Correction to "LOGICAL" ARITHMETIC ON COMPUTERS WITH TWO'S COMPLEMENP BINARY ARITHMETIC
Communications of the ACM, Volume 11, Number 7 (July 1968) 517.

In reference (1) algorithms for performing arithmetic with unsigned two's complement operands were described. The scheme for division was implemented in a set of multiple-precision floating-point arithmetic routines (2). User experience with those routines showed that there is one case where the algorithm fails (3). We will give here a modification to the algorithm which eliminates the error condition. Equations will be numbered beginning with (2), so that we may refer to equations in the original paper as well.

Using the notation of (I), it may happen when $B=1$ that

$$
\begin{equation*}
\left[\frac{4 X+A}{M}\right]=2 Y \tag{20}
\end{equation*}
$$

That is, after the low-order bit of the divisor has been dropped, it is possible that the divisor Y is now equal to the high-order part of the dividend, whereas it was strictly greater than the high-order part of the dividend when the bit was present. This situation leads to a fixed point division error in the calculation of the quotient Q, since we now expect to find that $Q=M / 2$ (which will be shown below). We will see that the algorithm shown in Figure 2 and programed in Figure 3 of reference (I) can be modified simply to handle this case.

First, observe that we may rewrite equation (20) in the form

$$
\begin{equation*}
4 X=2 M Y+G \tag{21}
\end{equation*}
$$

where G satisfies the inequalities

$$
\begin{equation*}
0 \leq G \leq M-4 . \tag{22}
\end{equation*}
$$

(We have used the definition of A in equation (10a) to eliminate the two low-order bits of the dividend; otherwise the upper bound on G would be M-1.) If we insert these two relations into equation (16), we find that

$$
\begin{equation*}
M-2 \leq Q U O T \leq M-1 \tag{23}
\end{equation*}
$$

Ihis gives a bound on the sjize of the true quotient QUoT. To verify that the trial quotient Q is indeed $M / 2$, we can insert equations (21) and (22) into equation (15) to find that

$$
\begin{equation*}
\left(\frac{M}{2}-1\right)+\frac{4}{M} \leq 0 \leq\left(\frac{M}{2}+1\right)-\frac{4}{M} \tag{24}
\end{equation*}
$$

Because Q must be an integer, we have $M / 2 \leq Q \leq M / 2$, as desired. Note that the relationship (19) between the trial and truc quotients is still satisfied; in particular, at least one correction to the trial quotient is always required.

That these bounds are achieved may be seen by considering the following examples.

Dividend	Divisor	QUOT	REM	Q
$M^{2}-M-1$	M-1	M-I	M-2	$\frac{1}{2} \mathrm{M} \quad \frac{1}{4} \mathrm{M}-\mathrm{I}$
$M^{2}-2 M$	M-1	M-2	M-2	$\frac{1}{2} \mathrm{M}$

To see which parts of the algorithm need to be modified, we can insert equation (21) into equation (14); we find that most of the terms cancel, leaving $G=4 R$. Since G satisfies equation (22), we find immediately that

$$
\begin{equation*}
0<R<\frac{M}{4}-1 . \tag{25}
\end{equation*}
$$

This means that in forming the quantity $(4 R+A)$, we cannot have an overflow in this special case; hence the correction of the tentative value of QuOT (namely, M) is very simple, and is shown in Figure 4 below. The program segment of Figure 3 is corrected in Figure 5 below.

There is one other minor correction to reference (I); in the second sentence of section 5, the word "positive" should read "negative"。

References

1. "Logical Arithmetic on Computers with Two's Complement Binary Arithmetic", Communications of the ACM, Volume 11, Number 7 (1968), page 517.
2. "Multiple-Precision Ploating-Point Arithmetic Package", available from IBM's Program Information Department as Program Number 360D-40.4.003.
3. Private Communication from Hirondo Kuki, University of Chicago.

