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ABSTRACT 

The problem of inserting a complex propagator in the crossed channel 

of the square diagram is considered. The propagator is spectrally repre- 

sented and the square diagram with full propagator insertion is expressed 

as a spectral integral of square diagrams over an internal mass variable. 

The analytic properties of such diagrams in two complex variables, one 

internal mass and one external energy, are investigated in detail. These 

properties are then used to find the analytic properties of the full dia- 

gram with propagator insertions. 
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I. Introduction 

We wish to consider the problem of the insertion of a composite 

particle into the diagrams of perturbation theory and the singularities 

so generated. The case in which insertions are made into the self- 

energy and triangle single loop graphs have been treated in great detail 

by Aitchison and Kacser (q The extension to insertions into the single 

loop square diagram is distinctly non-trivial and will be the specific 

problem treated here. The work of Aitchison and Kacser then enters as 

the lower order contraction singularities of the square diagram. 

The insertion of a full propagator in place of a simple line in a 

graph leads to an integral of the diagram over an internal mass, weighted 

by the spectral function of the inserted propagator. An investigation 

of the singularities of the integral requires an analysis of the analytic 

properties of the graph in the usual external ener,T variable and in the 

internal mass, both treated as complex variables. Such treatment of the 

square diagram has appeared only once before in the -literature, in the 

work of Barton and Kacser (2). They looked at the square diagram with two 

internal masses, in the decay region of one of the external particles. 

Thus our work will not overlap with theirs. 

We consider the diagram of Fig. la, to be called F(s,t;M 
2 

), where the 

heavy line, the propagator P(q22), will represent an infinite sum of graphs. 

The propagator will be assumed to have a bound state mass at p < 2m. Note 

that all the particles are taken as neutral and spinless. 

The usual Feynman rules give, up to a factor, 

F(s,t;M') = d4ql 2 '2 &22) 
1 

-m-!-ie 
2 0) 

91 q3 m f ie 
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A specific model will be used for the propagator, viz. a sum of 

bubble diagrams strung in linear chains (see the Appendix). A typical 

diagram contributing to the sum of insertions is shown in Fig. le. 

The propagator is explicitly written 

co 
P(q22) = ho2 n (q22) = - x0 - 

f 
0(X2) dX2 

0 h2- q22- ie 

where X 
0 

is the direct coupling and 

u (A2) = g2 8(X2- p2) + u' (12) .(x2- 4m2, 

u” (x2) = x2- 2 
d---- 

4m 
xp 

1 

(x2- P2) 
2 Id )I h2 2 

(2) 

(3) 

. 

p here is the mass of the bound state and g is its coupling to the 

original particles. More realistic propagators will retain this 

general structure. 

The expression for (1) becomes 

m 
F(s,t;M2) = - X01(s) + 

/ 
0(x2) f(s,h2;t,M2) dX2 

0 

where 

I(s) = J d4q1 2 l2 
1 1 - 

2 
q1 -m-l-ie qj2- m2+ ie 94;)- m + ie 

is simply the triangle graph of Fig. 2b and 

f(s,h2;t,b12) 1 1 1 = J d4ql 1 
2 2 2 (4) 

91 -m+ie -X'+ic q 32- m2+ i< q42- 
2 

92 m + ie 

is the square diagram with one line of mass h, rig. lb. 
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Note that the contribution I(s) is in fact a triangle contraction of 

the square diagram so that its singularities will already be included in 

the analysis of the square diagram and need not be considered separately. 

We have then, excluding the I(s) term, 

03 

F(s,t;M2) = g2 f(s,-12;,t;,M2) + 
J 

2 ~'(1~) f(s,h2;t,M2) dX2 , (5) 
4m 

so that the singularities of the graph with full propagator insertion are 

generated partly by the bound state approximation, f(s,p2;t,M2), and 

partly by the continuum parts of the propagator. The usual procedure in 

treating a graph with bound state (or resonance) insertion is replacing 

the composite particle by a simple line of real (or complex) mass, which 

is equivalent to retaining only the first tern in (5). We will be inter- 

ested in analyzing the integral term in (5) and thereby seeing which 

singularities are neglected by the bound state (or resonance) approximation. 

More specifically, we will be interested in those singularities of 

F(s,t;M2) in the complex variable s, for t-fixed in the physical region of 

s channel scattering, which survive the 1' integration in (5). The con- 

ditions for the singularities of such an integral are by now very well 

known(3). The method requires knowing the analytic properties of 

f(s,X2 
2 

;t,M ) in the complex variables s and X2 and then analyzing the 

integral for end-point and pinch singularities. We will, in fact, specialize 

to the case of equal mass scattering, M2= m2. Since this is a fairly 

2 degenerate case, the limit M +m2 will not be taken until near the end of 

the analysis. 

