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ABSTRACT 
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scattering theory is developed on the basis of variational 

techniques and eigenvalue analysis. The formalism gives 

as limiting cases the three-particle isobar model as well 
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of off-shell multiparticle theories to calculation approxi- 

mation schemes is minimized by our methods. The theory 

provides optimal systematic extension and improvement of 

several multiparticle models. 
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I. INTRODUCTION 

The use of separable operators in scattering theory has had many diverse 

motivations, among them the reduced dimensionality of integral equations (the 

two-body Lippmann-Schwinger equation reduces to quadrature), simulation of 

non-local interactions in nuclear shell models, the possibility of convergent 

perturbation methods for arbitrary coupling strengths, as well as their natural 

occurrence in isobar models dominated by bound states and resonances. Recent 

advances in three-particle theories and subsequent efforts at realistic calculations 

have generated increased interest in separable non-local operators. Although 

there exists an extensive literature on separable operators most treatments have 

been essentially phenomenological. 

We develop here a rather complete theory of ,separable operators utilizing 

several powerful analytic techniques recently developed. Although these techniques 

per se are of largely academic interest for two-particle scattering, they are of 

great utility in analyzing multiparticle and multichannel theories where two-particle 

amplitudes appear as components of the kernels. Three-particle scattering, being 

a more sensitive probe of pair interactions than on-shell two-particle scattering, 

requires considerably more sophisticated analysis to avoid severe model dependence 

from approximation schemes. The occasionally impressive disagreement of some 

recent three-particle calculations suggest that calculation schemes in such off-shell 

theories may define rather than approximate the underlying dynamics. 

Separable approximations are especially useful in reducing the high dimensionality 

of three- and multi-particle integral equations. Several recent models have exploited 

dominant bound state or isobar terms to achieve a simple calculational framework. We 

show that significantly more information from two particle subsystems may be 

incorporated while maintaining separability. It is both feasible and necessary to 

incorporate continuum scattering in such models if in addition to achieving a practical 
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calculation program we are to respect either particular analytic structure of pair 

interactions or the known experimental data. 

We develop our analysis about three concepts: the Schmidt dissection procedure 

in Fredholm theory, eigenvalue analysis of the scattering kernel, and variationally 

optimized non-local approximations to local operators. The resulting formalism 

gives as limiting cases several models for multiparticle scattering such as 

Weinberg’s quasiparticle formalism and the three-particle isobar model. Our 

analysis reveals the limitations of such models and provides optimal methods 

for their systematic improvement and extension. 

To motivate our study, Section II presents a brief summary of relevant basic 

concepts of Fredholm methods and multiparticle scattering theory. Finite rank 

operators and the Schmidt dissection procedure are introduced in Section III; 

their relation to the quasiparticle method is derived in Section IV. We treat 

separable potentials in Section V in a variationally optimized formalism. Finally 

we discuss the choice of separable operators in Section VI. As a typical application 

of our formalism the three-particle isobar model is discussed in Section VII. 
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II. MATHEMATICAL FOUNDATIONS 

We begin with a concise review of the relevant aspects of Fredholm theory as 

applied to the multiparticle Lippman-Schwinger (L-S) equation. Wherever feasible, 

our notation will parallel that of Smithies, 
1 

Sugar and Blankenbecl er, 2 and of 

Weinberg. 3 (The reader is referred to these sources for more detailed exposition 

of the topics to follow.) Obvious or irrelevant variables are suppressed. 

The scattering operator T is defined by the L-S equation 

T = V-+KT (2.1) 

for the Hamiltonian H = Ho -I- V; K is the kernel containing the free Green’s 

function Go for energy s: 

KEV H -s-l=VG [ 1 0 0 

The formal solution to Eq. (2.1) is given by 

T = (1-l-R) V 

in terms of the resolvent operator R 

l+R = (l-K)-1 

which satisfies the resolvent identity 

R-K=KR=RK. 

Basic to our treatment is the existence of the Schmidt norm 

liK/l 2 = T(S) = Tr [KK’]< cc. 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 
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The existence of this norm guarantees the complete continuity of the operator 

K, and consequently its uniform approximation by finite rank non-local operators, 

as is shown in Section III. This norm is a sufficient but not necessary condition; 

it is however a convenient and general criterion for complete continuity. ( See remarks 

following Eq. (2. US).) I n addition, the radius of convergence r(s) of the Born seri.es for 

the resolvent co 

R = 
c 

VKn (2.7) 
n=O 

is bounded by 

r(s) 2 7 -1’2(S) (2.8) 
The uniform convergence of the matrix elements of the Born approximation scattering 

amplitude in energy as well as initial and final momentum is guaranteed by the 

bound 

I< E’ 1 b(s) - V $ K(s)~/ 1 E >/6 (2~)~~ (l-~l’~)-l -r(N+1)‘2h3rIV(r)/ 

(2.9) 