FIG. $4-$-LOGICAL DIVISION (CORRECTED)

	LM	0.1.DIVIDEND
	CL	O, DIVISOR
	BC	10, ERROR1
	TM	DIVISOR, ${ }^{\prime \prime} 80^{\prime}$
	BC	1, P
	SRDL	0,1
	0	O. DIVISOR
	SLDL	0,1
	TM	OIVIDEND+7.1
	$B C$	8, X
	AL	$0,=\mathrm{F}^{\circ} 1^{\circ}$
	B	X
p	LTR	0.0
	BC	7.A
	LR	0,1
	SR	1,1
	B	X
*		
A	LA	2,3
	NR	2,1
	SROL	0,1
	L	3.DIVISOR
	SRL	3.1
	CLR	0,3
	BC	4. ${ }^{\text {d }}$
	L	O.DIVIDEND+4
	SR	1.1
	8	C
0	SRDL	0,1
	OR	0;3
	SLDL	0,1
	ALR	0.0
	BC	3,8
	ALR	0.2
	TM	DIVISOR $+3,1$
	BC	$8, \mathrm{X}$
	SLR	0,1
	BC	3, X
c	SL	1, =F: 1 :
	AL	O,DIVISOR
	BC	12,C
	8	OUT
*		
B	ALR	0.2
	TM	DIVISOR + 3, 1
	BC	$8, Y$
	SLR	0.1
	BC	$3, Y$
*		
x	Cl	0, DIVISOR
	BC	4,OUT
γ	SL	Ordivisur
	AL	1, =F'1'
*		
OUT	ST	O,REMA INDR
	ST	1, QUOTIENT

GET DIVIDEND IN RO, RI
CHECK FOR INVALID DIVISION
BRANCH IF IMPOSSIBLE
SEE IF DIVISOR SIGN BIT IS I
JUMP IF YES FOR HARD CASES
SHIFT DIVIDEND RIGHT 1 BIT
DIVIDE BY pOSitive divisor
DOUBLE QUOTIENT AND REMAINDER
SEE IF LAST OIVIDENO bIT WAS I
BRANCH IF NOT TO CORRECT
OTHERWISE RESTORE IT IN REMAINDER
AND GO COMPLETE THE DIVISION
CHECK FOR HIGH PART OF OIVIDENO $=0$
JUMP IF NOT. NC FURTHER SIMPLE CASES
OTHERWISE SET UP TO SKIP DIVISION
SET TENTATIVE QUOTIENT TO ZERO
AND GO FINISH UP CORRECTLY
MASK BITS FOR 'A' IN REGISTER 2
LOGICAL 'AND' SAVES THE 2 BITS
SHIFT RIGHT ONE POSITICN FOR TEST
GET OIVISOR FOR TEST ANO OIVISION
DIVIDE DIVISOR BY 2 (FORM 'Y')
COMPARE ($2 \times / M$) TO Y'
BRANCH IF SHALLER, DIVISION PROCEEDS
SET (4R+A) FROM LOW-ORDER DIVIDEND
set quot to m (Which is the same as 0)
and ENTER CORRECTION SEQUENCE
COMPLETE THE POSITIONING OF ' X '
DIVIDE, R AND Q IN REGISTERS O ANO 1
2R AND 20
FORM 4R IN REGISTER O
BRANCH IF 4 R UVERFLOWS THE REGISTER
REGISTER 0 HAS 4R+A, NO OVERFLOW
TEST IF ' B ' WAS 1
JUMP IF B $=0$, ONLY ONE CORRECTION
OTHERWISE FORM $4 R+A-2 Q$ IN REGISTER 0
JUMP IF NO UNDERFLOW, RESULT IN RANGE
OTHERWISE: QUOT $=2 Q$ - $1, A N D . .$.
\ldots.. REM $=4 R+A-2 Q+$ DIVISOR.
JUMP BACK IF ONE MORE CORRECTION
EXIT
4R+A, WITH OVERFLOW IMPLIED
TEST IF 'B' WAS 1
BRANCH IF NOT
FORM 4R+A - 2Q
IF NO UNDERFLOW, OVERFLOW STILL IMPLIED
SEE If REMAINDER IS LESS THAN DIVISOR
IF SO, WEPRE FINISHED. EXIT.
OTHERWISE CORRECT THE REMAINDER
ANO INCREMENT THE QUOTIENT BY 1
StORE FINAL REMAINDER
AND FINAL QUOTIENT.
00009300
00009400
00009500
00009600
00009700
00009800
00009900
00010000
00010100
00010200
00010300
00010400
00010500
00010600
00010700
00010800
00010900
00011000
00011100
00011200
00011300
00011400
00011500
00011600
00011700
00011800
00011900
00012000
00012200
00012300
00012400
00012500
00012600
00012700
00012800
00012900
00013000
00013100
00013200
00013300
00013500
00013600
00013700
00013800
00013900
00014000
00014100
00014200
00014300
00014400
00014500
00014600
00014700
00014800
00014900
00015000
00015100