The sections following will-begin-with the kinematics of the process, 

continue on to a study of the singularity structure of f(s,X 2 2 ;t,m ) as a 
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function of the complex variables s and X2 for t and M* fixed and real, 

and conclude with the properties of the full graph F(s,t;M*) as ?,i*+m*, 

II. Kinematics 

For a general scattering process, say that of Fig. la, the physical 

region is given by det pi* pj > 0 where the pi are the external momenta, 

all taken incoming (4). For the process m + m -+m i- M, this condition 

becomes 

s t u > m'(M*- m*) 
2 

where 
u = M* + 3m2 - s - t 

The boundary of the physical region is given by the vanishing of the 

Gram determinant det gi* p.. This vanishing is also the condition for 

J (5) the non-Landau singularities . Thus the physical region is bounded by 

the real section of the leading non-Landau curve 

2 
s t Ll = m*(M*- m*) 

or 

u(s,t;M*) = s*t 
2 

+ st(t - jm*- M*) + m*(M*- m*) = 0 (6) 

This curve is shown in Fig. 4. 

We may note that U(s,h*;M*) = 0 is in turn the leading Landau curve 

for the triangle diagram with an internal mass A, Fig. 2d. 

In the eventual limit M*= m*, the physical region degenerates into 

the regions bounded by the lines s = 0, t = 0 and s + t = 4m 2 . 

We will be looking as s channel processes whose physical region is 

labeled by I in Fig. 4. t will be kept fixed, real, and negative. 



where D is the discriminant, with respect to ql, of 

4 

Jr= c ai (qi2- mi21- ie) m* * i=l,3,4 =m 
i=l i 

m2 
2 x2 

traducing the usual variables In 
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111. The function f(s,b*;t,M*) 

In this section we will study the singularity structure of the 

square diagram of Fig. lb, in terms of the two complex variables s and 

xp. The techniques used in the analysis of one internal and one external 

invariant is a straightforward generalization of those used in more usual 

analyses(6). 

In particular, after Feynman parametrizing and loop integrating, we 

have, up to inessential factors, 

1 

f(s,X*;t,M*) = 
f 

dO"s da2 da3 da 4 
D2 

(7) 
0 

yll = Y** = Y33 = Y44 = 1 

1 
Y14 = Y34 = 2 2In*- s A 

%3 = 2m2 Y12 = 7s 

2 2 2 m-+X-M 2 2 
y23 = 2mX 

m-t-1-t 
‘24 = 2mx 

gives 4 

c 

4 
I)=- CX *m * . . 

i,j=l 
Qi mi Qj mj y.. - 

=J c i=l ' IL (8) 

In terms of these variables, the stability conditions at the &'th 

vertex are 



Y& > -1 External stability 

Y& < 1 Internal stability . 

The conditions for a singularity of the integral (7) are 
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o=c$ - 2cqnk2 - 2mk c 
jfk 

aj mj Ykj 

I 

k = 1,*,3,4 (9) 

These four conditions then guarantee that D vanish at a singularity since 

D is second order homogeneous in the CX'S. 

Define the matrix Y whose elements are 

Y ij =mm 
i j Y. l ij 

The conditions (9) are equivalent to the determinant of Y and the 

principle minors of Y vanishing in turn. Each of these vanishings give 

the singularity surface of a contraction graph everything on its mass 

shell. The leading Landau surface is generated by the contraction graph 

of Fig. lb, and the various lower order contractions graphs are shown in 

Figs. 2 and 3. 

The definition of the physical sheet of the function f(s,h*;t,M*) in 

fact depends on the singularities of the lower order contractions. Thus 

the physical sheet of the box diagram is defined with respect to the cuts 

provided by the branch points due to the triangle and self-energy con- 

tractions. The singularities due to the leading contraction are then 

located in the topological product of cut s and X2 complex planes. 

IV. The Contraction Singularities 

As preliminary remarks, let us recall some standard terminology and 

known theorems that will be used in the following. 
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The physical limit onto real values of an invariant is taken as 

s + ie for all external invariants and X2- ie for all internal invariants. 

This is the standard Feynman prescription. It may be seen explicitly 

from (8) that D # 0 when real values are approached in this limit. 