The finite norm r likewise justifies the Fredholm series for the resolve& 

R(s) = N(s) D-‘(S) (2.10) 

co 00 

N(s) = 
c N&s) ; D(s) = 

c 
D,(s) (2.11) 

n=O n=O 

with the recursion relations 

Do = 1 ; No = K 

D n+l = - (nil)-lTr pn - DnK] (2.12) 

N n+l 1 K 



The series Eq. (2.8) obviously diverges if, for a given energy,one of the 

eigenvalues 

Kl&,(s) ’ = U7, WIti, (s) > (2.13) 

has a norm greater than unity: 

(2.14) 

Eigenvalues satisfying Eq. (2.14) correspond to bound states and resonances of 

the system and define the minimum reduction of the kernel in the quasiparticle 

formalism. 3 

In order to guarantee a finite norm in Eq. (2.6) a hierarchy of concepts must 

be accommodated as the particle number n of the system is increased: (a) for 

n = 2 the finite norm is essentially a constraint on the interaction as we show 

below, (b) for n > 2 the kernel must have a connected structure as we shall 

discuss, and (c) for n > 3 kernels for disjoint subsystems must be coupled by 

convolutions. 4,5 

Possible infinite norms relevant to our methods may be avoided by appropriate 

modification of the resolvent, a general representation for which is that of Sugar 

2 and Blankenbecl er : 

R = L M(l-K)L 1 -’ M (2.15) 

subject to the conditions that both M-l and det [M(I-K)L] exist. Although 

such modified operators leave the Born and Fredholm series unaltered, they may 

yield a finite norm or a connected kernel. 

As an example of the first situation (a) above, we observe that a local central 

potential gives for the norm of Eq. (2.6) 

T(S) = k?r Im s1’2Jyd3r 1 V(r)12 
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which is seen to be unbounded in the physical scattering region Im s = 0, s > 0. 

However appropriate modification of the kernel as in Eq. (2.15) gives the sym- 

metrized kernel 

K zz +I2 Go Vli2 (2.17) 
with the energy-independent norm 

T(s) = [1GnZ]-1JClbgrd3r’ (V(rJ~IV(~1)~~r-~~~-2 (2.18) 

This symmetrization 223 represents the variationally optimal choice, i. e., it 

yields the minimum norm in Eq. (2.6) and the largest radius of convergence via 

Eq. (2.9). 

From the energy-independence in Eq. (2.18) we may infer that the Schmidt 

norm is an excessively stringent condition. This norm and the related radius of 

convergence in Eq. (2.8) give no indication of the validity of the Born series for 

sufficiently high energy. 

A second source of divergence is seen by naively introducing a sum of pair 

interactions (we take n = 3 as an example, labeling the pair operators by the 

third or spectator particle, e.g. , V3 = V12(r12), etc.) 

3 

V= 
c 

va = 
c 

Vo(rp-ry) (01, p, y distinct) (2.19) 

C!!=l a! 

This gives infinite contributions to the norm (Eq. 2.6); such terms correspond to 

disconnect graphs of perturbation theory and represent one (or more) particles 

propagating freely without interaction. 3 

These infinite terms may be avoided by various choices of the “connecting” 

operators of Eq. (2.15) a typical example being 

3 

L= 
c 

Ro-2; M=l (2. 20) 
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where Ro is the pair resolvent 
c I 

1-K -1 
Q * This modified kernel yields the 

connected multiparticle kernel of Weinberg3 

3 

(1-K)L = l- 
c Ka Ra Wp+Ky) 
CY=l 

(2.21) 

(cy , 6 ,y distinct) 

We obtain another connected kernel by decomposing the scattering operator 

T in the form 

To = Vo (1 + Go) T 

3 (2.22) 

T = 
c 

To 

cr=l 

By using the L-S Eq. (2.1) we see the operators To satisfy the coupled integral 

equations 

To- = Toi+ToGo(TP+TY) (2.23) 

These are the Faddeev equations, 6 containing To, the two-body scattering 

operator in the three-particle Hilbert space for total energy s. 

(2.24) 

The existence and domains of analyticity of the amplitudes Eq. ( 2.23) have 

been thoroughly investigated by Faddeev. 6 The appearance of two-particle 

amplitudes is especially advantageous for pairs with bound states since a potential 

would not exhibit the point spectrum. It should be emphasized that the Faddeev 

choice for the connected kernel, while advantageous in several respects (e.g., 

existence analysis, analytic structure) in no sense avoids the underlying potential; 
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a potential is implicitly contained in any choice for the off-shell continuations 

in energy and momentum required by the integral equation, Eq. (2.23). We consider this 

point more fully in Section III. In this context, the choice between non-local 

approximation to the operator T rather than the potential is a matter of practicality 

rather than principle . In our treatment the choice of T is especially useful for 

understanding the formal structure, while separable potentials are the more 

natural choice for practical utilization of scattering data. 

