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I. INTRODUCTION 

In 153 ’ we showed that the formal aspects of classical problem of lineari- 

zation of a vector fielcl near a singular point by a change of variables (and its 

generalization to Lie algebras and groups) suggested by Palais and Smale, have 

a simple foundation in terms of cohomology of Lie algebras. One will notice in 

this treatment a strong similarity to the work of Kodaira and Spencer on defor- 

mations of geometric structures. 

The purpose of this paper is to exploit this similarity more systematically, 

and to use this to treat two other problems of geometric interest: 

(a) Linearization of subalgebras of filtered Lie algebras. 

o-9 Linearization of Lie algebras of vector fields near an 

invariant submanifold. 

We will show that problem (a) only requires a minor modification of the formal- 

ismof (5-j. However, problem (b) is not quite so simple, even on a formal, 

algebraic level. However, we will show that it can be treated as a problem of 

deformation of Lie algebra homomorphisms, for which there is available a co- 

homological formalism [I 4, 73 . 

II. LINEARIZATION THEOREMS 

Let k be a Lie algebra. 

$, k2, . . . of subalgebras of 

A filtration on L is defined by a sequence 

1;: SW11 that: 

L I- $ 3 L2 , . . . N 

[g , IJ c g+s-l 

for r, s 11 

(2.1) 

(2.2) 

.See [2] for a description of the general properties of filtered Lie algebras. 
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The following problem will be discussed in this section: Let 5 be a given 

subalgebra of 2. Can one ftild an X E & such that 

Ekp (AclIX)(E) n k2 = (0) ? P*3) 

In fkct, we will be considering a more restrictive problem here; we will attempt 

to exhibit X formally (i. e. , without discussion of the convergence) as a limit 

. . . Exp(AdX2) E>xp(AdXQ 

where (X,) is a seqclenc e of elements of L, with each Xr in kr . 

Now k2 is an ideal in &. Suppose that the homomorphism h-V1 = k/k2 

splits, i. e. , there is a subalgebra K, of & such that 

k = L2+If, cr cv 5 n 2’ = (0) 

(We will not consider the more general case in this paper. ) 

Let @I be the projection map ,L- H,. For r > 1, define Vr = hr/& 
r-l , and 

let rr be the projection map: kr--Vr. Notice that +1 is a homomorphism 

of ,L into 5 . Notice also that [g, br] c Er for each r >_ 1, hence Ad I& 

passes to the quotient to define a representation, denoted by Gr, of K, by linear 

transformation in Vr. 

Let us begin the process of “linearizing” K,. For Y E K define: 

w,(Y) = .;(, - Ql,m) 

Consider w2 : K-V2 as a l-cochain of K with respect to the representation 

$2 of K in vf (For the notations of Lie algebra cohomology theory that we 

use, see 43. ) “I 
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Lemma 2.1 dW2 = 0, i. e., w2 is a l-cocycle. 

Proof For Yl, y2 x+, 

dwZ(Y1* 3, = G2(Y1)( “2cy2~) 

- ~2(y2,(“2(y1)) - 4 P4 

=7f 2 0 Y1 - @,(Y,), Y2 - $2(Y2jJ) = 0, since both y1- Q+Y,h 
and Y2 - $,(Y,) are in k2 , and [ s2, _L2] c E3 . 

The cohomology class in H1($2) determined by w2 is the first obstruction _I --_l-l- 

to linearizing Ii. Suppose it is zero, i. e. , there is an element X$ E s2 such that: 

d7r2(X2) = w2 , or 

w,(Y) = q2w~2* (X2)) for YE K, 

= 75 ( cy, x21) 
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Then 

Exp (Ad X$(Y) = Y + [X2, Y-j + [ 3, cx,, 4 

21 
+ . . . . u2(Exp (Ad X$(Y)) 

IX EFP (Ad X,V) - $1 (Exp (Ad ~)V,,) 

= Tr2 (Y - 9,(u)) + 77-2 ([X23) = 0, 

i. e. , Exp(Ad X,)(Y) - Qq(Y) E L3 for all YE ,K (2.4) 

Now replace 5 by ,K2 = Exp(Ad %)(_K) 

Then, if Eq. (2.4) is satisfied, we have: 

Y- +,(Y) E k3 for YE ,Kz (2.5) 

Define: I, = r3(y- Qp). 