The surfaces attached to the real sections of Landau curves will 

be analyzed by the method of search lines (6), Thus if a search line of 

positive (negative) slope touches a real section of a Landau curve, the 

complex surface attached to that section is in corresponding (opposite) 

half-planes. If a real section whose attached surface lies in corresponding 

(opposite) half-planes is reached from corresponding (opposite) half- 

planes, the limit onto the section is said to be the curve limit, other- 

wise, the non-curve limit. 

For single loop graphs, surfaces due to contractions of successive 

order can only intersect by touching and the touches are necessarily effec- 

tive (the a's at the touch are the same for both surfaces). (3,7) 

The fundamental property to be used in the following concerns the way 

singularities pass from one part of the surface to another. In particular, 

in a given limit, (corresponding or opposite half-glanes) the singularity 

character of a surface changes at an effective touch with a contraction 

curve of one lower order if the lower order curve is singular in that limit. 

It does not change if the lower order curve is non-singular in that limit. (1) 

We will consider, in turn, the lower order contraction singularities, 

and the definition of the various sheets of the function f(s,X*;t,ly*). 

a) The total contraction, X2= 0, due to Fig. jd, is a logarit'hmic 

singularity on all sheets of f(s,i*;t,&l*). Its cut runs along the negative 

real X 
2 

axis from - m to 0. 
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2 b) The self-energy contraction, s(s - 4m ) = 0, due to Fig. ja, 

has s = km* as a singular square root branch point on the physical sheet. 

s = 0 is a square root branch point not singular on the physical sheet. 

c) The self-ener,gy contraction (I*- (M-m)*)(A*- (M+m)*) = 0, due 

to Fig. 3b, has the real section of Fig. 5. In this figure, A*= 0 is 

the singular one lower order curve for this graph. The parabola lies 

outside the region of the cuts so that the curve and non-curve limits 

have the same singularity nature. 

Arc BC is not singular in the curve limit A*- ie, M*+ ie since this 

is also the physical limit. Nothing happens at B so that A.D is non- 

singular in both limits. The intersection at C, however, is an effective 

intersection with a singular curve of one lower order so that the singu- 

larity nature of the arc changes and CD must be singular in both limits. 

In particular, the complex surfaces attached to CD, which lie in corres- 

ponding half planes, are singular on the physical sheet. Since we are 

restricting ourselves to M* 
2 

real and not less than m , we have a branch 

cut along the negative X2 real axis from - C=J to (M-m) 
2 

. The cut is of 

square root type. 

d) The self-energy contraction [t - (A+m)*][t - (J.-m)*] = 0, Fig. 3c, 

leads to a complex value of 1' for fixed real negative t and would, there- 

fore, lead to a complex branch cut it if were singular. 

The real section is given by Fig. 5 but with M* replaced by t. We 

see immediately that there are no real singularities in X 
2 

for realnega- 

tive t. The limit onto real t is taken as t + ie in accordance with the 

Feynman rule for external variables. To reach a point on the surface with 

real t t- ie < 0, we can move off arc AB or arc CD, neither of which is 
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singular in the curve limit. The former will reach points on the surface 

with Im X2 > 0 and the latter with Im X2 < 0. The important point to 

notice is that the singular surface attached to the arc CD in fact does 

not connect to the surface with Re t < 0. We conclude, therefore, that 

the complex points 1' = (w+ m)* can only be reached over non-singular 

surfaces and are thus not singular on the physical sheet. 

e) The triangle contraction of Fig. 2a also leads to complex values 

of A* for real negative t. The real section of its Landau surface is an 

ellipse and is shown in Fig. 6. Its lower order singular contractions 

are the lines 
2 2 

h = 0 and 1 = (M-m)* and the arc CD. Note that the ellipse 

lies above all the singular X2 cuts (only the arc CD of the parabola is 

singular) so that the curve and non-curve limits onto the ellipse must 

be of the same singularity character. 

The axis cd and ab are not singular in the physical limit -I- - , i.e. 

t + iE, ie, which is also the curve limit onto these arcs. At point 

c we have an effective intersection with a non-singular one lower order 

contraction so that ce is non-singular in both the + - and -I- f limits, the 

latter being the curve limit. We can continue along the ellipse all the 

way to point f without becoming singular. But as we continue onto the 

arc df either at d or f, we have an effective intersection with a singular 

one lower order contraction so that the singularity character changes at 

these points. Thus the arc df is singular in both limits and there is a 

complex surface of singularities, lying in corresponding half planes, 

attached to df. 

We require a point with real negative t approached from t + i.e. Such 

a point can only be reached from the ellipse over the surfaces attached to 
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arcs ce or cd which are not singular. 