Our development yields both a practical separable formalism and complete 

utilization of data both for bound states and continuum scattering. 
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III. FINITE RANK OPERATORS 

We derive our methods from the theorem I,7 that a completely continuous 

operator K may be uniformly approximated by a finite rank operator K 
n ; i.e., for 

a given E > 0 there exists a Kn for which 

IK(x,Y) - Kn(x,y)j < e . (3-l) 

The rank is defined as the minimum integer n for which an operator may be ex- 

pressed in the form 

n 

K,(x,Y) =c IV,X >< V,YI (3.2) 
V=l 

where x,y denote vectors of arbitrary dimension. 

We now apply the dissection process (Abspaltungsverfahren) of Schmidt 1,8 to 

obtain a systematic approximation leading to the Fredholm or N/D system of linear 

equations via a dissection of the kernel into a separable term and a non-separable 

remainder. A variant of our method, the quasiparticle formalism of Weinberg3 

reduces the remainder term (in the sense of its norm) such that the Born series of 

Eq. (2.8) is valid. In isobar models the separable terms of the dissection are assumed 

to be sufficiently dominant that the remainder term may be ignored. These models will 

be considered in subsequent sections. 

A. Dissection Process 

Consider the decomposition of the kernel 

W,Y) = P(x,Y) + Q@,Y) 

where P is a separable operator of rank n: 

n 

P(X,Y) = c I v,x > < V,Yl l 

V=l 

(3.3) 

(3.4) 
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The bound of Eq. (3.1) then becomes a bound on the operator Q: 

[K(x,y) - P(x,y)l = 1 Q@,Y)~ < e . (3.5) 

In analogy with Eq. (2.4) we define the resolvent of the operator Q 

[I -Q]-' = l+RQ 

and with it express the L-S equation in terms of the dissection of Eq. (3.3): 

T=V+(P+Q)T 

= (1 + RQ) [V + PT] 

(3.6) 

(3.7) 

rV+_PT . 

In terms of the eigenvalue analysis of Section II, we reduce the operator Q of 

Eq. (3.5) such that the norm of its largest eigenvalue is less than unity. The 

resolvent now is given by 

n 

(l+RQ) I/J > N,,,, < VI (l+RQ)’ (3.8) 

where the inverse of the kernel 1 -g is given in terms of its determinant and adjoint: 

(3.9) 
(3.10) 

From Eqs. (3.5, 3.6), we see that in the limit e-0, the modified resolvent be- 

comes separable. We note that our resolvent differs from the simplest pole ap- 

proximation in that the separable term of Eq. (3.8) incorporates knowledge of the 

non-separable portitins of the kernel decomposition of Eq. (3.3). As we shall see, 

this is equivalent to modification of bound state pole terms by the continuum 

scattering. 
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B. Spectral Decomposition 

We introduce physical content into the preceding formalism by expressing the 

partial wave scattering operator T 

T=V+VGV (3.11) 

in terms of the full Green’s function G with the spectral decomposition 10 

G&p, q:s) =x 
1 V,(P) > < *,(q) 1 cc l*(S’,p)><Q*(S’,q)l 

s -s +$ dk’ 
S n s - S’+ icE 

n 0 

(3.12) 

where s’ = k’ 2, qn is the nth bound state wavefunction for a given partial wave, 

and 9 (s;p) is the p-space Fourier transform of the continuum wavefunction for 

energy s > 0. The scattering operator then becomes: 

v vl’n(p)><‘n(q)lV + 2 ma’ VI~(s~;p>~+*(s~,q)j V 
T(P,q;s)=V(P,q)+& $ _ s 

n J 7r s-s’+iC . (3.13) 

n 0 

The spectral representation of Eq. (3.13) highlights the advantage of the 

Faddeev equation Eq. (2.23) in the presence of pair bound states; the meromor- 

phic parts of the two-particle operators are explicitly isolated, facilitating 

model calculations with bound subsystems. 

The spectral representation exhibits the essentially separable nature of the 

scattering operator for s sufficiently near bound state energies sn or sufficiently 

near the energy of a dominant continuum resonance. There is in general no abso- 

lute criterion for “sufficiently close ‘I; the concept becomes especially ambiguous 

in the context of multiparticle formalisms such as Faddeev’s for three-particle 

systems. We see from Eqs. (2.23, 2.24) that as a component of an integral 

equation kernel, the two-body amplitude T(p,q;s) gives contributions over the 

domains p E CO,-], s E [E, - &j where E is the maximum energy available to the 

pair in the three-particle Hilbert space. Thus in this general context the dominant 
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term or dominant singularity concept has meaning only with knowledge of the behav- 

ior of the off-shell pair amplitudes and the domains of the variables in the multi- 

particle calculation. 

