X}=0 \\
& \mathrm{G}_{\mathrm{o}}=-2 \mu_{\mathrm{o}} \quad \nu_{22} \mathrm{~K}_{22}
\end{aligned}
$$

$\left.\frac{\delta B}{B}\right|_{\theta=0}=\left.\frac{B_{Y}-G_{0} X}{G_{0} X}\right|_{\theta=0}=\frac{-\mu_{0} \sum_{n=2}^{\infty} \sum_{m=2}^{\infty}{ }^{\infty} \nu_{m n}\left(\frac{k_{m n}}{k_{22}}\left(2 K_{22}\right)\right) X^{n-1} \cos \left(\alpha_{m n}\right)-2 \mu_{o} \nu_{22} K_{22} X}{-2 \mu_{0} \nu_{22} K_{22} X}$

$$
\begin{align*}
& =\sum_{3}^{\infty} \sum_{3}^{\infty} \frac{\nu_{m n}}{\nu_{22}}\left(\frac{k_{m n}}{k_{22}}\right) x^{n-2} \cos \left(\alpha_{m n}\right) \\
& =\sum_{3}^{\infty} \sum_{3}^{\infty} \frac{k_{m n}}{k_{22}} x^{n-2} \cos \left(\alpha_{m n}\right) \text { for all allowed values } \tag{1}\\
& \text { of } m \text { and } n
\end{align*}
$$

Now $G_{X}=\frac{\partial B_{Y}}{\partial X} \quad$ so similar treatment yields
$\left.\frac{\delta G^{G}}{G}\right|_{\theta=0}=\left.\frac{\mathrm{G}_{\mathrm{X}}-\mathrm{G}_{0}}{\mathrm{G}_{\mathrm{O}}}\right|_{\theta=0}=\sum_{3}^{\infty} \sum_{3}^{\infty} \frac{\mathrm{k}_{\mathrm{mn}}}{\mathrm{k}_{22}}(\mathrm{n}-1) \mathrm{X}^{\mathrm{n}-2} \cos \left(\alpha_{m n}\right)$

On the axis $\theta=\pi \cdot / 2$

$$
\begin{align*}
& \left.\frac{\delta \mathrm{B}}{\mathrm{~B}}\right|_{\theta=\pi / 2}=\left.\frac{\mathrm{B}_{\mathrm{X}}-\mathrm{G}_{\mathrm{o}} \mathrm{X}}{\mathrm{G}_{\mathrm{o}} \mathrm{X}}\right|_{\theta=\pi / 2}=\sum_{3}^{\infty} \sum_{3}^{\infty} \frac{\mathrm{k}_{\mathrm{mn}}}{\mathrm{k}_{22}} \mathrm{Y}^{\mathrm{n}-2} \cos \left(\mathrm{n} \pi / 2-\alpha_{m n}\right) \tag{3}\\
& \left.\frac{\delta \mathrm{G}}{\mathrm{G}}\right|_{\theta=\pi / 2}=\left.\frac{\mathrm{G}_{\mathrm{Y}}-\mathrm{G}_{\mathrm{o}}}{\mathrm{G}_{\mathrm{O}}}\right|_{\theta=\pi / 2}=\sum_{3}^{\infty} \sum_{3}^{\infty} \frac{\mathrm{k}_{\mathrm{mn}}}{\mathrm{k}_{22}}(\mathrm{n}-1) \mathrm{Y}^{\mathrm{n}-2} \cos \left(\mathrm{n} \pi / 2-\alpha_{m n}\right) \tag{4}
\end{align*}
$$