We conclude that the complex value of X2 lying on the Landau surface 

having real negative t is in fact not singular on the physical sheet. 

This result also holds for the contraction graph of Fig. lc which is a 

special case with M*= m*. 

f) The triangle contraction, s(s - ?m*) = 0, Fig. 2b, has neither 

s = 0 nor s = 3rn2 singular on the physical sheet. Both, however, are 

singular branch points in the first unphysical sheet reached by continuing 

downward through the normal threshold cut. 

g) The real section of the Landau surface due to the triangle con- 

traction of Fig. 2d is given by Fig. 4 with t replaced by X2. The analysis 

for this contraction for M* > 9m2 was given in Eief.(l). For m* < ?4* < ** 

the analysis is very similar. 

In particular, the ellipse is connected to the three disconnected 

arcs by complex surfaces. Thus surface AB ab connects the arc ab to the 

arc AB, etc. (8) The singular one lower order contractions are the branch 

points s = 41n* and X2= (M-m)', the points s 

singular on the physical sheet. The centra 1 ell 

region of the - C=J < A* < (M-m)' cut so that both 

onto the ellipse must be the same. 

= 0 and X2= (M+m)* being non- 

ipse is thus outside the 

curve and non-curve limits 

The surfaces AB ab, CD cd and DE ed are not singular because the limit 

onto the ellipse along these surfaces is +- - (s + ie, A 2 - iq) which is 

also the physical limit. By examination, we can tell that the discriminant 

for this graph cannot vanish on the undistorted Q contour for s < 2m*, - 

A2 > M*2+ m* SO that AE is not singular in either limit and we can continue 

along the surface A?Z as onto the arc ae without becoming singular. Thus 
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none of the arcs ba, ae, ed, or dc are singular nor are the complex surfaces 

attached to them. 

The points b and c are effective intersections with singular normal 

thresholds so that the singularity nature changes at these points. Thus 

the complex surface BC bc is in fact singular: this would lead to complex 

singularities. In the limit we eventually take, PI*= III*, this surface will 

in fact disappear and cause no trouble. 

We can summarize the results of this section in the limit &I*= m*, 

The physical sheet is the topological product of two cut planes, the s 

plane cut only from 4m2 to 03 and the X 2 
plane cut from - M to 0. This 

topological product will be denoted by pp. As we continue through the 

s = 4m 
2 

cut, we reach the sheet q-p, keeping X2 in its p sheet. This q 

sheet in s has superimposed left hand cuts from - w to 0, a right hand 

cut from 3m2 to a~, and the normal threshold cut from 4m2 to a. The singu- 

larities due to the leading Landau surface will thus be defined with respect 

to this sheet structure pr,ovided by the lower order contractions. 

v. The Leading Landau Curve 

The leading curve, due to the full contraction of Fig. lb, can be 

represented as 

x+* = - -B+fi 
2A with 

A 

B 

4s - 4m*) 

2s [*m*t f 4 3m - st -I- m*M*- m's] 

and 

c = B*- 2 
4AC = 16m s (s - 3m2) cr(s,t;M2) 

01) 

2 
where a(s,t;bl ) is the non-Landau curve already given in Eq. (6). 
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The real section in the s1* plane is therefore limited by the con- 

dition C > 0 which obtains for s- < s < 0 and jm* < s < s+ where s & are 

the roots of 

0(s+,t;M2) = 0 02) 

We can determine the location of sf by inspection of Fig. 4: we see 

that for t < 0, the points always arrange themselves in the order 

S < 0 < 3m2 < s+ . 

By differentiating (11) we see that the vertical tangents appear at 

the zeros of A and the zeros of C. The zeros of A are at s = 0 and s = km* 

and these vertical tangents are in fact asymptotes. This is expected since 

the tangents at the normal thresholds, at least for single loop graphs, are 

at infinity(g). The vertical tangents at finite points, s = 31n* and s = s+ 

are the zeros of C. The meaning of the location of the tangents can be 

seen by the following arguments based directly on the Landau equations. 

The explicit form of the discrimanant D, given by Eq. (8), can be 

rewritten 

D = sf@> + x2 g(a) - K(Cr,tJ*,t) 
where 

f=cXcX 13 

g=- a* cg+ 0”2+ Q3f y+) 

and K is everything else. 