A similar reasoning shows that w3, when interpreted as a 1-cochain defined 

by the representation $3, is a 1-cocyle. Its cohomology class is the second ob- 

struction to linearizing K,. If it is zero, there is an element X3c L3. 

w3(Y) = 7r3 ( [Y,X,] ) for YE s2 . 

Define: K3 = Exp(Ad X3)(g2) . 

Notice that, since X3 E L3 N 

o = O,(Y) = w2 (Exp(Ad X3,)(Y)) for YE s2 a 
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I 

.A similar calculation then shows that 

w3(K3) = 0 

We can now continue the process, obtaining a sequence 15 = _K1,s2,K3 . . . 

of subalgebras of L. 

Thus, we have proved: 

Theorem 2.1 If H1(er) = 0 fbr r = 2,3,. . . , then in sequence 

K,l =I$, I& ..O of subalgebras of L. Each K’ is conjugate to 

K r-l within the subgroup Exp Ad ,Lr of the group of inner auto- 

morphisms of L. Also, for YE K_‘, N 

Y - $(Y) E&l‘+l 

Notice that we will have succeeded in “linearizing” K, i. e, showing that it 

is conjugate to a subalgebra of H, if 

Gr = 0 for r sufficiently large (2.6) 

Another hypothesis that will guarantee this linearization is that the “i.nfinite 

product” . . . . Exp(Ad X3) Exp(Ad X2) converges to an element of the group on 

inner automorphisms of L. However, there is another more general, and inter- 

es ting , condition that may be satisfied. Suppose that the “limit” (as explained in 

c31 9 chapter 11) of the sequence of subalgebras E1,K2, . . . is a subalgebra h 

K” N of L. This means that : Whenever a sequence Y1, Y2, . . . , each Yre$, 

converges to Y, then Y belongs to E 
co 

. Then 

Y - #l(Y) = lim Yr - @Yr) = 0 , 
r-43 

a 
i.e. , the limit algebra K is a subalgebra of I-I, hence is t*linearized. ” Now, 

as explained’ in [ 4-1, th ere is a close relation between this idea of limit of 



subalgebras, the Inonu-Wigner “contraction” idea, and the idea of lfdeformation” 

of subalgebra, as studied by Kodaira-Spencer , Gerns tenhaber , and Nij ennuis - 

Richardson. Thus, we may conjecture that .jif the cohomolo,T obstructions vanish) 

even if the subalgebra itself is not linearizable, one of its contractions is. 

III CONSTRUCTION OF FILTERED LIE ALGEBRAS 

Let ,G be a Lie algebra, and let 5 be a subalgebra. We define subspaces 

Lr, r = 1,2, . . . , of z, with N 

L = $2 L2 r> L3 . . . . ? Pk rV 

as follows : 

(3.1) 

,L2 consists of the elements X E L such that [z, 21 c &. 

,L~ consists of the elements X E ,L such that [g, @,xJ] CL . 

In general, define L’ by induction as the set of elements XE Lr-’ such that: 

[G_,x] c g-’ 

Lemma 3.1 [Lr , Ls] c Lr+s -‘, i. e, the sequence 3.1 forms a filtered - hr w 
Lie algebra. 

Proof: Proceed by induction on the total degree rfs. Suppose YE G. h 

Then 
[Y, [_Lr,IyJ cr3$1, LS] + [krJ ry~Lsl] 

cp, $3 + C&T g13 
r+s -2 

CL , by induction hypothesis. 

This shows that ,G, [ kr, 
c 

IJ] c &r+s-2, which shows that [ kr, 5’1 c Lr+s -‘. N 

Let G and L be connected Lie groups whose Lie algebra is G and L. 
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Lemma 3.2 Suppose that L, has no non-zero ideals that are also ideals 

in $I& (Geometrically, this means that G acts almost effectively on 

G/L, i. e, the set of elements gc G that acts as the identity on G/L as 

discrete. ) Then, if Gr-’ # 0, GrW1 + br . 

Proof: If Lr-l = L_‘, then [z,_Lr-l]~&r-l, i. e, brW1 is an ideal of G. N 

Now, let M be the coset space G/L. The action of G on M defines, as 

usual in Lie group theory, an infinitesimal action of G, i. e. , a homomorphism 

of G into the Lie algebra (under Jacobi bracket) V(M) of vector fields on M. N 

Each element XE G then determines a vector field, i. e. , an element of V(M), N 

that we also denote by X. Let p, be the identity coset. Then, 

X@,) = 0 for XE L,. 