FIG. 5--Code Sequence (Revised).

"Logical" Arithmetic on Computers with 'ITo's Complement Binary Arithmetic

By: John R. Ehrman
Stanford Iinear Accelerator Center Stanford University Stanford, California

It is often useful to be able to treat all the digits of a signed word in a binary computer as having positive weight: for example, an additional factor of two in the allowed range of some numbers may be sufficient to allow the solution of certain problems not otherwise easily handled; and in the coding of multiple precision arithmetic, such numbers often arise in a natural way. It was in this latter context [1] that the author found it necessary to devise the methods described below for the multiplication and division of numbers in such a "logical" representation.
I. Two's Complement Representation

Suppose we are working with a machine with registers of length \mathbb{N} binary digits, and take $M=2^{N}$. Then the logical representation of a whole number X requires that X satisfy

$$
\begin{equation*}
0 \leq X \leq M-1 \tag{I}
\end{equation*}
$$

The two's complement, or arithmetic, representation of a number x which lies in the range $0 \leq x \leq \frac{2}{2} M-1$ is

$$
\begin{equation*}
x=x, \quad(x \geq 0) \tag{2}
\end{equation*}
$$

and the representation of negative number x which lies
in the range $\quad-\frac{1}{2} \mathbb{N} \leq x \leq-1$ is

$$
\begin{equation*}
\mathrm{x}=\mathrm{X}-\mathrm{M} . \quad(\mathrm{x}<0) \tag{3}
\end{equation*}
$$

All numbers in the following discussion will be assumed to be integer; the results of any operation may of course be considered as fractions by including the appropriate scale factors.
II. Addition and Subtraction

In a computer with two's complement arithmetic, the sign bit of a number is treated during addition and subtraction modulo M as an ordinary numeric digit, so that no adjustments need be made to the result, other than to note the presence or absence of a carry out of the leftmost digit position. It is useful to remember that when performing a logical subtraction, a carry will occur if the result is "in range", that is, if the logical minuend is not smaller than the logical. subtrahend; in simpler terms, this means that the result has not "gone negative" in an arithmetic sense. In the discussion which follows, a carry out of the most significant digit position during addition will be called an overflow, and the lack of a carry out of the most significant digit position during subtraction will be called an underflow.

III. Multiplication

The multiply instruction on most computers yields an arithmetic product: that is, the multiplier and multiplicand are treated as signed operands. If a logical product is required, some adjustments to the product as computed may be required.

Let X and Y be two logical integers and let x and y be their corresponding arithmetic values. Then if $x^{*} y$ denotes the machine operation of multiplication of the two arithmetic operands x and y, and $X \times Y$ denotes the logical product of X and Y,
a)

$$
\text { if } \begin{align*}
x & \geq 0, \\
X X Y & \geq 0 \tag{4}\\
& =x^{*} y
\end{align*}
$$

b) if $x<0, y \geq 0$, $X X Y=(M+x) * y=M X+x^{*} y$ (modulo $\left.M^{2}\right) ;$
c) if $x \geq 0, y<0$,

$$
\begin{equation*}
X X Y=x^{*}(M+y)=M y^{+} x^{*} y\left(\operatorname{modulo} M^{2}\right) \tag{6}
\end{equation*}
$$

d)

$$
\text { if } x<0, y<0
$$

$$
\begin{equation*}
X X Y=(M+X) *(M+y)=M x+M y+x^{*} y\left(\text { modulo } M^{2}\right) \tag{7}
\end{equation*}
$$

Since the product $x^{*} y$ is developed in a double-length register pair of 2 N bits, the logical product is formed simply by adding the appropriate terms to the high-order register of the pair, as indicated in the flow diagram in Figure 1.