The tangents to the Landau curve are (9) 

dh* f - =-- = 9"3 
ds Y a* (CYp a*i- a3+ a4) 
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where the a's are considered to be those functions of s obtained by 

solving the Landau equations. The vertical tangents occur at y = 0; 

i.e. the triangle contraction curve C!*= 0 and the self-energy contractions 

Q2J cli = 0, i = 1,3,4. These are the curves given by Fig. 2b and Fig. ?a 

giving vertical tangents at s = 0, s = 3m2 and s = km*. But not at s = s+. 

The points s+ arise not in the usual way, g = 0, but by having - 

f zzm. This corresponds to the hyper-contour of the Q integration in (7) 

being dragged to infinity thereby producing a singularity. This is the 

usual mechanism for the generation of non-Landau singularities. The 

points s+ are in fact, for t < 0, the non-Landau singularities for the 

fourth order curve. In a similar way, the third order curve, Fig. 4, has 

2 
vertical tangents at the third order non-Landau curves s = (M + m) . 

The horizontal tangents are given by f = 0 and are thus due to the 

single contractions CX 1 = 0 and O3 = 0 and the double contraction CYl,CX3= 0, 

given by Figs. 2a, 2c and 3c respectively. For t < 0, these curves are 

complex in the sh* space so that the leading curve can have complex hori- 

zontal tangents. These complex horizontal tangents are, as we have seen 

in the previous sections, not singular for t < 0 and will cause no trouble 

in what follows. 

The intersections of the leading surface with the third order surface 

are touches on the real section and are necessarily effective (7). There 

are two asymptotic touches (s = 0, a) and three in the finite plane. 

The real sections, for M* < gm*, are shown in Figs. 7 and 8. The real 

sections for M2 > 9m2 are similar except that the touch is on the under- 

side of the ellipse. 

In the limit M2= m* , the third order curve reduces to 

sh2(4m2- A*- s) = 0 03) 
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and the leading curve to 

x2 s - = 4m*) m* + (s - 2m*) t i ** 
2 

s - 4m 
2 04) 

where 

c = In*t (s - %*)(s + t - 4m*) . 

The cuts of* are chosen to make A+* real analytic and run from 

-m<s<3m 
2 

and 4m2 -t<s<m. The real section of this limiting 

situation is shown in Fig. 9. We see that at point L, the leading curve 

in fact intersects the third order curve. This occurs because at ?+I*= m*, 

the third order curve develops a cusp at s = 4m2 so that the theorem 

about effective intersections being touches no longer holds. The inter- 

section, while no longer a touch, is nevertheless still effective. The 

limit PI* 
2 

=m is clearly the limit of a touching situation, Fig. 10. 

The third order curve (13) is in fact not singular for s on sheet 

p but is for s on sheet q as can be seen from Fig 10 - the arcs DE, adc, 

and BD become the straight line 
2 

X + s = km 
2 . All are non-singular on p 

but become singular on q. 

For s on sheet p and X2 on its sheet p, the function fpp(s,h*;t,m*) 

will have additional singularities due to the leading surface. There can 

be no singularity on a surface in the physical limit s = ie, ie for 

t < 0 taken onto real values in the limit t + ie. Thus on sheet pp, the 

surface attached to KLPN in Fig. ga is not singular. At K nothing happens 

so that KL is not singular in the I- - limit and also not in the curve 

limit since K.J if outside the region of the cuts. We can continue from KJ 

to N& by means of the complex surface connecting them so that the curve 
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limit onto NQ is not singular. There are therefore no complex singularities 

of f 
PP 

(s,X2;t,m2) and it must satisfy a Mandelstam type representation in 

the variables s and h2. 

In order to analyze the function f Q, we 

which is that point in the leading curve with 

point T are well known from the properties of 

begin at the point T, Fig. 9, 

X2 = $. The properties of 

the box diagram with all 

masses, both internal and external, equal. In particular, T is not singular 

on p but is singular in both limits on the s sheet q. Thus the arc KTL 

is singular in the curve limit on q. The intersections at points L and P 

are with triangle contractions singular on q. Therefore, the surfaces 

attached to LP are not singular and those attached to PN are. K is also 

an intersection with a singular triangle contraction curve on q so that KJ 

is non-singular in both limits and continuing onto the curve NQ over the 

complex surface indicates RQ is non-singular in the curve limit. 

To summarize, f 
PP 

has no complex singularities. f 
w 

has complex 

singularities on the surfaces attached to KL and PN, all other surfaces 

being non-singular. 

