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ABSTRACT 

We use the algebra of charges and their time derivatives, PCAC, and 

Regge high energy behavior to derive sum rules for strong interaction 

forward amplitudes. The saturation of all sum rules by a finite number 

of states is self-consistent and leads to relations among coupling con- 

stants and masses. Saturating all sum rules for or-p scattering by ~,LD 

and A 1' we predict: m 
Al 

= 1100 MeV, ma= m , PA = 120 MeV, 
p 1 

g = 21 BeV-' 
wfi 

in good agreement with experiment. 
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A new set of strong interaction sum rules has recently been pro- 

posed by de-Alfaro, Fubini, Furlan and Rossetti w who noticed that the 

high energy behavior of certain amplitudes may lead to super-convergent 

dispersion relations of the form (2): 

./ Im A(s,t)ds = 0 (1) 

Other sum rules for strong amplitudes have been previously derived by 

writing unsubtracted dispersion relations for amplitudes satisfying low 

energy theorems based on the algebra of currents and PCAC (3) . The com- 

plete set of all sum rules obtained in this way for a given scattering 

process represents a significant amount of new dynamical information. In 

particular, if the sum rules are approximately saturated by the contri- 

butions of a small number of s-channel resonances, they lead to sets of 

equations in the masses and coupling constants of the involved particles (4). 

In this paper we discuss the possible solutions of such sets of equations 

and analyse their algebraic properties, restricting ourselves only to 

forward (t=O) amplitudes. We have reached the following conclusions: 

(a) If all t=O superconvergence and current algebra sum rules for 

the scattering of pions on a given hadron x are saturated by states forming 

an irreducible representation of the SU(2) X SU(2) algebra of charges, the 

complete set of equations in the masses and coupling constants has a unique 

non-trivial solution, in the limit of zero pion mass. All intermediate 

states are then predicted to have a common mass equal to the target mass, 

while the coupling constants obey the usual results of the chiral algebra. (5) 

(b) If we allow additional states to contribute to the sum rules we 

always find a consistent solution. However, the uniqueness is lost and 

we can express all masses and coupling donstants in terms of a few free 

parameters. These parameters correspond to the mixing coefficients of the 
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additional irreducible representations which contribute to the sum rules. 

(c) In the particular case of l<-p scattering the inclusion of the 

n(,(o and Al intermediate states yields a solution of the set of sum rules 

which agrees very well with experiment. 

We use the following set of assumptions: 

1. The vector and axial vector charges Q1 and QG (i=1,2,3) obey the 

equal time commutation relations of the chiral SU(2) X SU(2) algebra (6), 

2. The time derivatives of Q$t) satisfy: 

[Di('),Q~(')I = 'ij'(') (2) 

where Di(t) = -$ G(t) = -i[Qi,H]. S(t) does not include an I=2 piece 

and is therefore a pure isoscalar (7) . 

3. The matrix elements of the divergence of the axial vector current 

are dominated by the pion pole (PCAC). 

4. The high energy behavior for all isospin and helicity amplitudes 

for fl-x scattering at t=O is given by the Regge theory expression s aI(O 

where CZ (0) is the t=O intercept of the leading meson trajectory with iso- I 
spin I and i!h is the difference between the t-channel helicities of the 

two x-particles (81, 

5. All I=2 trajectories have C!,(O) < 0 O)(9), 

We discuss here only the example of rr-p scattering which exhibits 

most of the interesting features of the complete set of sum rules. Our 

results can be extended to the full SU(3) X SU(3) case or to other scat- 

tering processes such as n-C or n-N* scattering without any difficulty. 

Details of these calculations will be presented elsewhere. 

We write the n-p scattering amplitude in the form 0): 

Tb,t ) = (sl.P)(s2-P)A(s,t) + ; [(e,*P)(e,.Q)+ (E,.P)(E;Q)] B(s, t) + 
(3) 

-i- (~,~Q)(~2~$)Cl(s,t) I- (~l+)C2(s~t) 
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where P = $Pl+ P2), Q = $(91+ q2), P~,~ are the momenta of the initial 

and final pion and ql 2 and el 2 are the momenta and polarizations of the 
j f 

p mesons. Regge theory predicts that at high energies A (I)(s,t)a ,W)-2; 

B(I) (s,t)= s 1 a (t)-1; Jf~(s,t)K ,9(t), where I is the t-channel isospin. 

The only s-channel helicity amplitudes that do not vanish at t=O are Ml1 

and M 00 where the subscripts denote the s-channel helicities of the p's. 