C. Fredholm Reduction 

As an example of a particular separable decomposition we consider the meth- 

ods of Noyes 
11 

and Kowalski12 whereby the two-particle L-S equation is reduced 

to a non-singular integral equation with separable and remainder terms analogous 

to the decomposition of Eq. (3.3). 

We define the operator 

F=W+ AF 

R=il+ AR 

(3.14) 

where 

W(P, (1) = V(P, q)/V(q, 41) 

A(p,q;k) = 2/7r q2 
k2-q2-i6 

[W,q) -W,q)W@>k)] . (3.15) 

In terms of these operators, the on-shell scattering operator satisfies the non- 

singular integral equation (in operator notation) 

T(k) = T(k, k;s =k2) = 
-1 

- l+VGoF 
C 1 V (3.16) 

while the general off-shell operator assumes the form 

2 ,2 
T(P,p’;s=k2) = F(p,k)T(s)F&,p’) + ; TR(p,p’;k) . (3.17) 

P 

The amplitude is rigorously separable in the limit R = A = 0; F = W, which im- 

plies V is a rank one separable operator. In this limit, the on-shell operator Eq. 

(3.16) yields the Schwinger variational amplitude for plane-wave trial wavefunctions 
13 

T(s) = V 1 - V GoV 
I 

-I . (3.18) 



The remainder term vanishes for the half on-shell operator 

R(p, k;k) = R (k,p ; k) = 0 

revealing a useful interpretation of the F functions: 

(3.19) 

2 
F(p,k) = T(pPk;k ) 

T(k, k;k2) l 

(3.20) 

From this relation, the analytic structure of F and subsequently the separable 

term of Eq. (3.17) can be examined in order to avoid possible undesirable singu- 

larities in the integration domain of multiparticle kernels. (cf. remarks in Ref. 22.) 

\ 14 The decomposition of Eq. (3.17) has been studied by Guennkgues in a sim- 

ilar formalism for a superposition of Yukawa potentials in order to determine the 

domains of meromorphy in energy as well as in initial and final momenta. This 

treatment obtains for T a dissection into a Born term, a meromorphic separable 

term, and a non-separable homomorphic residue with the advantage of explicitly 

exhibiting the Jost function in the separable term. The Jost function may likewise 

be introduced into our spectral representation through the wavefunction represen- 

tat ion 10 

4~~ (k, r) = [ ‘+ k l/f&-l$#$k, r) 

where $a is entire in k. The zeros of fp(-k) give the bound state poles. The 

bound state wavefunctions of the spectral representation are then given by 

q-$r) = $,(- i kn, r)/N n , 

Nz =I d r [&(-ikn,r)] 2 . 

0 

(3.21) 

(3.22) 

The domain of the variables p, p’ , and s over which the separable term of 
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the dissection in Eq. (3.17) will dominate the non-separable residue is potential- 

dependent and cannot be guaranteed in general; consequently we design our methods 

to be independent of the choice of dissection. The advantages of the particular 

representation (3.17) are being investigated by Osborn. 15 

D. Dimension Reduction 

We conclude this section with an examination of the feature of separable op- 

erators which motivate their use in multiparticle theory. As an obvious example, 

we note that a rank one potential V(p, q) = Ip > < q( reduces the L-S equation (2.1) 

to quadrature: 

IP> <ql 
T(pyq;s) = 1 - < p 1 Go(s) 1 q > 

(3.23) 

with trivial generalization to higher rank. For two-particle amplitudes direct 

calculation is trivial. However, for three-particle equations the pair amplitude 

occurs in the three-particle Hilbert space in the typical form 

(3.24) 

where integration is over each of the primed 3-vectors. Energy conservation 

reduces the integrals to 6 dimensions. Omnes 
16 has shown how an optimal choice 

of energy variables and angular momentum Projections reduces the Faddeev equa- 

tions to three-dimensional integral equations with 3(2J+l) components. Ahmadzadeh 

and Tjon 
17 

and Osborn and Noyes 
18 have shown that further reductions may be 

effected in the case of short range pair interactions to give two-dimensional 

multi-component integral equations. The resulting two-dimensional equations 

require rather sophisticated analysis to achieve a reliable and practical calcula- 

tion. 
15 
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A separable kernel immediately reduces the equations to one-dimension, as 

has been proposed in several models, such as the dominant pole formalism of 

Lovelace. 9 In the sections to follow, we develop a separable formalism which 

may be extended considerably beyond the single pole model. 
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IV. QUASIPARTIC LE THEORY 

We may interpret the quasiparticle theory of Weinberg3 as a variant of our 

dissection process of Eq. (3.3). This theory emphasizes the formal similarities 

of the resulting equations to those of quantum field theory and its perturbation ex- 

pansions in the hope of eventual relativistic generalization so that a convergent 

perturbation series may be designed for arbitrary coupling strengths. In this con- 

text, the terms of the finite rank term P of Eq. (3.4) were shown to correspond 

formally to fictitious elementary particle introduced into the interaction Lagrangian. 