VI. The Function F(s,t;m2) 

We have already seen, in Eq. 5, that the square diagram with full 

propagator insertion, Fig. la, is given by 

m 
Fp(s,t;m2) = g2fpp(s,p2;t,m2) + 

s 4m 
2 U'(A2)fpp(s,X2;t,m2) dA2 . (15) 

The subscript P denotes the physical sheet of the function F. 

f(s,p2;t,m2) is the bound state approximation, i.e. the square diagram 

with a simple line of mass u, the bound state mass, replacing the infinite 

sum of diagrams comprising the complex propagator. The integral term is 
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the correction due to keeping the continu:urn contributions to the complex 

propagator and will contain singularities not present in the bound state 

approximation alone. 

Fp certainly has the normal threshold cut from s=4m2 to 00 since it 

is a cut of f 
PP 

independent of X 
2 

. The physical sheet P is then well 

defined just above this real s axis where the contour of the integral 

in (15) runs just below the real X2 axis. The continuation of Fp into 

the complex plane is performed by moving counterclockwise off the s axis. 

Since, as we have seen in the previous section, f 
PP 

has no complex singu- 

larities, thz X2 contour is never distorted or pinched and we conclude 

that the physical sheet function, Fp, is defined everywhere in the complex 

plane by (15) with the contour undistorted. 

We move onto sheet Q by crossing the normal threshold cut in a clock- 

wise direction. The definition is now 

FQ(s,t;m2) = g2fqp(sJp2;t,m2 )+ G' 
J 
C 

(k2)f,(s,X2;t,m2) dh2 

where C is a contour running from 4m2 to m but which may have been dis- 

torted by an advancing singularity h*(s) of f 
Q 

as s moves throughout the 

Q sheet. 4 singularity of the function occurs when the distortlon of the 

contour is no longer possible, either because the singularity hits the end- 

point or because it is pinched. The pinch itself can occur two ways - 

either the contour can be pinched between coincident singularities of f 
w 

or a singularity of f ~ can pinch with the double pole of ~'(1~). 

This latter distinction can be sharpened by a consideration of the 

diagram of Fig. Id, the square diagram with a single bubble insertion. 
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This diagram is given by 

Fg(s’t;m2) = l2 ('2~~2~2f(s,A2;t,m2) dX2 (17) 

It is known from the 'tautening" conditions for the dual diagrams 

of such graphs(") , that the singularities of F. are in fact also the 

singularities of any graph of the type in Fig. lc, where the number of 

bubbles in the chain is finite. We see that the full diagram F will 

certainly contain the singularities of F. and in addition will contain 

singularities due to the binding of the particles into a particle of mass 

CL- The singularities due to the bound state, of course, are not present 

in any finite order of perturbation theory but arise only through the 

summation of an infinity of graphs. 

The physical sheet function FOP (s,t;m2) has the normal threshold 

cut and no other singularities. If we continue downward through this 

cut onto sheet Q, we see that F 
OQ 

has in addition to the normal threshold 

cut, a left hand cut with - m < s < 0 due to the various contractions of 

f 
W' 

and a right hand cut 3m2 < s < m due to the triangle contraction 

already mentioned. The other triangle contraction, X2 = 4m2 - s, does 

give an endpoint singularity at s = 0 which simply superimposes another 

left hand cut on those already there. 
FOQ also has possible singularities 

due to the leading Landau curve of f 
QXP ' 

In order to study these singularities due to the leading Landau 

surface, we have to know the location of the A 2 
singularities on the 

surface as s ranges over the complex plane, i.e. we need the mapping from 

the s to the X2 plane provided by 3q. (13). The essentials of the mapping 
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are relatively simple: X+ 
2 

maps the entire s plane into the boundary 

and interior of a circle of radius m 
2 

- t centered at the origin of the X2 

plane, and X maps the entire s plane into the boundary and exterior of 

the circle. 

Referring to Fig. 11, the specifics of the mapping are: 

x2 + AB2 
Real maps: 

(- w < s < 3m2)+ --t cb (- m < s < 3m2)+ +db 

(- m < s < 3m2) -+db (- 00 < s < 3m2) "cb 

(~III* < s < hn2)? -+ (bo); (3m2 < s < 4m2), -+ (b ")? 

(4m2 < s < 4m2- t)? -+ (04, (4m2 < s < 4m2- t)* + (- m a)+ 

(4m2- t < s < w)+ -+ ac (4m2- t < s -cm)+ -+ad 

(4m'- t < s <a)- -+ad (4m2- t < s < c=)- -+ ac 

Complex maps: 

&.h.p. +C, 

u.h.p. -+C 

&.h.p. -(&.h.p. - C-) 

u.h,p. + (u.h.p. - C+) 

The notation (- ~0 < s < 3m2)+ means the upper 
lower 

edge of the real axis - 

below 3m2. 