We find that at t=O: 

Ml1 = c2 

where: 

(4) M00 = c2+ (v2- ‘,A (5) 

v Pa Q =- 
mP 

The complete list of t=O sum rules includes: 

(4 Two independent Adler-Weisberger sum rules 00) : 

O" Im M$V)dV 8 
(7) ; / 

0 V2- rnz 
(8) 

where f II= 135 MeV is the decay constant of the charged pion, predicted by 

PCAC to satisfy ffi= flGA%/gnN. Eqs. (5)-(8) lead to the I=1 n-p super- 

convergence relation(')(l'), which is therefore not an independent sum rule: - - co 

/ 
Im A(l)(V)dV = 0 (9) 

0 

w (2) (2) Two independent sum rules for Ml1 and Moo : 

V Im Mi:)(V)dV V Im M$(V)dV 

VP 2 
=o (10) 01) 

-m v22 =O 
ll -m 

II 

Eqs. (lo), (11) are derived by inserting the commutator [D',Q~] = 0 between 

pairs of helicity h=l,O p mesons moving with p,= M . The convergence of 

(9) these sum rules is guaranteed if CX2(0) < 0 . Eqs. (10),(U) together with 

(5) and (6) lead t o an additional superconvergence relation (12): 

m 

/ 
V Im Ac2)(V)dV = 0 

0 
(12) 
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(c) A superconvergence relation of the form (1): 

co 

Im Bc2)(v)dv = 0 (13) 
U 

Strictly speaking, Eq. (13) is not a pure t=O sum rule, since a.t t=O 

the B amplitude does not contribute to Ml1 or Moo. B(V,O) can be experi- 

mentally determined only by extrapolating B(V,t) to t=O. 

We have used PCAC in deriving at least two of the five independent 

sum rules. We will therefore study the self-consistency of the complete 

set of equations only in the limit m R= 0. We realize that the super- 

convergence relations (9),(12) and (13) can be derived without taking 

this limit. We find, however, that the overall consistency of the satura- 

ext tion assumption requires rnn = 0 even if we consider only the supercon- 

vergence relations. This may mean that to the extent that these relations 

give symmetry results, they do so only because of their connection to the 

algebra of currents. If this is really the case, we clearly have to con- 

sider all our sum rules in the limit implied by PCAC or by vector meson 

dominance which are the crucial links between the algebra of weak and 

electromagnetic currents and the strong interaction sum rules. Notice, 

however, that whenever the pion appears as an intermediate state, its mass 

is not necessarily zero, and we consider it as an additional physical 

quantity. 

We now proceed to discuss the saturation problem. We choose Eqs. (7), 

(8>,(lO>,(ll>, and (13) as our five independent sum rules and study three 

different saturation assumptions. The first two are mostly of theoretical 

interest while the third yields very good agreement with experiment and is 

presumably a good approximation of the real world. 

1. Assume that the five independent t=O sum rules are saturated by 

the TI and 'u intermediate states. The equations are: 
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(74 

22 -42 mg g =o u! wpfi PJrX 

4g:m 8 1 
2 

=- 
m f2 

P 77 

(,‘- m m;)g* -0 
WJr 

(84 

(1%) 

g and g are defined as in Reference 1. 
PJrfl OPfl 

The unique solution is: 

m =m =m 04) 
4g;m 8 

fi w P 
g2 x-z- 

UPfi 2 
f,' 

05) 

2 mP 

g 
Eq. (15) predicts -e = 5, g = 21BeV -1 , to be compared with 
g2 wn 

p3rn 
--GT= 2.4 -I- 0.2 as determined from the p width and g wpn= (17 If: 3) BeV-' 

as calculated from the Gell-Mann-Sharp-Wagner model (13) for cD -+ny. 

While it is clear that Eqs. (lb), (15) do not agree very well with 

experiment, it is still interesting to understand algebraically why we 

have obtained such a solution. In order to do so we notice that our 

saturation assumption is equivalent to assuming that, at infinite momen- 

tum, the h=l components of p and cu are in the ($,-$) representation of 

SU(2) X SU(2) while the h=O p and J[ are in (1,O) + (0,l). In this case, 

the axial charge 
% 

, which is a generator of the algebra, connects p 

only to u) and JT. The matrix elements of the operator D1 between particle 

states at infinite momentum satisfy (14): 

Ii * lim pz(a,D B) = I - $ (mi - mE)(a: 
IQ4 i B) 

p-+m 
Z 

If @Dip) = 0 I I B) # 0, Eq. (16) leads to m =m B QI' The com- 

mutation relation (2) implies that the operators D1 and S transform 

according to the (-$,$) representation of SU(2) X SU(2). Consequently, 

for any irreducible representation (k,$): 

(16) 

((k,t)[D+&)* = 0 (17) 
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We conclude that if p and w (or p and JI, for h=O) are in the same 

sup) x sup) representation, (%ID/"l) = 0 and (p. D K) = 0 where the 
I I 

subscripts denote the helicities. Eq. (16) then leads to the prediction 

of equal masses for p,w and fi (Eq. (14)). This is actually a much more 

general result: If we saturate all t=O sum rules for r[-x scattering by 

states forming an irreducible representation of SU(2) X SU(2), we find 

that all matrix elements of D vanish. The masses of all intermediate 

states are then predicted to be the same as the mass of x and the sum 

rules for I=2 t-channel amplitudes become trivial identities (15) while 

the I=1 sum rules lead to the ordinary predictions of the charge algebra. 

