
Correction to "LOGICAL" ARITHMETIC ON COMRJTEES WITH IWO'S COMPLEI@%P

BINARY ARITHMETIC

Communications of the ACM, Volume 11, Number 7 (July 1968) 517.

In reference (1) algorithms for performing arithmetic with unsigned two's

complement operands were described. The scheme for division was implemented
in a set of multiple-precision floating-point arithmetic routines (2). User

experience with those routines showed that there is one case where the

algorithm fails (3). We will give here a modification to the algorithm which

eliminates the error condition. Equations will be numbered beginning with

w, so that we may refer to equations in the original paper as well.

Using the notation of (l), it may happen when B = 1 that

4X + A [1 M = 2Y . (20)

That is, after the low-order bit of the divisor has been dropped, it is

possible that the divisor Y is now equal to the high-order part of the dividend,

whereas it was strictly greater than the high-order part of the dividend when

the bit was present. This situation leads to a fixed point division error

in the calculation of the quotient Q, since we now expect to find that
Q = M/2 (which will be shown below). We will see that the algorithm shown
in Figure 2 and programmed in Figure 3 of reference (1) can be modified

simply to handle this case.

First, observe that we may rewrite equation (20) in the form

4X = 2MY + G (21)

where G satisfies the inequalities

O<G_<M-4 . (22)

(We have used the definition of A in equation (lOa) to eliminate the two

low-order bits of the dividend; otherwise the upper bound on G would be

M-l.) If we insert these two relations into equation (16), we find that

M - 2 < QUOT < M - 1 . - (23)

This gives a bound on the size of the true quotient QUOT. To verify that

the trial quotient Q is indeed M/2, we can insert equations (21) and (22)

into equation (17) to find that

Because Q must be an integer, we have M/2 _< Q 5 M/2, as desired. Note that
the relationship (19) between the trial and true quotients is still

satisfied; in particular, at least one correction to the trial quotient is
always required.

That these bounds are achieved may be seen by considering the following

examples.

Dividend Divisor QUOT Rl3M Q R
M2-M-1 M-l M-l M-2 $M +M-1
M2-2M M-l M-2 M-2 $M 0

To see which parts of the algorithm need to be modified, we can insert

equation (21) into equation (14); we find that most of the terms cancel,

leaving G = 4R. Since G satisfies equation (22), we find immediately that

O<R<"-l. ‘4

This means that in forming the quantity (4R + A), we cannot have an

overflow in this special case; hence the correction of the tentative value
of QUOT (namely, M) is very simple, and is shown in Figure 4 below. The
program segment of Figure 3 is corrected in Figure 5 below.

There is one other minor correction to reference (1); in the second

sentence of section 5, the word "positive" should read 'negative".

References

1. "Logical Arithmetic on Computers with TWO'S Complement Binary Arithmetic",
Communications of the ACM, Volume 11, Number 7 (1968), page 517.

2. "Multiple-Precision Floating-Point Arithmetic Package", available from
IBM's Program Information Department as Program Number %OD-40.4.003.

3. Private Communication from Hirondo Kuki, University of Chicago.

I

IMPROPER DIVISION

NO HALVE DIVIDEND,

SAVE LAST BIT (C)

SAVE LAST TWO BITS OF
DIVIDEND (Al AND LAST
BIT OF DIVISOR (B). I DIVIDE, TO

OBTAIN Q AND R I

SHIFT DIVIDEND RIGHT ONE BIT
(FORM 2X): SHIFT DIVISOR RIGHT

I QUOT- 20 I

i ONEBIT iF0~Mjl. , REMJ2RfC I 1

COMPARE 2X TO Y (TEST FOR ERROR
DIVIDE ERROR).

_ 20--M-l
WOULD
OCCUR

NO ERROR

DIVIDE, TO OBTAIN Q AND R

REM t REM -DIVISOR
OUOT+ OUOT + I

YES

FIG. 4 - -LOGICAL DIVISION (CORRECTED)

LM
CL
BC
TM
BC
SRDL
0
SLDL
TM
BC
AL
B

LTR
BC
LR
SR
0

LA
NR
SRDL
L
SRL
CLR
BC
L
SR
B
SRDL
OR
SLDL
ALR
BC
ALR
TM
BC
SLR
BC
SL
AL
f3C
B

ALR
TM
5c
SLR
BC

CL
BC
SL
AL

O,l,DiVIDEND
0,DiVISOR
10,ERRORi
DIViSOR,Xs80’
1lP
O? 1
0,DIVLSOR
011
OiVIDEND+7ll
8,X
O,=F’l’
X

010

7,A
ot 1
I,1
X

213
211
011

3,0iVISOR
3,l
013
4¶0
O,DiVIDEND+4
Ill

C
011

0;3
011

010
318
012
DIViSOR+3,1
81X
011
3,x
1 ,=F* 1,
0,DiVISOR
12,c
OUT

012

DIViSOR+3,1
8rY
011
3,Y

0,DIVISOR
4,OUT
0,DIVISUR
l,=F’l’