Note that X+2 belongs to the surface attached to arc KLN and h -2 to 

the surface attached to KJ and NQ of Fig. pa. Note also that the inverse 

map s = s(k2) given by Eq. (13) is rational so that s is real vhenever 

X2 is. Thus we can already be assured that in the bound state case, 

pinches or endpoint singularities will lead to s singularities on the 

real axis, 
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We have already indicated that FOP has only the normal threshold 

cut and is defined throughout the complex physical s sheet by (17) with 

an undistorted contour. Fig. 12a shows the search of the Q sheet reached 

by continuing clock&se down through the normal threshold cut. Fig. 12b 

shows the corresponding motion of the singularities - corresponding 

points are labelled by the same letter. The notation a(+) means that 

this point corresponds to the map provided by Xp. Note that along a 

1' path, a point will change names, say from (t-) to (-). This indicates 

that a smooth motion in the s plane in fact is quite complicated in terms 

of motion on the Landau surfaces, the path changing surfaces as certain 

regions are entered. By continuity, however, the singularity character 

cannot change as we go from surface to surface unless we cross a cut. 

Then the singularity can move into a sheet other then the one under con- 

sideration. 

It is clear from Fig. 12b that an endpoint singularity arises when 

point m(+) hits the endpoint X2 = 4m2. This occurs for 

2 

4m 2 8m4 - SE = 4tm*-l- (t-m2) 

8m4- 8tm*+ (t-m2)2 
08) 

with 3m2 < SE < 4m' on the upper edge of the 3m2 triangle cut. - This end- 

point singularity can only occur (on sheet Q) by m(+) hitting the endpoint, 

not m(-), since Only m(-i-) is singular in sheet Q (m(+) belongs to the 

singular, on Q, surface KL in Fig. 9a). m(+) can only hit the endpoint of 

X2 = 4m2 lies inside the circle, i.e. 
I I t 5 3m2. In terms of Fig. 9a, 

we see that for A2 = 4m2 intersects the singular surface KL 
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while for t > jm*, I I it intersects the non-singular (on sheet Q) surface 

It is also clear from Fig. 12b that nowhere, on sheet Q, does a 

moving X 
2 

singularity cause the contour to be distorted. Thus (17) has 

no pinch singularities on sheet Q. We see then that the only additional 

singularity of (17) due to the leading surface is S E of Fq. (18) and 

this occurs on sheet Q. 

If now we turn to the diagram with the full spectral function inserted, 

Eqs. (15) and 

extra effects 

Again on 

the point 

on sheet Q in Fig. 12a, we have a ?i* singularity moving to 1' = p2 but 

(W, and look only at the integral term, we can see the 

due the double pole at A2 = p* in the spectral function. 

the sheet P, there is no effect at all. If we search to 

2 4 2 

S 
P= 

4m p - 2m2$- p2t + (t-m2) 
4 2 2 

P - 2m P 2- 2p2t I- (t-m2) 

(19) 

without distorting the contour. Thus there are *no extra pinch singularities 

on sheet Q. We can in fact only get a pinch of the contour at the double 

pole by continuing through the 3m2 cut for 3m2 < s < 4m2 from above. On 

the sheet so reached, call it Q', there will be a singularity of the integral 

atS=S. 
0 

This will occur only when t > m*- p2 so that point K in 

Fig. 9a appears below X2 = p2. The result is that the first singularity 

of the integral term in (5), due to the double pole, appears in a sheet 

very far from the physical region. 
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VII. Conclusions 

The function we have been considering is given by Eq. (5) and re- 

presents the equal mass square diagram with a full propagator inserted 

in the cross channel. The propagator is assumed to have a bound state 

pole at a mass I-L. 

The approximation usually made, the bound state approximation, is 

obtained by setting F(s,t;m') 

replacement of the full graph 

taining a simple line of mass 

= g2f(s,p2;t,m2). This corresponds to the 

of Fig. la by a simple square graph con- 

p replacing the propagator. 

On the physical sheet P (in the s variable) the approximation be- 

comes Fp(s,t;m2) = g2fpp(s,p;t,m2) which, as we have already seen, con- 

tains no singularities other than the normal threshold cut. On the first 

unphysical sheet, FQ(s,t;m2) = g2fQ(s,p2;t,m2), and there is a branch 

point at S = S 
2 2 

P 
on the upper edge of the real axis when t >m - TV- . 