Let V’-, r = 1,2, . . . be the set of elements XeV(h!I) whose coefficients all 

vanish to at least the r-th order at p,. 

Lemma 3.3 Lrc vr, for all r. 

Proof: Let (xl, . . . 5,) = x be a coordinate system for M valid in 

a neighborhood of p, with x CD,) = 0. Proceed by induction on r. 

Since L,’ c L r-l , we know that L’ c V r-l . 

Let XE kr. About p,, it can be written in the form 

a 

x = A1 axl +*** 

a 
+ An-JF 

n 

The coefficients AI, . . . A vanish to (r-l)-st order at x = 0. Since G acts 
n 

transitively on M, the coordinate vector fields a/ax,, . . . , a/ax, can, in a 

neighborhood of p,, be written in terms of vector fields of G,, i.e. , 

= f1X1+ . . . + f x m m’ 
with X > l **, Xmc G. 
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No-iv [X1,X] , a**, since XE Lr. Hence also 

[&I1 1 ,x EP. 
But, this equals also : 

which must vanish to order (r-l) at x = 0. A similar statement is true for 

+3x, ) . . . , a/axn . This implies that the coefficients Al, . . . An vxnish at 

least to order r at x = 0, i.e., XcVr, q.e.d. 

Conversely, if G is a Lie algebra of vector fields on a manifold M, if L is 

the isotropy subalgebra of G at a point pOe M, then if we define Lr = Vr fl L, - 

this defines a filtration of L, to which we can apply the conjugacy arguments of 

Section II, and deduce, from the abstract theorem of Section II, the results 

that under certain conditions, Lie algebras of vector fields K can be linearized Ly 

by a change of coordinate (perhaps, if G, is infinite dimensional, requiring a 

formal power series definition, whose convergence is still unknown) about a 

common zero point for the elements of K. This returns us to the treatment given 

in[55. 

As an example, suppose that ,K is one-dimensional, generated by a single 

element X. The “cohomology groups” take a very simple form, of course: 

Suppose $I is a representation of K on *a. vector space V. Let 0: K -V be N 

a 1-cochain. It is automatically a 1-cocycle, since E is one-dimensional, It 

cobounds if and only if there is a vector v E V such that 

*w = w)(v) 9 
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i. e. , the first cohomology group is zero if and only if #(X) maps V onto V, 

so that if V is finite dimensional, Q(X) must be one-one. 

For example, consider the case where 2 is Lie algebra V(M) itself, and 

L is the sulxlgebra of those vector fields that vanish at p,. Suppose X ~2 is 

of the form 

a X=A- 1 ax1 +*** a +A - 
n axn 

with Ai = 0 for i = 1 ooe, n. 

Suppose that Taylor expansion of Ai about x = 0 is of the form: 

k(X) = c hij xi $ + . . . 
Lj j 

It is readily verified that AdZ acting in V’/V r-l is one-one if the matrix (hij) 

is diagonalable, and if its eigenvalues have positive real parts. The problem of 

linearization of X by a change of variable is, of course, a classical problem 

first considered by Poincak, and brought to definitive form by S. Sternberg 

(see [IS J , and the references quoted there). 

IV. FILTRATIONS DEFINED BY SUBtiNIFOLDS 

First, me will present an algebraic construction, then explain how it applies 

to a problem (but not the most general) of 7%.neariziug” a Lie algebra of vector 

fields near an invariant submanifold. 

Let I? be an algebra over the real numbers, whose elements we denote by 

f, g, etc. Let V be the Lie algebra of derivations of F. Elements of V will 

be denoted by X, Y, and the action of X EV and fe F by X(f) E F. Let F1 be 

a subalgebra of F, &nd let V1 be the subalgebra of V consisting of the elements 

XE;E v(F) such that: 
X(F1) C F1 
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Define Fr as the subalgebra of polynomials of degree 1 r in the elements 

of F1. Then, 

Fr . FS c Fr+’ 

Define: Vr = ‘r XE V: X(F1) c Fr 

Then, 

Vr(FS) C FrfS-l 

Now, consider XE Vr, Y EV’, fe Ft 

[WJ (f) = x [Y(f)) - Y(X(f)) 

E X(F s+t-1 
1 + Y(F 

r-f-t-1) c Fr+s+t-2 

Hence, we have proved 

Lemma 4.1 [V’, Vs] (Ft) c Fr+s+t-l 

and 

Lemma 4.2 w t 
vs~ c vr+s-l 

-- 

Thus V13 V2> . . . forms a filtered Lie algebra to which we can apply 

the general procedure given in Section II. 