It should be noted from equations (5) and (6) that if one of the operands is known always to have a non-negative arithmetic representation, (for example, it is known that the multiplier P always satisfies $0 \leq P \leq \frac{1}{2} M-I$), then the product itself may be tested for sign: if it is negative, add P to the high-order register, and the logical product is complete.
IV. Division

The problem of logical division is more complicated, because the relationship (3) between the logical and arithmetic representations cannot be expioited as in the case of multiplication. A quotient of \mathbb{N} binary digits must be formed, whereas the usual machine operation of division produces a quotient of $\mathbb{N}-1$ digits plus sign.

We will suppose that we are given a double-length logical DIVIDEND and a single-length logical DIVISOR, and wish to find the logical quotient QUOT and logical remainder REM which satisfy

$$
\begin{gather*}
\text { DIVIDEND }=(\text { QUOT }) \times(\text { DIVISOR })+\text { REM }, \\
0 \leq R E M \leq \text { DIVISOR }-I . \cdot \tag{8}
\end{gather*}
$$

If it is known that DIVISOR $\leq \frac{1}{2} \mathrm{M}-1$, it always has a positive arithmetic representation, and a simple scheme may be used to perform the division.
(a) Divide the dividend by 2 by performing a logical right shift of one bit position; remember the value of the bit which is shifted off.
(b) Perform the normal machine operation of integer division of the positive dividend by the positive divisor.
(c) Double the resulting quotient and remainder; if the lowest-order dividend bit remembered in step (a) was a one, add one to the doubled remainder.
(d) If the new remainder is logically greater than or equal to the divisor, subtract the divisor from it to give the true remainder and add a low-order one to the doubled quotient to give the true quotient.
This yields a quotient which may occupy a full N bits, and is therefore the analogue of the case in multiplication in which one operand is known always to have a non-negative arithmetic representation.

If the divisor has a negative arithmetic representation, a more complicated scheme must be used. The method used will be described in some detail.

$$
\text { Let DIVIDEND }=4 X+\text { A, where }
$$

$$
\begin{equation*}
0 \leq \mathrm{A} \leq 3 \tag{9a}
\end{equation*}
$$

Similarly, let DIVISOR $=2 \mathrm{Y}+\mathrm{B}$, where

$$
\begin{equation*}
0 \leq B \leq 1 \tag{9b}
\end{equation*}
$$

Thus A is the two low-order bits of the dividend, and B is the loworder bit of the divisor. We will assume that $\frac{1}{2} M \leq \operatorname{DIVISOR} \leq M-1$.

Since the largest possible value for QUOT is M-l, it is clear that
the dividend must satisfy the inequality

$$
\begin{align*}
4 X+A & \leq(2 Y+B) \times(M-1)+(2 Y+B-1) \\
& \leq M(2 Y+B)-1 . \tag{10}
\end{align*}
$$

which can also be written

$$
\left[\frac{1 X+A}{M}\right]<\quad 2 Y+B
$$

where the square brackets mean that [Z] is the largest integer contained in Z. Thus the division will be improper if the register containing the high-order half of the dividend is not logically smaller than the divisor.

To find QUOT and REM, first compute Q and R from $X=Q Y+R$, where

$$
\begin{equation*}
0 \leq R \leq Y-1 \tag{11}
\end{equation*}
$$

Then

$$
\begin{equation*}
4 X+A=(2 Y+B)(2 Q)+(4 R+A-2 B Q) \tag{13}
\end{equation*}
$$

By exmining the final term in parentheses in equation (13) it is possible to make the necessary corrections and obtain the true values of QUOT and REM. To determine the corrections needed, we will examine the difference between the tentative quotient $2 Q$ and the true quotient QUOT.

From equations (11) and (12) we find

$$
\begin{equation*}
\frac{X}{Y}-\frac{Y-I}{Y} \leq Q \leq \frac{X}{Y} \tag{14}
\end{equation*}
$$

and from equations (8) and (9),
$\frac{4 X+A}{2 Y+B}-\frac{2 Y+B-I}{2 Y+B} \leq Q U O T \leq \frac{4 X+A}{2 Y+B}$.