OUT ST 0,REMAINDR
ST 1,QUOTIENT

GET DIVIDEND IN RO, Rl
CHECK FOR INVALID DIVISION
BRANCH IF IMPOSSIBLE
SEE IF DIVISOR SIGN BIT IS 1
JUMP IF YES FOR HARD CASES
SHIFT DIVIDEND RIGHT 1 BIT
DIVIDE BY POSITIVE DIVISOR
DOUBLE QUOTIENT AND REMAINDER
SEE IF LAST OiViOENO i3IT WAS 1
BRANCH IF NOT TO CORRECT
OTHERtJISE RESTORE IT IN REMAINDER
AND GO COMPLETE THE DIVISION

CHECK FOR HIGH PART OF OIWIDENO = 0
JUMP IF NOT, NC FURTHER SIMPLE CASES
OTHERWISE SET UP TO SKIP DIVISION
SET TENTATI WE QUOTIENT TO ZERO
AND GO FiNiSti UP CORRECTLY

MASK BITS FOR ‘A’ IN REGISTER 2
LOGICAL ‘AND’ SAVES THE 2 BITS
SHIFT RIGHT ONE POSiTiCN FOR TEST
GET DIVISOR FOR TEST AND DIVISION
DIWIDE DLVISOR BY 2 (FORM ‘Y’)
COMPARE (2X/M) TO ‘Y ’
BRANCH IF SMALLER, D IVISION PROCEEDS
SET tGR+Al FROM LOW-ORDER DiWIOEND
SET QUOT YO M (WHICH IS THE SAME AS 0)
AND ENTER CORRECTION SEQUENCE
COMPLETE THE POSITIONING OF ‘X’
DIVIDE, R AND Q IN REGISTERS 0 AND 1
ZR AND 2Q
FORM 4R IN REGISTER 0
BRANCH IF 4R OVERFLOkS THE REGISTER
REGISTER 0 HAS 4R+A, NO OVERFLOW
TEST IF ‘8’ WAS 1
JUMP IF B = 0, ONLY ONE CORRECTION
OTHERWISE FORM 4R+A-24 IN REGISTER 0
JUMP IF NO UNDERFLOW, RESULT IN RANGE
OTHERWISE, QUOT = 24 - 1, AND...
. ..REM = 4R+A - 24 + DIVISOR.
JUMP BACK IF ONE MORE CORRECTION
EXIT

4R+A, WITH OVERFLOW IMPLIED
TEST IF ‘8’ WAS 1
BRANCH IF NOT
FORM 4R+A - 28
IF NO UNDERFLOU, OVERFLOW STILL IMPLIED

SEE IF REMAINDER IS LESS THAN OIVISOR
IF SO, WE’RE FINISHEO, EXIT.
OTHERWISE CORRECT THE REMAINDER
AND iNCREMENT THE QUOTIENT BY 1

STORE FINAL REMAINDER
AND FINAL QUOTIENT.

I;‘IG, ~--CO& Seqyence (!Aetised) o

00009300
00 009400
00 009500
00009600
00 009700
00009800
00009900
00010000
00010 100
00010200
00010300
00010400
00010500
00010600
00010700
000 10800
000 10900
00011000
0001l100
00011200
00011300
00011400
00011500
00011600
00011700
00011800
00011900
000 12000
00012200
00012300
00012400
00012500
00012600
00012700
00012800
00012900
00013000
00013100
00013200
000 1330Q
00013500
00013600
00013700
00013800
00013900
00014000
00014100
00014200
00014300
00014400
00014500
00014600
00014700
000148OC
00014900
00015000
00015 100

srd4c-m-302
April 1967

"Logical" Arithmetic on Computers with

Two's Complement Binary Arithmetic

By: JohnR. Ehrman

Stanford Linear Accelerator Center
Stanford University
Stanford, California

It is often useful to be able to treat all the digits of a signed

word in a binary computer as having positive weight: for example, an

additional factor of two in the allowed range of some numbers may be

sufficient to allow the solution of certain problems not otherwise easily

handled; and in the coding of multi-@e precision arithmetic, such numbers

often arise in a natural way. It was in this latter context [1] that

the author found it necessary to devise the methods described below for
the multiplication and division of numbers in such a "logical" represent-

ation.