The geometric situation that we have in mind can be desqibed as follows: 

Let M be a manifold, and let F(=F(M)) be the algebra of Co3 real valued 

functions. Then V (I-V(M)) is the Lie algebra of vector fields on M. Suppose 

F1 is a subalgebra of F, and suppose N is a submanifold of M defined as the 

set of points of M where all the function; of F vanish. Then, Vr consists of 

vector fields that are tangent to N to the r-th order, but does not contain all 

such vector fields (unless N reduces to a sing1.e point). To see what is involved 

in this point, suppose that M = R2 , the Euclidean plane, with x ,y the Euclidean 

coordinate functions. Snppose that F1 is the subalgebra of F generated by x, 
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so that N is the plane x = 0. Suppose f E F’, then 

X(x) = arxr + ..a, i.e. , 

a X = (arxr -t- . . . ) x + B a 
5-F' 

where B is any function B(x, y), and the coefficients Ar , 0 . . are real numbers. 

Of course, this is not the most general sort of vector field that is tangent to N 

to the r-th order, since it omits those of the type: 

x = A,(y) xr -I- . . . ax + B a , 
( ) 

a 
ay 

but these remarks do give us one type of linearization theorem. For example, if 

we write 

X = xr A(x,y) Fx + B a ay 9 
with A(0, y) # 0, then we can define 

a x’ zz $ = xr +x + B’ - 
aY l 

The integral curves of X and X’ only differ by a change in parameterization, 

and we can apply the general theory. A similar remark applies to a single vector 

field which is tangent to a hypersurface in a general manifold M. 

V. CONTRACTION AND DEFORMATION OF LIE ALGEBRA HOMOMORPHISMS 

We temporarily leave the problem of linearizing a Lie algebra of vector fields 

near an invariant submanifold in order to treat a more abstract problem that will 

be shown later to be relevant. 

Suppose ICI and L, are Lie algebras, and suppose @, $’ are homomorphisms: 

,K-L. $I and $’ are said to be related by a deformation if there is a one- N 

parameter family A - eh of homomorphisms: I< -L such that N N 

(b) @A depends analytically on A . 
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Then, we can form the Taylor expansion: 

co 
Cp-Jx) = x 0 j (x) A’ , for X E K . 

W 

Let CY be the following representation of g by linear transformation on L : 

a(X)(Y) = IQ(X),Yl , for XC-, YE& 

Then, the Oj ‘s are l-cochains of K with coefficients in &. The relation of N 

the corresponding cohomology groups and the “triviality” of the deformation has 

been investigated in [ ‘i’] and [ 41, part 4 . 

Recall that the deformation X - $h is said to be trivial if there is a one- 

parameter family X -. Ah of automorphisms of ,L such that 

(a) Q,(X) = AA@(X) , for X E 5, till A, 

(5.1) 
(b) Ah depends smoothly on h . 

Now (modelling our terminology on that used by Inonu and Wigner in a similar 

case, the deformation theory of Lie algebra structures) let us say that C#J is a 

contraction of C#I’ if : 

(a) There is a one-parameter family of homomorphisms 

$I~: K-L such that +. = +, $I~ = c$’ . 

w A - +A depends continuously on A for 0 5 A 5 1. 

(c) C#I~ depends analytically on h for h # 0. 

Let us present a set-up which leads to such notions in a very natural way. 

Suppose in addition that F is a vector space, and L is a Lie algebra of linear 

transformation on F, with the bracket in L given by commutator of linear trans- 

formations. Thus, C#I and $’ are representations of K by linear transformations N 
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on F. Suppose that A -BA is a one-parameter family of linear transformations : 

F -.F such that: 

(a) Bh depends analytically on A, for all h 

(b) “;’ exists only for X $ 0 . 

(c) Ah (Y) = BAY Bhl for Y E L . v 

In this case, 5.1 takes the form 

G,(X) = Bh@ (X) Bi’ for X E I$ (5.2) 

Thus, we have the possibility of the singularity in Bhl at h = 0 generating 

nontrivial deformations between @ and +’ . 

