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BINARY ARITHMETIC 

Communications of the ACM, Volume 11, Number 7 (July 1968) 517. 

In reference (1) algorithms for performing arithmetic with unsigned two's 

complement operands were described. The scheme for division was implemented 
in a set of multiple-precision floating-point arithmetic routines (2). User 

experience with those routines showed that there is one case where the 

algorithm fails (3). We will give here a modification to the algorithm which 

eliminates the error condition. Equations will be numbered beginning with 

w, so that we may refer to equations in the original paper as well. 

Using the notation of (l), it may happen when B = 1 that 

4X + A [ 1 M = 2Y . (20) 

That is, after the low-order bit of the divisor has been dropped, it is 

possible that the divisor Y is now equal to the high-order part of the dividend, 

whereas it was strictly greater than the high-order part of the dividend when 

the bit was present. This situation leads to a fixed point division error 

in the calculation of the quotient Q, since we now expect to find that 
Q = M/2 (which will be shown below). We will see that the algorithm shown 
in Figure 2 and programmed in Figure 3 of reference (1) can be modified 

simply to handle this case. 

First, observe that we may rewrite equation (20) in the form 

4X = 2MY + G (21) 

where G satisfies the inequalities 

O<G_<M-4 . (22) 

(We have used the definition of A in equation (lOa) to eliminate the two 

low-order bits of the dividend; otherwise the upper bound on G would be 

M-l.) If we insert these two relations into equation (16), we find that 

M - 2 < QUOT < M - 1 . - (23) 



This gives a bound on the size of the true quotient QUOT. To verify that 

the trial quotient Q is indeed M/2, we can insert equations (21) and (22) 

into equation (17) to find that 

Because Q must be an integer, we have M/2 _< Q 5 M/2, as desired. Note that 
the relationship (19) between the trial and true quotients is still 

satisfied; in particular, at least one correction to the trial quotient is 
always required. 

That these bounds are achieved may be seen by considering the following 

examples. 

Dividend Divisor QUOT Rl3M Q R 
M2-M-1 M-l M-l M-2 $M +M-1 
M2-2M M-l M-2 M-2 $M 0 

To see which parts of the algorithm need to be modified, we can insert 

equation (21) into equation (14); we find that most of the terms cancel, 

leaving G = 4R. Since G satisfies equation (22), we find immediately that 

O<R<"-l. ‘4 

This means that in forming the quantity (4R + A), we cannot have an 

overflow in this special case; hence the correction of the tentative value 
of QUOT (namely, M) is very simple, and is shown in Figure 4 below. The 
program segment of Figure 3 is corrected in Figure 5 below. 

There is one other minor correction to reference (1); in the second 

sentence of section 5, the word "positive" should read 'negative". 
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It is often useful to be able to treat all the digits of a signed 

word in a binary computer as having positive weight: for example, an 

additional factor of two in the allowed range of some numbers may be 

sufficient to allow the solution of certain problems not otherwise easily 

handled; and in the coding of multi-@e precision arithmetic, such numbers 

often arise in a natural way. It was in this latter context [1] that 

the author found it necessary to devise the methods described below for 
the multiplication and division of numbers in such a "logical" represent- 

ation. 

1. Two's Complement Representation 

Suppose we are working with a machine with registers of length N 

binary digits, and take M = 2N. Then the logical representation 

of a whole number X requires that X satisfy 

0 ZX<M-L (1) 
The two's complement, or arithmetic, representation of a number x 

which lies in the range 0 < x < =$M - 1 is 
x= x, (x>, (2) 

and the representation of negative number x which lies 

in the range --$M<x< -1 is 

x = X-M. (x4 (3) 
All numbers in the following discussion will be assumed to be 

integer; the results of any operation may of course be considered 

as fractions by including the appropriate scale factors. 

(Submitted to ACM) 
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II. Addition and Subtraction 

In a computer with two's complement arithmetic, the sign bit of 

a number is treated during addition and subtraction modulo M as an 

ordinary numeric digit, so that no adjustments need be made to the 

result, other than to note the presence or absence of a carry out of 
the leftmost digit position. It is useful to remember that when 
performing a logical subtraction, a carry will occur if the result is 

"in range", that is, if the logical minuend is not smaller than the 
logical subtrahend; in simpler terms, this means that the result has 
not "gone negative" in sn arithmetic sense. In the discussion which 
follows, a carry out of the most significant digit position during 

addition will be called an overflow, and the lack of a carry out of the 
most significant digit position during subtraction will be called an 

underflow. 