For the minor axes where $\theta=\pi / 4$ and $3 \pi / 4$ we are interested in the B_{r} component and we can derive
$\left.\frac{\delta B}{B}\right|_{\theta=\pi / 4}=\left.\frac{B_{x}-G_{o} x}{G_{o} x}\right|_{\theta=\pi / 4}=\sum_{3}^{\infty} \sum_{3}^{\infty} \frac{k_{m n}}{k_{22}} x^{n-2} \sin \left(n \pi / 4-\alpha_{m n}\right)$
$\left.\frac{\delta \mathrm{G}}{\mathrm{G}}\right|_{\theta=\pi / 4}=\left.\frac{\mathrm{G}_{\mathrm{x}}-\mathrm{G}_{\mathrm{o}}}{\mathrm{G}_{\mathrm{o}}}\right|_{\theta=\pi / 4}=\sum_{3}^{\infty} \sum_{3}^{\infty} \frac{\mathrm{k}_{\mathrm{mn}}}{\mathrm{k}_{22}}(\mathrm{n}-1) \mathrm{x}^{\mathrm{n}-2} \sin \left(\mathrm{n} \pi / 4-\alpha_{m n}\right)$
and
$\left.\frac{\delta B}{B}\right|_{\theta=3 \pi / 4}=\left.\frac{B_{y}-G_{0} y}{G_{0} y}\right|_{\theta=3 \pi / 4}=\sum_{3}^{\infty} \sum_{3}^{\infty} \frac{k_{m n}}{k_{22}}-y^{n-2} \sin \left(n 3 \pi / 4-\alpha_{m n}\right)$
$\left.\frac{\delta G}{G}\right|_{\theta=3 \pi / 4}=\left.\frac{G_{y}-G_{0}}{G_{o}}\right|_{\theta=3 \pi / 4}=\sum_{3}^{\infty} \sum_{3}^{\infty} \frac{k_{m n}}{k_{22}}(n-1) y^{n-2} \sin \left(n 3 \pi / 4-\alpha_{m n}\right)$

In this analysis we have not considered the r component of field at $\theta=0$ and $\theta=\pi / 2$, nor have we considered the θ component at $\theta=\pi / 4$ and $\theta=3 \pi / 4$.

Experimental Technique

Ideally, using a long coil that extends completely through the magnet one could measure directly the integral of the field and gradient deviations by measuring the components $\mathrm{k}_{\mathrm{mn}} / \mathrm{k}_{22}$ and α_{mn} 。

Another possibility is to use a coil of small longitudinal extent and measure the components $k_{m n} / k_{22}$ and $\alpha_{m n}$ at a great number of longitudinal positions. By making a numerical integration one may form the quantities

$$
\int_{-\infty}^{\infty} \frac{\delta B}{B} d z \quad \text { and } \quad \int_{-\infty}^{\infty} \frac{\delta G}{G} d z
$$

at least along the major and minor axes. For our work we prefer to use a coil of small longitudinal extent, typically 1.0 inches but with as large radius of rotation as is possible. in the quadrupole to be tested. The large radius allows us to have maximum sensitivity for the harmonics which we pick up. Figure 2 shows the coil shape that is used in the analysis. As the coil is rotated in the magnet the voltage induced in the coil is fed into an audio-frequency wave analyzer and the absolute amplitude of each harmonic as well as the fundamental (quadrupole induced) is recorded for that longitudinal position. The output from the wave analyzer is fed into an oscilloscope where the phase angle of the particular harmonic is found by measurement of its time-distance from the quadrupole fundamental sinusoidal wave form.* Since the quadrupole fundamental sinusoidal wave form goes through two complete cycles per coil bundle revolution, a magnetic pulse trigger is simultaneously fed into the oscilloscope which triggers the oscilloscope once each coil revolution. Thus for each longitudinal position z the amplitudes $k_{m n}$ and k_{22} and the phase angle $\alpha_{m n}$ are measured.

Computor Handling of Data

To find the integrated values of $k_{m n}$ and $\alpha_{m n}$, an iteration through the individual points is made which resembles the trapzoidal rute:

Let

$$
A . X=\text { Area in } X z \text { plane }
$$

and

$$
\begin{aligned}
A Y & =\text { Area in Yz plane } \\
\operatorname{Sum}_{i} & =i^{\text {th }} \text { iteration of the area } \\
\theta_{i} & =i^{\text {th }} \text { iteration of the angle } \\
A Y & =k_{m n_{i}}^{\prime} \sin \alpha_{m_{n}}\left(z_{i+1}-z_{i-1}\right) / 2+\operatorname{Sum}_{i-1} \sin \theta_{i-1} \\
A Y & =k_{m n_{i}^{\prime}}^{\prime} \cos \alpha_{m_{i}}\left(z_{i+1}-z_{i-1}\right) / 2+\operatorname{Sum}_{i-1} \cos \theta_{i-1} \\
\operatorname{Sum}_{i} & =\sqrt{A Y^{2}+A X^{2}} \\
\theta_{i} & =\operatorname{Arc} \operatorname{Tan} \frac{A Y}{A X}
\end{aligned}
$$