Our goal is an optimal separable system, while Weinberg sought a minimal 

separable operator to achieve a convergent perturbation series; further reduc- 

tion improves the convergence. We apply the eigenvalue analysis developed by 

Weinberg to guide our choice of separable terms. 

The quasiparticle transcription of our dissection process follows from our 

modified resolvent of Eq. (3. B), together with the symmetrization discussed in 

connection with Eq. (2.16). 

1 1 

K(s) = KQ(s) f 
c 

v 
2 

(a!> <o!IV 
z 

Q 

from which we obtain 

T(S) = TQ(s) + r / TQ(s) I e > Aop < P ‘TQ(s) 

a,P 

[ 1 A-'(S) crp = daP - <~lTq(s)lL?> 

(4-l) 

@* 2) 
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where T Q is determined from the reduced resolvent of Eq. (3.6): 

TQ(s) = V II2 p - K&(s)] -’ V1j2 = V112 [1+RQ]V1’2 (4.3) 

subject to the condition that reduction leaves the residual KQ with sufficiently I 

small norm that the perturbation series 

co 
TQ(w) =V l/2 [ 1 c K; (s) &2 (4.4) 

n=O 

converges. As we discussed in Section II, this series diverges only if eigenvalues 

of the kernel satisfy 

KQ(s)l@y @) ‘= VY 6) 1 b$@) ’ 
I 27, w I L 1 . 

(4.5) 

Thus eigenvalues outside the unit circle prevent convergence and define the 

minimum reduction necessary for the quasiparticle program. On the negative 

real axis, Ims = 0, s < 0 the eigenvalues of Eq. (4.6) correspond to the bound 

states; elsewhere in the complex s-plane they correspond to resonances. This 

immediately determines the minimum finite rank term of the dissection: the pro- 

jection operator which reduces the eigenvalues of Eq. (4.6) to zero (ideally) or at 

least to a value inside the unit circle. 

Thus the eigenvalue analysis determines, in addition to the minimum reduc- 

tion for the quasiparticle method, a hierarchy of reduction terms to reduce the non- 

separable residue K Q to arbitrarily small norm, which is our goal. 

Realistically it is no more difficult to obtain a numerical solution to the two- 

particle Schrodinger or L-S equation directly than to determine the eigenvalues of 

Eq. (4.5). However, we see that the formal structure of the eigenvalue analysis 
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immediately provides a guide to the separable operators, 

To illustrate the utility of the eigenvalue analysis, we consider the Hulthe’n 

potential 

V(r) = -& [er’a - 11-l (J-6) 

which approximates the Coulomb potential for r/a << 1 and the exponential poten- 

tial for r/a << 1. For this potential 18a we have a closed form for the eigenvalues 

From this we see clearly the dominance of the first eigenvalue ( v = 1) at low en- 

ergies as well as the density of eigenvalues for a typical potential. 

In general, we may expect dominance by a small number of eigenvalues for 

short range potentials as may be inferred by the sum rules3 

c rj, (s) = -2 Im s l/2 r2 V(r) je(kr) If\kr) d r 

u 
(J-8) 

which for s-waves reads 

co 

c 
‘I,, (s) = -k-l 

I- 
V@) e 

ikr sinkrdr . 

V 0 

We gain further support for the dominance of leading eigenvalues by inter- 

preting the practical quasiparticle calculations of Scadron and Weinberg 18a in the 

context of our formalism. For Yukawa, Hulthen, and exponential potentials, 

the “quasi-Born” approximation (Born amplitude plus a single separable “quasi- 

particle” term) gives excellent agreement with exact ‘results for low-energy 

scattering parameters, bound state energies, and coupling constants. The ac- 

curacy of such calculations reveals the reason for the phenomenological success 
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of separable potentials in many nuclear physics applications: interactions (typ- 

ical of nuclear forces or low-energy limits of field theories) have a single dom- 

inant eigenvalue; the remaining eigenvalues are significantly smaller. 