III. Multiplication 
The multiply instruction on most computers yields an arithmetic 

product: that is, the multiplier and multiplicand are treated 

as signed operands. If a logical product is required, some 
adjustments to the product as computed may be required. 

Let X and Y be two logical integers and let x and y be their 

corresponding arithmetic values. Then if xv denotes the machine 
operation of multiplication of the two arithmetic operands x =d Y, 
and XxY denotes the logical product of X and Y, 

a> if x. > 0, y > 0, 

xxy = xv; (4) 
b) if x < 0, y > 0, 

XxY = (Mtx)*y = Mx+xv (modulo 2); (5) 
4 if x > 0, y < 0, 

XXY = x*(M+y) = Mytx++y (module I?); (6) 
d) if x < 0, y < 0, 

Xfl = (M+x)*(Mty) = Mx+My+x++y (modulo M2). (7) 
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Since the product x*y is developed in a double-length register pair 

of 2N bits, the logical product is formed simply by adding the appropriate 

terms to the high-order register of the pair, as indicated in the flow 

diagram in Figure 1. 

It should be noted from equations (5) and (6) that if one of the operands 

is known always to have a non-negative arithmetic representation, (for 
example, it is known that the multiplier P always satisfies 

0 < P _< $M - 1 ), then the product itself may be tested for sign: 

if it is negative, add P to the high-order register, and the logical 

product is complete. 

IV. Division 

The problem of logical division is more complicated, because the relation- 

ship (3) between the logical and arithmetic representations cannot be 

exploited as in the case of multiplication. A quotient of N binary digits 

must be formed, whereas the usual machine operation of division produces 

a quotient of N-l digits plus sign. 

We will suppose that we are given a double-length logical DIVIDEND 

and a single-length logical DIVISOR, and wish to find the logical 

quotient QUOT and logical remainder REM which satisfy 

DIVIDEND = (QUOT)x(DIVISOR) + RRM, 

0 < REM < DIVISOR - 1. - (8) 
If it is known that DIVISOR 5 $4-1, it always has a positive arithmetic 

representation, and a simple scheme may be used to perform the division. 

(a) Divide the dividend by 2 by performing a logical right shift 

of one bit position; remember the value of the bit which is shifted off. 
(b) Perform the normal machine operation of integer division of the 

positive dividend by the positive divisor. 
(C) Double the resulting quotient and remainder; if the lowest-order 

dividend bit remembered in step (a) was a one, add one to the 
doubled remainder. 
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(d) If the new remainder is logically greater than or equal to the 

divisor, subtract the divisor from it to give the true remainder 

and add a low-order one to the doubled quotient to give the true 

quotient. 
This yields a quotient which may occupy a full N bits, and is 

therefore the analogue of the case in multiplication in which one 

operand is known always to have a non-negative arithmetic representation. 

If the divisor has a negative arithmetic representation, a.more 

complicated scheme must be used. The method used will be described 
in some detail. 

Let DIVIDEND = 4X+A, where 

O<A<3. - - 
(94 

Similarly, let DIVISOR = 2Y+B, where 

0~Bsl. (9b) 

Thus A is the two low-order bits of the dividend, and B is the low- 
order bit of the divisor. We will assume that $M 5 DIVISOR < M-l. 

Since the largest possible value for QUOT is M-l, it is clear that 

the dividend must satisfy the inequality 

4X+A<@Y+B)X(M-1)+(2Y-t-B-l) 
5M(2Y+B) - 1. 

which can also be written 
00) 

2Y+B, 

where the square brackets mean that [Z] is the largest integer contained in 

Z. Thus the division will be improper if the register containing the high-order 

half of the dividend is not logically smaller than the divisor. 