1. Two's Complement Representation

Suppose we are working with a machine with registers of length N

binary digits, and take M = 2N. Then the logical representation

of a whole number X requires that X satisfy

0 ZX<M-L (1)
The two's complement, or arithmetic, representation of a number x

which lies in the range 0 < x < =$M - 1 is
x= x, (x>, (2)

and the representation of negative number x which lies

in the range --$M<x< -1 is

x = X-M. (x4 (3)
All numbers in the following discussion will be assumed to be

integer; the results of any operation may of course be considered

as fractions by including the appropriate scale factors.

(Submitted to ACM)

-2

II. Addition and Subtraction

In a computer with two's complement arithmetic, the sign bit of

a number is treated during addition and subtraction modulo M as an

ordinary numeric digit, so that no adjustments need be made to the

result, other than to note the presence or absence of a carry out of
the leftmost digit position. It is useful to remember that when
performing a logical subtraction, a carry will occur if the result is

"in range", that is, if the logical minuend is not smaller than the
logical subtrahend; in simpler terms, this means that the result has
not "gone negative" in sn arithmetic sense. In the discussion which
follows, a carry out of the most significant digit position during

addition will be called an overflow, and the lack of a carry out of the
most significant digit position during subtraction will be called an

underflow.

III. Multiplication
The multiply instruction on most computers yields an arithmetic

product: that is, the multiplier and multiplicand are treated

as signed operands. If a logical product is required, some
adjustments to the product as computed may be required.

Let X and Y be two logical integers and let x and y be their

corresponding arithmetic values. Then if xv denotes the machine
operation of multiplication of the two arithmetic operands x =d Y,
and XxY denotes the logical product of X and Y,

a> if x. > 0, y > 0,

xxy = xv; (4)
b) if x < 0, y > 0,

XxY = (Mtx)*y = Mx+xv (modulo 2); (5)
4 if x > 0, y < 0,

XXY = x*(M+y) = Mytx++y (module I?); (6)
d) if x < 0, y < 0,

Xfl = (M+x)*(Mty) = Mx+My+x++y (modulo M2). (7)

-3

Since the product x*y is developed in a double-length register pair

of 2N bits, the logical product is formed simply by adding the appropriate

terms to the high-order register of the pair, as indicated in the flow

diagram in Figure 1.

It should be noted from equations (5) and (6) that if one of the operands

is known always to have a non-negative arithmetic representation, (for
example, it is known that the multiplier P always satisfies

0 < P _< $M - 1), then the product itself may be tested for sign:

if it is negative, add P to the high-order register, and the logical

product is complete.

IV. Division

The problem of logical division is more complicated, because the relation-

ship (3) between the logical and arithmetic representations cannot be

exploited as in the case of multiplication. A quotient of N binary digits

must be formed, whereas the usual machine operation of division produces

a quotient of N-l digits plus sign.

We will suppose that we are given a double-length logical DIVIDEND

and a single-length logical DIVISOR, and wish to find the logical

quotient QUOT and logical remainder REM which satisfy

DIVIDEND = (QUOT)x(DIVISOR) + RRM,

0 < REM < DIVISOR - 1. - (8)
If it is known that DIVISOR 5 $4-1, it always has a positive arithmetic

representation, and a simple scheme may be used to perform the division.

(a) Divide the dividend by 2 by performing a logical right shift

of one bit position; remember the value of the bit which is shifted off.
(b) Perform the normal machine operation of integer division of the

positive dividend by the positive divisor.
(C) Double the resulting quotient and remainder; if the lowest-order

dividend bit remembered in step (a) was a one, add one to the
doubled remainder.

-4

(d) If the new remainder is logically greater than or equal to the

divisor, subtract the divisor from it to give the true remainder

and add a low-order one to the doubled quotient to give the true

quotient.
This yields a quotient which may occupy a full N bits, and is

therefore the analogue of the case in multiplication in which one

operand is known always to have a non-negative arithmetic representation.

If the divisor has a negative arithmetic representation, a.more

complicated scheme must be used. The method used will be described
in some detail.

Let DIVIDEND = 4X+A, where

O<A<3. - -
(94

Similarly, let DIVISOR = 2Y+B, where

0~Bsl. (9b)

Thus A is the two low-order bits of the dividend, and B is the low-
order bit of the divisor. We will assume that $M 5 DIVISOR < M-l.