The corrections to the bound state approximation are contained in 

the integral term in Eq. (5). On sheet P, the integral in fact has no 

additional singularities and can be calculated as a weight over a simple 

elastic unitarity dispersion relation. On sheet Q, the integral term has 

a single additional branch point on the uppe r edge of the triangle cut at 
2 

position 3m < SE < 4m2 which occurs only for t < - 3m2* This branch 

point occurs whether or not the propagator has a bound state pole, but 

is fairly far from the physical region. There is, in addition, a singu- 

larity of the integral on a still further sheet Q' as described in the 

last section. 
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iqppendix 

The model for our bound state will be an infinite sum of chains of 

bubble diagrams. 

The single bubble, composed of two neutral scalar particles of mass 

mJ will be denoted by A(s) where 

and 

co 
A(4 = - & / 

2 I ds' 

4m S - s 

2 l/2 
p(s’) = ( i s’;*4m 

The quantity that acts like a propagator will be Cal led T((S ,) and is 

given by the sum of bubbles in Fig. 13. 

(20) 

fib) = 1 
A(s) 
- hoA 

where X o is a direct bare four particle coupling. 

If we are to insert the propagator into a diagram, it will have to 

be attached at both ends so that P(s) = 102~(s)- is more properly the 

propagator. We know that for a critical range of the renormalized coup- 

ling constant w, 2 2 
X0 R(S) will have a bound state pole at s = p < 4m 

2 . 

The integral for the bubble, Eq. (20), in fact diverges and we can 

extract the infinite constant by subtracting at the bound state pole: 

A(s) = - % - (s-p*) L!.f(s) 

where B = - A(v 2 
) is a positive 1ogarit:hmicaliy infinite cons ant and 

co 
a,(s) = 

f 
2 ds' p(s') ds' 

4m (s'- SW- P2) 

is a well defined function. 
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The condition that Lo2n(s) has a pole at s = p2 is 1 -I- XoB = 0 

which reduces the propagator to 

p(s) = ho2n (s) = 1 2 & - x0 
S-D f 

The residue at the bound state pole is g* = 1 

Afb2) ' 
where g is the coup- 

ling of the bound state to the two external particles. 

We can represent 

* =g*- b - P;“) 4m2 J O3 P(S') 1 2 $sI 

(& $)* AfW s - s 

so that 

P(s) = - x0 - 
J 

= 0(X2) d1* 

0 X2- s - ic 

where 

a(hP) = g2 6(X2 - p2) + ~'(1~) B(h2- 4m2) 

and 

cI'(X2) = P(l2) 1 

G2- P2) 
2 

In the case that the sum of chains forms a resonance rather than a 

bound state, only the spectral weight changes: 

ores(h2) = P(X2) 1 

(h2- 1)(x2- I") 2 

where I is the position of the resonance in the complex plane. 
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Figure Captions 

Fig. 1 

Fig. 2 

Fig. 3 

Fig. 4 

Fig. 5 

Fig. 6 

Fig. 7 

Fig. 8 

Fig. 9 

Fig. 10 

Fig. 11 

Fig. 12 

2 
(a) The function F(s,t;M ), the square diagram with full pro- 

pagator insertion. 2 
p12 = P$ = pl; = M2, P2; = M*, 

S s Pl; = ("14 + P9+)29 t z P2: = (P23 + ~34)~ (b) The 

function f(s,X;t,M2) - the square diagram with one internal 

mass X (c) A typical diagram contributing to (a) (d) Square 

diagram with single bubble insertion. 

The triangle contractions of Fig. lb. 

The lowest order contractions of Fig. lb. 

The non-Landau curve for m2 < M* < w*. 

The real section of the Landau curve due to the contraction 

of Fig. lb. 

The real section of the Landau curve due to the contraction 

of Fig. 2a. 

The leading Landau curve for M2 < 9m2, t > m(-M + m). The 

intersections of the third and fourth-order curves occur at 

points G, L and P. The third order curve labelled as Fig. 4. 

The leading Landau curve for M2 < 9m2, t < m(-$1 -f- m). 

(a) The leading Landau curve for M2 = m2, t < - m2 

2 2 (b) The leading curve for M 2 
=m,-m <t<o. 

The leading Landau curve in the limiting case M 2 2 
=m 4-s. 

The regions of the complex X2 plane. 

(a) Search of the sheet & of the S plane. 



Fig. 12 (b) C orresponding motion of the 1,' given by the mapping of s 

to X2 provided by the leading surface. n(+) means the point 

corresponding to n in the s search having the name h+2. 

Fig. 13 Sum of graphs comprising the model propagator. 
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