Combining these, we have after some algebra that

$$
\begin{equation*}
-2+\frac{2 B X+2+Y(4-A)}{Y(2 Y \div B)} \leq 2 Q-Q U O T \leq 1+\frac{2 X B-Y(A+1)}{Y(2 Y+B)} \tag{16}
\end{equation*}
$$

Case I: $\quad B=0$.
It can be seen that the bounds on the difference $2 Q-Q U O T$ are most restrictive when $A=0$ and Y takes on its minimum value, which by assumption is $M / 4$, since DIVISOR $\geqslant M / 2$. It can then be seen that

$$
-2+\frac{8}{M} \leq 2 Q-Q U O T \leq 1-\frac{8}{M},
$$

and if we are operating in a machine with registers of length greater than three bits (MD8), the fact that $2 Q$ and QUOT are integers allows us to write the inequalities as

$$
\begin{equation*}
-1 \leq 2 Q-Q W O T \leq 0 . \tag{I7}
\end{equation*}
$$

Thus at most one correction must be made to the tentative remainder $4 \mathrm{R}+\mathrm{A}$.

Case II: $\quad B=1$.
In this case the bounds depend on the size of X. For the largest possible value of X obtainable from equation (10), it is again found that the bounds are most restrictive when $Y=M / 4$.

This leads to

$$
\frac{2(4-A)}{1+2}+\frac{4(3-A)}{M(N+2)} \leq 2 Q-Q U O T \leq 3-\frac{2(A+1)}{M+2}-\frac{4(M T+)}{M(M+2)}
$$

and since $0 \leq A \leq 3$, this may be reduced to the integer inequalities (again assuming $\mathrm{m}>8$)

$$
\begin{equation*}
I \leq 2 Q-Q U O T \leq 2 \tag{18}
\end{equation*}
$$

That the upper bound is actually achieved may be seen by considering the case DIVIDEND $=\frac{1}{2} M^{2}-M$, DIVISOR $=\frac{1}{2} \mathbb{N}+1$.

For the smallest possible value of X (namely zero), it is found that the bounds on the difference 2 Q-QUOT are most restrictive when $Y=M / 4$, which gives

$$
-2 \div \frac{2(4-A)}{M+2}+\frac{16}{M(M+2)} \leq 2 Q-Q U O T \leq 1-\frac{2(A+1)}{M+2}
$$

which on the same assumptions leads to

$$
\begin{equation*}
-1 \leq 2 Q-Q U O T \leq 0 \tag{19}
\end{equation*}
$$

By considering the full range of values of X, we can combine (18) and (19) to obtain

$$
\begin{equation*}
-I \leq 2 Q-Q U O T \leq 2 \tag{20}
\end{equation*}
$$

for the case $B=1$.
A Ilow diagram which indicates the overall division process is shown in Figure 2.

V. Sample Program

A program was written for an IBM System/360 (Model 50) which tested the division algorithm given above. Random 32-bit fullword integers were generated for DIVISOR, QUOT, and REM, subject to the restriction REM < DIVISOR. The value for QUOT was then divided by 2^{k}, where k was an integer chosen randomly in the interval $0 \leq k \leq 31$. The dividend was then computed from equation (8), and the division of DIVIDEND by DIVISOR begun. The resulting quotient and remainder were compared to the know values, and diagnostic information was printed in case of any disagreement. Over 18 million separate tests using several differcnt random number generators were made of the division algorithm at a rate of 100,000/
minute. The bounds on the difference between the true and tentative quotients given in equations (17) and (20) were verified, and the algorithm is known to be correct.

The portion of the program which performs the logical division is given in Figure 3. It contains one additional test not shown in Figure 2: if the divisor has a negative arithmetic representation, and DIVIDEND<M (that is, the high-order part of the dividend is zero) then the division process may be skipped. Because all System/360 fixedpoint addition instructions (as well as the logical OR instruction) change the condition code [2], the quantity $4 \mathrm{R}+\mathrm{A}$ must be computed by first forming $4 R$ and testing it for overflow, and later adding A, which cannot then cause an additional overflow.