Since the largest possible value for QUOT is M-l, it is clear that

the dividend must satisfy the inequality

4X+A<@Y+B)X(M-1)+(2Y-t-B-l)
5M(2Y+B) - 1.

which can also be written
00)

2Y+B,

where the square brackets mean that [Z] is the largest integer contained in

Z. Thus the division will be improper if the register containing the high-order

half of the dividend is not logically smaller than the divisor.

To find QUCYT and REM, first compute Q and R from

X = QY+R , where

0 < R 5 Y-l.
O-J-)
(12)

-5

Then
4X+A = (2Y-!-3)(2Q) + (4Ri-A-2BQ). 03)

By mining the final term in parentheses in equation (13) it is

possible to make the necessary corrections and obtain the true

values of QUOT and REM. To determine the corrections needed, we

will examine the difference between the tentative quotient 2Q and

the true quotient QUGT.
From equations (ll) and (12) we find

X Y-l - - 5 QL x
Y Y Y '

and from equations (8) and (9), *
4x+a 2y+s-1 4X3-A --
2Y-i-B 2Y3-B < QUOT < ~Y+B l

(14)

(15)

Combining these, we have after some algebra that

2BX+2+Y(4-A) 2XB-Y(A+l)
-2-t Y(zY+B) < 2Q-QUm ,< 1 + Y(2Y+B) . O-6)

Case I: B=O.

It can be seen that the bounds on the difference 2Q-QUGT are

most restrictive when A=0 and Y takes on its minimum value, which

by assumption is M/4, since DIVISOR >V/2. It can then be seen that

8 a
-2 -I- g< 2Q-QUOT WE ,

and if we are operating in a machine with registers of length greater
than three bits (M), the fact that 2Q and QUOT are integers allows

us to write the inequalities as

-1 < 2Q-QrcpOr < 0. (17) -
Thus at most one correction must be made to the tentative remainder

4R+A.

Case Ii: 3=1.

In this case the bounds depend on the size of X. For the

largest possible value of X obtainable from equation (lo), it
is again found that the bounds are most restrictive when Y=M/4.

-6

This leads to

2(4-A) 4(3-A) 2(A+l) ic<i-i-r,j
;ck 2 * 'l!x(-Fg 5 2Q-QUOT < 3 - - h+,-2 -i ’

and since 0 < A < 3, this may be reduced to the integer inequalities - a
(agair1 aAs ulrli11g M>8)

1 < 2Q-QUOT < 2. (18)

That the upper bound is actually achieved may be seen by considering

the case DIVIDEND = +M2-M, DIVISOR = +M+l.

For the smallest possible value of X (namely zero), it is found

that the bounds on the difference 2Q-QUOT are most restrictive when

Y = M/4, which gives
2(4-A) 2(A+l)

-2 i- IN-!-2 '5 2Q-QUOT < 1 - lNi-2 >

which on the same assumptions leads to
-1 5 2Q-QUOT < 0. (19)

By considering the full range of values of X, we can combine

(18) and (19) to obtain

-1 < 2Q-QUOT < 2 (20)

for the case B=l.

A flow diagram which indicates the overall division process is

shown in Figure 2.

v. Sample Program

A program was written for an IBM System/360 (Model 50) which tested

the division algorithm given above. Random 32-bit fullword integers were

generated for DIVISOR, QUOT, and REM, subject to the restriction REM <

DIVISOR. The value for QUOT was then divided by 2k , where k was an

integer chosen randomly in the interval 0 <,k 5 3L The dividend

was then computed from equation (8), and the division of DIVIDEND by

DIVISOR begun. The resulting quotient and remainder were compared to the

'known values, and diagnostic information was printed in case of any dis-

agreement. Overti million separate tests using several different random
number generators were made of the division algorithm at a rate of lOO,OOO/

-7

minute. The bounds on the difference between the true and tentative

quotients given in equations (17) end (20) were verified, and the

algorithm is known to be correct.

The portion of the program which performs the logical division
is given in Figure 3. It contains one additional test not shown in

Figure 2: if the divisor has a negative arithmetic representation,

and DIVIDEEIKM (that is, the high-order part of the dividend is zero)
then the division process may be skipped. Because all System/360 fixed-

point addition instructions (as well as the logical OR instruction)

change the condition code [2], the quantity 4R+A must be computed by

first forming 4R and testing it for overflow, and later adding A,
which cannot then cause an additional overflow.