This process is repeated for each at the harmonics. From these integrated harmonics

$$
\int_{-\infty}^{+\infty} \frac{\delta \mathrm{B}_{\theta}}{\mathrm{B}_{\theta}} \mathrm{dz} \text { and } \int_{-\infty}^{+\infty} \frac{\delta \mathrm{G}_{\theta}}{\mathrm{G}_{\mathrm{o}}} \mathrm{dz}
$$

are calculated for 0 and $\pi / 2$ at various points across the aperture. Similarly for

$$
\int_{-\infty}^{+\infty} \frac{\delta \mathrm{B}_{\mathrm{r}}}{\mathrm{~B}_{\mathrm{r}}} d z \quad \text { and } \quad \int_{-\infty}^{+\infty} \frac{\delta \mathrm{G}_{\mathrm{r}}}{\mathrm{G}_{\mathrm{o}}} d z
$$

at $\pi / 4$ and $3 \pi / 4$. These values are then plotted for final representation. Figures 5-11 show a typical computer output.

This technique of analysis can also be used for multipoles other than quadrupoles and we have analyzed sextupoles in an altogether analogous manner at this laboratory. The emphasis has been placed on analysis of quadrupoles for the simple reason that the quadrupole is by far the most often used multipole configuration.

[^1]

FIG. 1--Coordinate system

FIG. 2--Schematic of coil

FIG. 3--Block diagram of harmonic analyzer system

786A1

FIG. 4--Oscillograph of two superposed sinusoidal waves (Quadrupole and Decapole)