VI. References

[1] Stanford Linear Accelerator Center Computation Group Program Library Routine No. AOHI: "Multiple Precision Floating-Point Arithmetic Subroutine Package"
[2] IBM System/360 Principles of Operation, File No. 5360-01, Form A22-6821, International Business Machines Corporation.

FIG. 1-- LOGICAL MULTIPLICATION

FIG. 2-- LOGICAL DIVISION

	LM	0, 1, DIVIUEND	
	CL	O.DIVISOR CHR	CHECK FOR INVALID DIVISION
	BC	10.ERROR1	BRANCH IF IMPOSSIBLE
	TM	DIVISOR, ${ }^{\prime}{ }^{\prime} 80^{\circ}$	- SEE IF DIVISOR SIGN BIT IS 1
	$B C$	L,P	JUMP IF YES
	SROL	0.1 S	SHIFT DIVIDEND RIGHT 1 BIT
	D	O,DIVISOR	OIVIDE BY POSITIVE DIVISOR
	SLDL	0,1 D	DOUBLE QUOTIENT AND REMAINDER
	TM	DIVIDEND +7.1	SEE IF LAST BIT OF DIVIDEND WAS 1
	BC	$8, X$	JUMP IF NOT
	AL	$0,=F \cdot 1 \cdot$	UTHERWISE PUT IT BACK IN THE RFMAINDER
	B	X	ANO GO COMPLETE THE OIVISIDN
*			
P	LTR	0,0	CHECK FOR UPPER HALF OF DIVIDEND $=0$
	BC	7.A	JUMP IF NOT
	LR	0,1 -	OTHERWISE SET UP TO SKIP DIVISION
	SR	1,1 S	SET TENTATIVE QUOTIENT TO 0
	B	X	AND GO FINISH UP
*			
A	LA	2,3	MASK BITS FOR A IN REGISTER 2
	NR	2.1	LQGICAL AND SAVES THE TWO BITS OF A
	SRDL	0,2	X IN REGISTERS 0 AND 1
	1	3. DIVISOR	
	SRL	3,1	REGISTER 3 NOW HAS Y
	DR	0.3	OIVIDE, GIVING R AND Q IN REGISTERS 0 AND 1
	SLDL	0,1	2R AND 20
	ALR	0.0	$4 R$ IN REGISTER 0
	BC	3, B	JUMP IF 4R OVERFLOWS THE REGISTER
	ALR	0,2	REGISTER O NOW HAS 4 R + A
	TM	UIVISOR+3,1	TEST IF B IS 1
	BC	$8, \mathrm{x}$	JUMP IF $B=0$, DNLY ONE CORREGTION NEEDED
	SLR	0.1	OTHERWISE FORM 4R+A-2Q IN REGISTER 0
	BC	3, X	JUMP IF NO UNDERFLOW, IT'S IN RANGE
C	SL	$1,=F \cdot 1 \prime$	OTHERWISE QUOT $=20-1$, AND
	AL	O, DIVISOR	REM $=4 \mathrm{R}+\mathrm{A}-20+$ DIVISOR.
	$B C$	12.6	JUMP BACK IF ONE MORE CORRECTION NEEDED
	B	OUT	EXIT
*			
B	ALR	0,2	4R+A, WITH OVERFLOW IMPLIED
	TM	UIVISOR+3,1	TEST IF $B=1$
	BC	8, Y	JUMP IF NOT
	SLR	0,1	4R+A-2Q
	BC	$3, Y$	IF NO UNDERFLOW, AN OVERFLOW IS STILL IMPLIED
*			
X	CL	O, DIVISOR	SEE IF REMAINDER IS LESS THAN DIVISOR
	BC	$4.0 \cup T$	JUMP IF IT IS, WE'RE DQNE
Y	SL	O, DIVISOR	OTHERWISE CORRECT THE REMAINDER
	AL	$1,=F \cdot 1:$	AND THE QUOTIENT
*			
OUT	ST	O,REMAINDR	STORE REMAINDER
	ST	1, QUOTIENT	AND QUOTIENT

Fig. 3