A further implication of the success of these calculations is that no single 

separable term will provide a good approximation for a range of energies; the 

Born term needed for agreement implies non-negligible contribution from addi- 

tional eigenvalues. From this we conclude that a formalism which develops suc- 

cessively higher rank operators is more appropriate than one with elaborate rank- 

one structure. In Section VI we consider practical choices for the separable 

functions. 
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V. SEPARABLE POTENTIALS 

Having developed a general theory of separable operators, we now concentrate 

on separable approximations to the interaction operator. Historically, such 

approximations have been employed for various purposes: to reduce the L-S 

equation to quadrature, to simulate non-local interactions in the nuclear shell 

model, and to reduce multiparticle theories to equivalent multichannel two- 

particle systems. 299 Recent developments in determining variationally optimal 

approximations and the associated error bounds provide techniques for substantially 

improving and extending the earlier treatment of separable potentials. 

Many recent treatments of three-particle systems aspire to relativistic 

generalization and application to elementary particle systems. Generally, the 

Faddeev amplitudes of Eq. (2.23) rather than the other possibilities for connected 

kernels discussed in Section II have been used because they explicitly involve 

amplitudes rather than potentials, which are considered embarrassing in 

relativistic contexts. However, most formalisms derive from the original L-S 

equation and involve the pair amplitudes off-shell; consequently on-shell scattering 

data expressed through the scattering amplitudes must be supplemented by a 

prescription for off-shell continuation, i. e., a potential. In this context, choosing 

the pair amplitude to be separable is in no sense more fundamental (or less non- 

relativistic) than separating the potential. The powerful techniques for analysis 

now available suggest that clearer insight and greater formal consistency is 

achieved by concentrating on the interaction operators in any practical calculation. 

The source of the interaction terms may be chosen from a particular model, 

or to some extent derived from experimental data. Mathematically, the Gel’fand- 

Levitan theory 10,19 provides a unique potential if we know (a) scattering phase- 

shifts b(s), s > 0 for all s, (b) bound state energies sn < 0, and (c) the 
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normalization of each bound state wavefunction, as determined by Eq. (3.22). 

Realistically, such extensive knowledge is inaccessible even for the extensively 

studied three nucleon system,as has been pointed out by Noyes. 20 
A choice from 

among the non-unique interactions (resulting from incomplete data) then defines 

the calculational model. 

Recent three-particle formalisms, if not explicitly involving the potential, 

implicitly define it through the prescription for off-shell continuation. Failure 

to appreciate this aspect of the formalism may result in serious inconsistencies 

with potential theory and the original L-S equation. It may moreover preclude 

comparison of independent calculations if the off-shell continuation is arbitrarily 

chosen. The quasiparticle formalism explicitly utilizes the potential; for example 

the reduction of Section II1.C contains the off-shell continuation in the function 

F(p,q) of Eq. (3.17). The choice for this function is, however, far from arbitrary, 

since it defines a potential via Eq. (3.14); this in turn is subject to the constraint 

that the resultant potential in the original L-S equation must reproduce the on-shell 

data contained in the T(s). The isobar model, as we shall demonstrate in detail in 

Section VII, actually is a separable potential model; moreover, if taken seriously 

it requires sufficient knowledge of form factors to determine a local potential. 

Clearly the L-S equation determines a separable amplitude from a separable 

interaction, and vice versa, as seen from the symmetry in Eq. (2.1) 

V= 
Cl 

o!><o! I 
o! 

T = 
CI 

a! > < cvj (l-Go) \P.% /3/ . 

QP 
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We shall see that for convenient determination of error boundqsystematic 

improvement of approximations, and incorporation of experimental data, the 

potential is a superior choice for the separable operator. In particular, we shall 

see how to extend the isobar model of bound states to accommodate continuum 

scattering while maintaining separability. 

A. Mitra-Mongan Potentials 

Earlier use of separable potentials relied upon phenomenological fits to 

nuclear data. A more theoretical approach was given by Mitra, 21 who suggested 

that the choice of separable potentials be guided by the analytic structure of the 

amplitudes as revealed by N/D or Fredholm methods. His potential, and its 

recent extension by Mongan, 22 are designed to give the exact Born amplitude on 

the energy shell and thus guarantee the correct analytic structure of the N/D 

methods . 

The simplest such potential is constructed so as to yield the Born approximation 

for a superposition of Yukawa potentials: 

V&P,P’) = h gf (P)g&p’) 

g&p) = 

On shell (p = p’) this corresponds to the local interaction 

e- Pir 
V(r) = C Gi 7 

i 

(5.2) 

(5.3) 

subject to the constraint that the summation is of a definite sign for p > 0. 

Other modifications, such as the introduction of energy dependence 
22 into the 

potential have also been proposed to optimize data fitting for this single non-local 
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interaction. In contrast, our development utilizes operators of arbitrary rank. 

This enables incorporation of significantly more experimental information. 

B. Variational Methods 

We now develop variationally a separable approximation to a given 

potential. Our treatment parallels the methods used by Sugar and BlankenbeclerZ 

to determine upper and lower bounds on scattering phase shifts and binding energies. 