FULL MAGNET

FIG. 5--Input data

0-201	olabrupgle	itijeghated harmonic		natrsis					DAIL 121-1967	
	the mata points ame									
	(nomalizeo to aperture ratius)									
	(in percent)									
POLE	2	3	4	5	-	7	8	9	10	14
z										
0.0	10000	u.nu	0.60	$0.125-090$	0.13^{1+000}	$0.05 p+0 n 0$ $0.054+000$	$0.03^{\mu+09 \%}$ $0.02 r^{+090}$	0.03 Pago $0.03 \mathrm{O}-090$	$0.116+180$ $0.1189+180$	$0.174+180$ $0.179+180$
10.6	1000% 10000	0.00	O.CO	-.12e-090	${ }_{0}^{0.13}$	0.050turn	$0.02 \mathrm{P}+090$	0.03t-090	$0.110+180$	0,170+1*0
	logeo	0.10	0.00	$0.134-045$	$0,100+000$	0.03F.cco	$0.022^{+}+090$	0.04:-090	$0.108+180$	$0.160+180$
22.0	1coeog	0.00	c.one	0.13 F -n90	$0.094+600$	$0.048+0 n 0$	$0.028+090$	0.039-090	$0.111^{2}+180$	$0.160+180$
	10000	0.00	o.ce	0.12^{4-000}	$0.09 \mathrm{P}+000$	n.044+000	$0.04{ }^{2}+090$	$0.030-090$	$0 \cdot 109+180$	$0.160+180$
20.0 29.0	10000	$0 . \mathrm{n}$	n,on	$0.12 \mu=090$	$0 . O B+C O O$	$0.03 \mathrm{~Pa}+0 n 0$	$0.029+090$	$0.036-090$	$0.108+188$	$0.158+18 \mathrm{C}$
31:0	100.0	0.00	0.00	0.128-090	$0.14 \mathrm{Pa00}$	$0.033+000$	$0.027+090$	$0.028-090$	$0.048+180$	$0.158+180$
32.0	10 cmo	0.00	0.05	0.12t-090	$0.478+180$	$0.033^{+}+0 n 0$	$0.02{ }^{+0}+090$	0.028-090	$0.050+180$	0.15 +1AO
33.0	10c,mo	0.00	0.0	0.10 H -00e	1.15 1.180	$0.098+0$ O	$0.03{ }^{\text {P }}+0.09 \mathrm{a}$	0.038-090	$0.150+000$	-
	$100 \% 0$	0.00	c.oc	$0.11 \mathrm{p}-09 \mathrm{r}$	$1,308+1 \mathrm{AO}$	$0.038+000$	$0.033+090$	0.03^{*-090}	0.33**000	$0.258+180$
$\begin{aligned} & 33.5 \\ & 34.5 \end{aligned}$	10000	0.06	c.eo	$0.124-000$	$1.368+190$		$0.03{ }^{2}+090$	$0.020-090$	9.39a+000	0. $268+180$
	$100 \% 0$	0.00	$0 . r c$	$0 \cdot 140=000$	$0.988+180$	C.02t-cno	$0.03{ }^{3+090}$ $0.014+090$	8.00	$0.2 n e+000$ $0.208+000$	O.22e+180 $0.218+180$
35.0	10000	-..c	0.60	$0.144=040$	0.62^{4+180}	0.022^{+000}	0.03P+096	0.004e-090	O.20+000 $0.149+000$	
35.5	10000	$0.264-065$	0.60	$0.136-c 90$	$0.23{ }^{+180}$	0.00	- $0.04 \mathrm{P}+000 \mathrm{c}$	0.044-000	$0.129+000$ 0.240 .000	
30.0	100*	0.31^{19005}	0.00	$0.13^{\mu-090}$	$0.11{ }^{1+180}$	n. 00	- $0.04 \mathrm{e}+0000$	0.00 0.090	-1.24**000	$0.230+180$
36.5	100.0	$0.96^{2}-045$	0.00	$0.134-090$	0,112090	n. 00	$\bigcirc 0.05{ }^{\text {P }}+0000$	0.009-090	0, $0,4 \mathrm{He}+000$	
$\begin{aligned} & 37.0 \\ & 37.5 \end{aligned}$	10080 1060	$0.367=045$ $0.45 \%-0.5$	0.10 0.00	$0.145=046$ $0.15 p-090$	0.111^{-090} 0.112		-.03 0.00000000000	0.0.040-090	-0.44P+000	0.290+180
38.8	10000	$0.544=005$	-.nteranc	0.104 -090	$0.26 \mathrm{~F}+000$		$0.08{ }^{\text {e }}+000$	0.0010090	0.798 .000	$0.33^{\text {P }} 180$
$\begin{aligned} & 38.5 \\ & 39.0 \end{aligned}$	10000	$0.0 .74=0.45$	0. ERP-OnO	0.18t-090	0.p06.0no	$0.088+1^{80}$	$0.07^{+9}+000$	0.c40-090	$0.709+000$	$0.35 \mathrm{P}+180$
	10000	$0.734-043$	$0.0 .94+0 n 0$	$0.216+180$	1.794+000	0,07e+135	$0.099+000$	$0.038+000$	$0.058+000$	$0.304+180$
39.5	$10 n \mathrm{co}$	0.A7e-045		$0.185+180$	2.804+000	$0.109+135$	$0.10 \mathrm{H}+000$	0.044^{+080}		$0.33^{\text {P }} 18{ }^{80}$
90, 0	10000	$1.03 \mathrm{H}-045$	$0.13^{3+}+\mathrm{OnO}$	$0.214+180$	3.904 .000	$0.094+175$	$0.12^{* *+000}$	$0.059+006$	$0.512+000$	$0.204+180$
	100.0	$1.18{ }^{80} 0045$	$0.19 \mathrm{p}+\mathrm{OnO}$	$0.28 \mathrm{He}+18 \mathrm{n}$	-.9AP.000	$0.14 \mathrm{p}+135$	$0.15 p+000$	$0.060+000$	$0.454+000$	$0.278+180$
41.5	$100^{\circ} \mathrm{D}$	1.31s-045	$0.234+000$	$0.254+18 \mathrm{c}$	$5.219+000$	0.11^{t+135}	$0.15+060$	$0.070+000$	$0.338+000$	$0.27{ }^{\text {a }}+180$
41.5	$100 \cdot 0$	1.474-045	$0.26^{6+0 n 9}$	$0.224+18 \mathrm{~m}$	$5.15+000$	$2.174+135$	0.22 Panon	$0.079+070$	$0.159+000$	$0.308+180$
42.0	10ras	1.07 -0.745	n. 3setono	$0.15 \mathrm{c}+1 \mathrm{~nm}$	a.118000	0.22^{2+135}	c. zspanct	$0.094+700$	$0.142+180$	0.42^{+180}
42.5	10000	$1.740-045$	C.3A4.0n0	$0.078+16 \mathrm{r}$	3.9n日+000	0.2^{09+135}	$0.278+000$	0.00	$0.390+180$	$0.537+180$
43.0	10000	1.954-045	c. $344+000$	0.00	2.7CP+000	0.309+175	ก.218+000	$0.698-045$	$0.504+180$	$0.48 \mathrm{~Pa}+180$
	10000	$2.104-045$	0.33 cor -	0.00	1.7Ataro	$0.294+135$	$0.24 \mathrm{P}+000$	$0.110-c a s$	$0.559+180$	$0.204+1 \mathrm{BC}$
43.5 44.0	10cen	2.774-005	$0.324+0 c^{\text {c }}$	0.03	$0.454+000$	$0.710+135$	0.119 .000	0.008-045	$0.429+180$	$0.34^{4 .+180}$
44.5	10000	2.3740045	1-3e*ano	9.07t-0¢n	$0.345+000$	$0.13{ }^{3+135}$	0.080 .005	0.10 P-005	$0.2330+140$. $3332+180$
45.8	10000	$2.574-045$	$0.354+0 n 0$	$0.136-090$	$0.15{ }^{2}+000$	0.00	0.00	0.60	$0.384+180$	$0.210+180$
4.540.0	10080	2,A8H-0as	$0.309+0 n 0$	0.00	0.70	0.00	0.00	0.02	0.00	0.00
	10000	1.914-0as	$0.51^{1+0 n C}$	c.00	O. 010	0.00	0.00	0.00	0.00	0.00
40.547.0	10000	3. 14 - 0.045	0.78 mtonu	$\bigcirc .00$	$0.215+000$	0.00	0.00	0.00	0.00	0.00
	$100^{\circ} 0$	3.304-045	0.00	4.0	$0.61{ }^{\text {O }}$	0,00	$\bigcirc .00$	0.00	0.00	0.00
$\begin{aligned} & 47.6 \\ & 47.5 \end{aligned}$	10000	$3.304-045$	0.10	0.00	0.00	n.00	0.00	0.60	0.00	0.00
$\begin{aligned} & 48.0 \\ & 48.5 \end{aligned}$	100^{80}	3.54-6.as	(1.nc	0.04	0.00	0.00	0.00	0.00	0.00	$0 \cdot 0$
	10000	c.co	0.60	0.06	0.00	0.00	0.00	0.60	$0.0 n$	0.00
the integraten values are										
25000 $2^{54.549-045}$			36.34e9080				A5.320+00,	$71.530-0 \mathrm{A4}$	$54.238+180$	C, RAP + 180
					(INPERC	N+				
	10000	0.11^{14-043}	$0.014+0 n 0$	0.120-094	0.174-001	$0.038+011$	c.03etons	0,03--089	$0.02 * * 180$	$0.189+100$