To find QUCYT and REM, first compute Q and R from 

X = QY+R , where 

0 < R 5 Y-l. 
O-J-) 
(12) 
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Then 
4X+A = (2Y-!-3)(2Q) + (4Ri-A-2BQ). 03) 

By mining the final term in parentheses in equation (13) it is 

possible to make the necessary corrections and obtain the true 

values of QUOT and REM. To determine the corrections needed, we 

will examine the difference between the tentative quotient 2Q and 

the true quotient QUGT. 
From equations (ll) and (12) we find 

X Y-l - - 5 QL x 
Y Y Y ' 

and from equations (8) and (9), * 
4x+a 2y+s-1 4X3-A -- 
2Y-i-B 2Y3-B < QUOT < ~Y+B l 

(14) 

(15) 

Combining these, we have after some algebra that 

2BX+2+Y(4-A) 2XB-Y(A+l) 
-2-t Y(zY+B) < 2Q-QUm ,< 1 + Y(2Y+B) . O-6) 

Case I: B=O. 

It can be seen that the bounds on the difference 2Q-QUGT are 

most restrictive when A=0 and Y takes on its minimum value, which 

by assumption is M/4, since DIVISOR >V/2. It can then be seen that 

8 a 
-2 -I- g< 2Q-QUOT WE , 

and if we are operating in a machine with registers of length greater 
than three bits (M), the fact that 2Q and QUOT are integers allows 

us to write the inequalities as 

-1 < 2Q-QrcpOr < 0. (17) - 
Thus at most one correction must be made to the tentative remainder 

4R+A. 

Case Ii: 3=1. 

In this case the bounds depend on the size of X. For the 

largest possible value of X obtainable from equation (lo), it 
is again found that the bounds are most restrictive when Y=M/4. 
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This leads to 

2(4-A) 4(3-A) 2(A+l) ic<i-i-r,j 
;ck 2 * 'l!x(-Fg 5 2Q-QUOT < 3 - - h+,-2 -i ’ 

and since 0 < A < 3, this may be reduced to the integer inequalities - a 
(agair1 aAs ulrli11g M>8) 

1 < 2Q-QUOT < 2. (18) 

That the upper bound is actually achieved may be seen by considering 

the case DIVIDEND = +M2-M, DIVISOR = +M+l. 

For the smallest possible value of X (namely zero), it is found 

that the bounds on the difference 2Q-QUOT are most restrictive when 

Y = M/4, which gives 
2(4-A) 2(A+l) 

-2 i- IN-!-2 '5 2Q-QUOT < 1 - lNi-2 > 

which on the same assumptions leads to 
-1 5 2Q-QUOT < 0. (19) 

By considering the full range of values of X, we can combine 

(18) and (19) to obtain 

-1 < 2Q-QUOT < 2 (20) 

for the case B=l. 

A flow diagram which indicates the overall division process is 

shown in Figure 2. 

v. Sample Program 

A program was written for an IBM System/360 (Model 50) which tested 

the division algorithm given above. Random 32-bit fullword integers were 

generated for DIVISOR, QUOT, and REM, subject to the restriction REM < 

DIVISOR. The value for QUOT was then divided by 2k , where k was an 

integer chosen randomly in the interval 0 <,k 5 3L The dividend 

was then computed from equation (8), and the division of DIVIDEND by 

DIVISOR begun. The resulting quotient and remainder were compared to the 

'known values, and diagnostic information was printed in case of any dis- 

agreement. Overti million separate tests using several different random 
number generators were made of the division algorithm at a rate of lOO,OOO/ 
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minute. The bounds on the difference between the true and tentative 

quotients given in equations (17) end (20) were verified, and the 

algorithm is known to be correct. 

The portion of the program which performs the logical division 
is given in Figure 3. It contains one additional test not shown in 

Figure 2: if the divisor has a negative arithmetic representation, 

and DIVIDEEIKM (that is, the high-order part of the dividend is zero) 
then the division process may be skipped. Because all System/360 fixed- 

point addition instructions (as well as the logical OR instruction) 

change the condition code [2], the quantity 4R+A must be computed by 

first forming 4R and testing it for overflow, and later adding A, 
which cannot then cause an additional overflow. 

VI. References 

L.11 

II21 

Stanford Linear Accelerator Center Computation Group 

Program Library Routine No. AO41: "Wiltiple Precision 

Floating-Point Arithmetic Subroutine Package" 

IBM System/360 Principles of Operation, File No. 5360-01, 

Form ~22-6821, International Business Machines Corporation. 
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