Before proceeding further with the general algebraic theory, let us turn to 

the geometric situation that motivates our work, the linearization problem for 

Lie algebras of vector fields near invariant submanifolds. 

VI. THE LINEARIZATION PROBLEM NEAR AN INVARIANT SUBMANIFOLD 

00 
Suppose M is a manifold, F = F(M), the ring of C real -valued functions 

on M, V(M) = the derivations of F(M), i. e. , the Lie algebra of vector fields on 

M. Let N be a submanifold of M, and let 5’ be a subalgebra of V(M) that is 

tangent to N. Since we will only be working locally for the moment, suppose 

(xi), l,<i,j, . . . _ < m = dim M, is a coordinate system for M such that : 

x =o, n+ 15 u,V, . . . 2 m; dim N=n 
U 

defines N . (Adopt the summation connection. ) Suppose that h -+Bh is the 

following one-parameter family of linear transformations : 

F (Ml --+-FW) , 

BA f(X,r ( . . . , Xn) 1 = f(x,, .**I xm, hm+l, *-., h’,) 
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Let X E Js . Suppose 

X=f --&- i.e., X(xi) =f i asi ’ i 

Suppose 4, is given by 5.2 . Then, 

$,(X1 (Xi) = BhX Bhl (Xi) 

A-l BA(fi) for i>n 
= 

(6.1) 

I BA(fi) for 15 i <n 

Suppose now that X is tangent to N, i. e. , 

fu(xl, . . . . x , 0) = 0 n 

Then, f, admits a Taylor expansion of the form: 

fu(xl, ‘-0, xn) = fuv(xl, l ** , xn)xv +fumv(xl. *** ‘Xm)X x 

v w 

~,W(xu) = fuv(xl 9 l - 0 9 “,I xv + hfuwv(xl 2 l l l , xm) xvxw 

+JX)(xa) fa(X1’ ’ l l 3 Xn’ hxn+l’ l l l , hrn) * 

We see that qA, considered as a homomorphism: K--+ V(M), is perfectly ana- N 
lytic at h = 0 despite the fact that the transformation Bhl used to define it 

has a pole at h = 0. Further, 

af 
Q,(X) = -g (x,2 * *. 2 Xn’ 0) xv & 

a 
+ fa (x,9 a*-, xn,O)- 

V U 
ax 

, for XEK. 
a 

(6.2) 

The subalgebra $o(K) is then the linearization of I, . “Linearization” of K 

itself is equivalent to proving triviality of the deformation in the neighborhood 
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of A = 0, a problem that is solved, in the formal sense at least, by the cohomol- 

ogy theory of [8] and [4), part 4. Now, we turn to the task of freeing this argu- 

ment from local coordinate systems, thus enabling one to apply to it situations in 

differential topology, partial differential equations and continuum mechanics. (In 

the last discipline, one will be interested in seeing how the argument goes for 

infinite dimensional manifolds. ) 

Let N be a submanifold of M, and let V(hl, N) be the Lie algebra of vector 

field on M which are tangent to N. Let 5 be a subalgebra of V(M,N). Suppose 

that h-+3h is a one-parameter family of mappings of M-M such that: 

(a) P, is a diffeomorphism for h > 0, and depends smoothly 

on h for A > 0. 

(W B,(P) = P for PC N. 

(c) For each p c M, the curve h - PA(p) proceeds toward N 

smoothly and transversally as A- 0. Precisely, p,(p) has 

a neighborhood with a coordinate system (x1, . . . , xm) having 

the properties described above. 

Now, we can define /3, : F(M) -F(M) as follows: 

PA(f) = P; (f) for fe F(M), i.e., 

p(f)@) = f( B,(P)) for pE M. 

Define eh : ,K -+ V(M, N) as follows: 

GA(X) ( f) = PAX Ai1 ( f) for f E F(M), X E ,K . 

Then, the local argument given above can be used to show that GA(X) is well- 

defined and smooth as A - 0. Q,(X) can be considered as the I1 linearization” of 

the vector field X, relative to the homotopy A -‘p, used to retract M into N. 

Finally, we might point out the connection between this paper and the remarks of 

Moser in [6) , part 5, which arose from a special case of the general problem. 
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