2. In order to study the case of a reducible, finite, representation 

we now allow a cp meson to contribute w, The resulting equations can be 

easily constructed from those of the previous example by adding C+ terms 

identical in form to the (0 contributions. The solution depends on two 

free parameters which can be chosen as the cp mass and an arbitrary angle 

8 defined as: 
g 

(PPfl -= tan 0 
g 

(J-w 
08) 

The general solution is: 

m =m TX P 
(19) 

(21) 

2 2 

mP 
= mzcos 8 2 -k m 

cp 
sin'@ 

g2 = - cos2e 8 
(WJr f2 

fl 

(20) 

(22) 

8 2 = -ij- sin 8 (23) 
f17 

We immediately see that in the limit g 
CpPfl 

= 0, Eqs. (18),(20) give mp= mm. 

The "badtl predictions (Eqs. (19),(21)) for rnn and g have not been 
Pflfl 

removed by the q since J[ and cp never contribute to the same sum rule 

(except for Eq. (13) which is not independent, in this approximation). 
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From the algebraic point of view the solution (ly)-(23) can be under- 

stood in the following way: The addition of cp is equivalent to assigning 

the h=l w and rp to orthogonal mixtures of the (-$,$) and (0,O) representa- 

tions while pl,oo and IX are classified as before. We define: 

I ‘Ol> = ~0s e((o,o)> * sin e/($,%)> (24) (y> = -sin e/(0,0)> + cos e[(-$,$)> (25) 

% 
connects pl only to states in the ($,$) representation while D connects 

p1 only to (0,O): We therefore find: 

(26) (27) 

Eq. (26) is identical to (18) and leads to (21),(22). Eq. (27) together 

with (16) leads to Eq. (20). The angle 6 that was arbitrarily introduced 

in Eq. (18) is now interpreted as the mixing angle between the (-$,$) and 

(0,O) representations. Its experimental value is close to zero, and we 

will therefore neglect the contribution of the (j in the following dis- 

cussion. 

3. We finally consider the contribution of the next JC-p resonance, 

the A,(J'= l',ICG= If-, m = 1080 MeV). There are two independent Alps 

couplings and we choose them as the longitudinal coupling 

g (p (psq)qv 
L !J- q* 

1 (q)J 
(P*q)Px 

P2 
> ehep ' and the transverse coupling 

- p@Yp~‘P’Y gT 
2 paqf3pa1q3tehep ' where p(q) and e(e') are the momentum 

mAl 
and polarization of the Al(p). The five sum rules give: 

g:P, + 

v g2 u) wpfi- 

2 

vAl 2 8 
gT = f2 

l-r 

2 
gT = 0 

(7b) 

v3 A 
(lob) h’ng;nn+ --& g; = 0 

mAl 

@ > 

(lib) 
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2 

vAl 
2 

mA1 

2 

vAl 2 
--i?-- gT 

mAl 

= 0 (l3b > 

where V = -$(m 
2 x- mz). The general solution of these equations is (17) : 

X 

m =m (28) gT = 0 w P 

(30) 
4g:m 8 -=- 

2 f: 
cos211r (31) 

mP 

Al 2 8 2 
-2-T gL = 2 sin $ 

m~mAl fTl 
(32) mzcos29 + m2 sin2$ 

2 

Al 
=m 

P 
(33) 

Eq. (31) and P(P +m) = 125 MeV give cos2+ = 0.48. Inserting this in 

(33) we predict (18): mA = 1100 MeV (34) 
1 

in remarkable agreement with experiment. Eqs. (29), (32) predict that the 

A, decays mostly into longitudinal p’s and that: 
‘v;: 

rA = 1 

1 3nf2m3 
sin29 = 120 MeV 

* Al 

(35) 

to be compared with P = 130 2 40 MeV (19). The remarkable agreement with 

experiment of the predictions (28), (30),(34),(35) can be regarded as strong 

evidence for the validity of our set of assumptions. The inclusion of addi- 

tional states such as A2 or the ,Jp= -I- CG 1 ,I = O-- 
- 

meson predicted for the qq 

L=l system allows us much more freedom in solving the equations and improves 

the agreement with experiment at the expense of adding many new parameters. 

The contribution of the A2, as calculated from its experimental width, is 

relatively small in all cases P-0) . 

We have shown that the set of sum rules for forward amplitudes, obtained 

from a Regge'-type high energy behavior, the algebra of 

specific assumptions on the absence of I=2 components, 

and can be saturated by any finite number of s-channel 

charges, PCAC and 

is self-consistent 

resonances. The 
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general solution may depend on some unknown parameters (mixing angles). 

Additional information is required if we want to determine these para- 

meters and to predict all the masses and coupling constants of the inter- 

mediate states. It is possible that this information can be obtained 

from additional sum rules at t # 0 PC , or from sum rules similar to 

Eq. (13), based on extrapolated values at t=O. We believe that the com- 

plete set of assumptions used in this work is strongly supported by the 

successful results that we have obtained for the saturation by fl,cc, and Al. 
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