For an arbitrary Hilbert space vector I@> and an arbitrary subset of vectors Ia> 

we determine the stationary value of the coefficients ca! for the vector 

(5.4) 

for the expectation value of a positive operator V > 0. This yiel& the operator 

equation 

V+>A = vs. (5.5) 

(Repeated indices imply summation, ) 

We note that A 
QP 

is the inverse of the matrix <a! /V//3> in the subspace of test 

functions, not the full Hilbert space; thus A 
arP 

is not the matrix representation 

for the operator V 
-1 , rather, A-l [ 1 CYp = cc++> . Likewise the operations 

for the separable operator KS 

KS = _ $ V 1 OL> 
E 

c+-VPGo VIP> -‘<plV 1 (5.6) 

involve determinants taken in the test-function subspace 

DS 
l-A<a!VGoVP> I 1 1 . (5.7) 

The approximate phase shift 6’ is then determined from the plane-wave expectation 

value 

tan 6’ (p) =< plKsI p > . (5.8) 
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In the’ foregoing equations P denotes principal part for the free Green’s function 

Go(S) l 

We next prove two valuable features of the operator derived in Eq. (5.5): 

(1) If one of the test functions IQ! > is an exact solution of the L-S equation for 

a particular energy s, then the phase shift as determined from Eqs. (5.6) and 

(5.8) is exact for that energy. This follows directly from the L-S equation for 

the scattering wavefunction 1 e(p)> and plane-wave state fp > : 

K = -&“lVk’(~)> (5.9) 

V/P > = (V-V P Go v)(e(p) > . 

Thus for one of the test functions 1 a! > = l@(p)>, the operator Eq. (5.6) equals 

that of Eq. (5.9), for the energy 
2 ‘s=p. 

(2) Extending the dimensionality of our set 
i 1 
(a> improves the approximation 

of Eq. (5.5). Consider the space H N of the N-dimensional set [IQ>/. In this 

space, the Nth rank separable operator defined by Eq. (5.5) is denoted by V N . 

N For a vector I$> E H , we see that 

N 

VNI$> = 
c 

v (co <cd lvld qlvlc#J > = VI@ , 

Cl!, fi=l 
(5.10) 

If we now use Eqs. (5.5) and (5.10) and imbed the operator V N+l ma 

N-dimensional subspace, we have 

N 

v > vN+l 2 c vN+l ICY, <alvN+% 8 .D/vN+l 
o!, p=1 

= c (o! > <app >-l<PIv = VN @,P 
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so 

v 2 vN+h VN , (5.11) 

The power of our formalism is now apparent. Any knowledge of wave- 

functions gives the exact phase shift at the appropriate energies. This 

considerably extends the simple bound state isobar models which achieved 

exactly separable terms only at bound state poles. Here continuum wavefunctions 

(such as those determined by low-energy scattering parameters and prominent 

resonances) may be appended while maintaining separability. Moreover, the 

inequality Eq. (5.11) shows that any additional terms improve the approximation 

for all energies. Of course in the limit as N-co, the functions IQI> span the 

entire Hilbert space, as is evident from our discussion of finite rank operators 

in Section II. 

We remark that our techniques, as did those of Mitra, optimize approximations 

for on-shell amplitudes; it is evident from the remarks leading to Eq. (5.5) that 

the crucial element in our derivation is the on-shell expectation value. Off-shell, 

such proofs and bounds cannot be obtained by these methods; however, our 

optimization and the improvable approximations will make maximum use of the 

on-shell scattering information. 

We next discuss choices for the subspace of test functions I Q! > ; 

subsequently we consider specific application of our method to the isobar model. 
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VI. CHOICE OF SEPARABLE FUNCTIONS 

Our foregoing analysis provides a guide for choices of optimal test functions 

for separable approximations. We distinguish between formal and practical 

choices. 

From our spectral representation of Eq. (3.13) we saw that dominant bound 

states or resonances provide plausible estimates to a separable approximation. 

The eigenvalue analysis of Section IV formalized such a selection into a hierarchy 

of eigenvalues and eigenfunctions of the kernel which provides a systematic reduction. 

In the limit of accommodating all eigenfunctions, the system becomes completely 

separable. As noted previously, knowledge of the eigenfunction sequence is of no 

advantage for two-particle calculations, but is useful for approximating the ampli- 

tudes in off-shell multiparticle kernels. 

The eigenvalue approach also provides a successive approximation scheme 

for locating dominant eigenfunctions. Consider a trial function 

Ie m> = c %JI~, (6-l) 
V 

which is “close” to a dominant eigenfunction 1 I+!J~> in the sense that cl >> c v, 

v> 1. Repeated application of the kernel 

&j,(‘) > = c (6.2) u 
is seen to bring successive I$ (@ > closer to the leading eigenfunction 1 GI > . 