FIG. 6--Data points normalized to aperture radius and length integrated values

FIG. 7--Calculated points of integrated field and gradient deviations

Q-201 QuAdrupole integrated harmonic analysis

FIG. 9-- $\left.\int_{-\infty}^{\infty} \frac{\delta \mathrm{G}_{\mathrm{X}}}{\mathrm{G}_{\mathrm{X}}} \mathrm{dz}\right|_{\mid \theta=0}$ vs X

Q-20i QuAdqupole integrated harmovic analysis

YSPACE $=\quad 0.01$ PERCENT PER STEP
CURRENT $=1000.00$ AMPS
delta b/b at theta 45 degrees

FIG. $10-\left.\int_{-\infty}^{\infty} \frac{\delta \mathrm{B}_{\mathrm{x}}}{\mathrm{B}_{\mathrm{x}}} d z\right|_{\theta=\pi / 4}$ vs x

Q-201 QuAdrupole integrated harmonic analysis
YSPACE $=0.01$ PERCENT PEH STEP DELTA G/G AT TMETA $=45$ dEGREES

786A5
FIG. $11-\left.\int_{-\infty}^{\infty} \frac{\delta \mathrm{G}_{\mathrm{x}}}{\mathrm{G}_{\mathrm{x}}} \mathrm{dz}\right|_{\theta=\pi / 4}$ vs x

[^0]: ${ }^{1}$ J. K. Cobb and R. Cole, Proceedings of the International Symposium on Magnet Technology, 1965; p. 431.

[^1]: ${ }^{*}$ See Figs. 3 and 4 .