VI. References

L.11

II21

Stanford Linear Accelerator Center Computation Group

Program Library Routine No. AO41: "Wiltiple Precision

Floating-Point Arithmetic Subroutine Package"

IBM System/360 Principles of Operation, File No. 5360-01,

Form ~22-6821, International Business Machines Corporation.

NO NO
FORM X*Y - -x<o?, - Y<O?

t . I
c J I

YES YES

ADD Y TO
HIGH -ORDER

REGISTER
HIGH -ORDER

743Al

FIG. 1 -- LOGICAL MULTIPLICATION

I

I

IS HIGH-ORDER PART OF
DIVIDEND < DIVISOR ? IMPROPER DIVISION

i
YES

NO 9
c HALVE DIVIDEND,

SAVE LAST BIT (C)
. YES

SAVE LAST TWO BITS OF
DIVIDEND (A) AND LAST
BIT OF DIVISOR (B).

SHIFT DIVIDEND RIGHT TWO BITS
(FORM X); SHIFT DIVISOR RIGHT
ONE BIT (FORM Y); DIVIDE, TO
OBTAIN Q AND R.

i

QUOT- 2Q

i

I

REM- 4R+A

1 YES

REM- REM - 20
UNDERFLOW?

REM - REM - 20 REM - REM + DIVISOR

- REM - REM -DIVISOR
QUOT- QUOT + l

YES

LOGICAL DIVISION COMPLETE
743A2

FIG. 2-- LOGICAL DIVISION

LM O,LTDIVIDEND
CL 0,DIVISOR CHECK FOR INVALID DIVIj IDrJ
tic lOrEKROR1 BRANCH IF IMPOSSIBLE
TM DIVISOR,X’80’ SEE IF DIVISOR SIGN BIT IS 1
t3C 1,P JUMP IF YES
SRDL 091 SHIFT DIVIDEND RIGHT 1 BIT
0 0,DIVISOK DIVIDE BY POSITIVE DIVISOR
SLDL O,l DOUBLE QUOTIENT AND REMAINDER
TM DIVIDEND+7,1 SEE IF LAST BIT DF DIVIDEND WAS 1
BC 81X JUMP IF NOT
AL O,=F’ 1’ UTHERHISE PUT IT BACK IN THE REMAINDER
B X AND GO COMPLETE THE DIVISIOPJ

LTK
BC
LR
SK
a

090
7,A
011
191
X

CHECK FOR UPPEK HALF OF DIVIDEND = 0
JUMP IF NOT
OTHERWISE SET UP TO SKIP 01 VISION
SET TENTATIVE QUOTIENT TO 0
AND GO FINISH UP

LA
NK
SKDL
L
SRL
OK
SLDL
ALH
BC
ALK
TM
BC
SLR
BC
SL
AL
BC
B

2t3 MASK BITS FOR A IN REGISTER 2
2t 1 LOGICAL AND SAVES THE TWO BITS OF A
012 X IN REGISTERS 0 AND 1
3rDIVISOR
311 RE’GISTER 3 NOW HAS Y
093 DIVIDE, GIVING R AND 4 IN REGISTERS 0 AND 1
Cl.1 2R AND 20
Of0 4R IN REGISTER 0
3rB JUMP IF 4R OVERFLOWS THE REGISTER
012 REGISTER 0 NOW HAS 4R+A
DIVISOR+3,1 TEST IF I3 IS 1
8.X JUMP IF B = 01 ONLY ONE CORRECTION NEEDED
011 OTHERWISE FORM QR+A-ZQ IN REGISTER 0
3,x JUMP IF NO UNDERFLOW, IT’S IN RANGE
l,=f=’ 1’ OTHERWISE OUOT = 20 - 11 AND
0,DIVISOR REH = 4R+A - 20 + DIV-ISOR.
12.c JUMP BACK IF ONE MORE CORRECTI3N NEEDED
OUT . EXIT

ALR
TM
BC
SLK
BC

CL
ac
SL
AL

012 4R+A, WITH OVERFLOW IMPLIED
DIVISOR+3,1 TEST IF B = 1
ad JUMP IF NOT
0.1 4R+A-2Q
3,Y IF NO UNDERFLOW, AN OVERFLOW IS STILL IMPLIED

0,DIVISOR SEE IF REMAINDER IS LESS THAN DIVISOR
4,OUT JUMP IF IT IS, WE’RE DDNE
0,DIVISOR OTHERWISE CORRECT THE REMAI NDEH
l,=F ’ 1’ AND THE QUOTIENT

0,REMAINDR STORE REMAINDER
1,QUOTIENT AND QUOTIENT

743A3

Fig. 3

OUT ST
ST