A typical example is provided by the s-wave trial function 18a which incorporates 

correct threshold and asymptotic behavior: 

I@ (O)> = ekr (1 - e-‘) , (6.3) 
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(This wavefunction is exactly the dominant eigenfunction for the Hulthkn potential 

we analyzed in Eq. (4.6).) The iteration procedure of Eq. (6.2) is of more formal 

then practical value, since direct calculation of the eigenfunctions is more feasible 

then higher order iteration of the kernel operator. 

The most practical choice of separable terms is imlicated by the analysis of 

Section V where we saw that our formalism provides an optimal combination of 

trial functions which yields exact amplitudes at energies for which one trial 

function is exact. Typically we know most about bound states wavefunctions, 

low-energy scattering, and prominent resonance behavior. Each of these elements 

may be successively incorporated into the separable structure. Numerical 

verification of the formalism 2 
yields impressive agreement with Yukawa scattering 

lengths using simple polynomial trial functions. 

In summary, we develop optimized separable approximations from successive 

incorporation of known features of the pair scattering data through construction 

of successively higher rank operators from eigenfunctions of the kernel (formally) 

or from dominant scattering data (practically), 
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VII. ISOBAR MODEL 

As a particular example to illustrate our methods we conclude with an analysis 

of the three-particle isobar model of Lovelace. 9 From the standpoint of analyticity 

we expect any approximation to the amplitudes of the two-particle subsystems to 

accommodate their meromorphic structure by including the bound state poles. 

Moreover, such pole terms are, as we have seen,separable in the initial and 

final momenta. Experience from nucleon-nucleon scattering where the loosely- 

bound deuteron provides a dominant sinwlarity for low-energy scattering suggests 

that a model of dominant bound states (or resonances)may be adequate for particular 

multiparticle kernels. The spectral representation of Eq. (3.13) provides a plausible 

dominant term near a bound state: 

VP,%@ = 
v I fin(P)> < rc1,(4) I v 

s-s (7.1) 
n 

Since this expression violates unitarity if simply continued to the continuum 

domain s > 0, Lovelace proposed an amplitude determined for all s from the 

L-S Eq. (2.1) with a rank one separable potential which gives the correct dominant 

term of Eq. (7.1) at s = -ISn\: 

v = h gn(PJ g,(cl) (7.2) 

where A is the coupling strength parameter and g,(p) is the form factor from 

the spectral condition of Eq. (3.13) 

g,(p) = Vlfin(P)> (7.3) 

- 29 - 



which obeys the integral equation 

g,(p) = 47r 
*2 

/ 
9 ds VP, q) $$(q) = (sn - P2) cc/,(p) * (7.4) 

0 

The L-S scattering amplitude determined from the potential of Eq. (7.2) is then 

an example of Eq. (3.23): 

VP, p’;s) = 

Lovelace’ has discussed various approximations to the amplitude of Eq. (7.5); 

numerous calculations have subsequently been undertaken for a wide 

range of three-particle systems, e.g., 3N, 3n, N~TT, etc. We shall not be 

concerned with particular calculations, but rather consider the present approximation 

in the context of our general theory. 

The obvious limitation of any single pole model has been pointed out in Section III: 

the pair amplitude contributes to the three-particle kernel over an infinite range of 

the pair energy so the concept of a dominant term in the spectral representation of 

Eq. (3.13) is at best vague. These remarks by no means preclude a valid calculation 

for particular systems of particles and well defined ranges of parameters (e.g., the 

three-nucleon system), but suggest that considerable attention should be given to 

the validity of off-shell approximations. 

We observe that if the single form factor in Eq. (7.5) is to be valid for all 

values of the initial or final momentum, as is required in the multiparticle integral 

equation, we must know g(p) for all p. In this case, its configuration 

space Fourier transform gives the corresponding wavefunction and finally the 

potential from the Schr’ddinger equation (cf. Eq. (7.4)) : 

to2 + sn) tin = wn = gn l (7.6) 
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The limitations as well as possible improvements and extension of the isobar 

model are now evident. The single separable potential term will be accurate only 

near its corresponding singularity in energy; likewise the detailed structure of 

the form factor will be known for only a limited range. The methods of Section III 

enable us to supplement the bound state input with detailed knowledge of the 

continuum scattering; this will clearly be advantageous for calculations 

with systems for which considerable kinetic energy is available. Thus 

effective range and scattering length data is easily incorporated in our general 

framework via the extension of the space of test functions in Eq. (5.5). 

The success of typical “quasi-Born” calculations considered in Section IV 

suggests that even for the simplest two-particle systems a rank-one approximation 

may be of limited value, even if selected optimally. Our formalism enables 

convenient “testing” of low-rank isobar approximations by facilitating the incorporation 

of additional information from the pair subsystem. 
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