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ABSTRACT 

In this paper we give a complete and hopefully straightforward 

analysis of the n = 2 Zeeman structure which is intrinsically 

accurate to 1 ppm for determining the Lamb shift from present 

experiments. This analysis takes into account the current exper- 

imental and theoretical knowledge of the atomic Hamiltonian. It 

is shown that the magnetic part of this Hamiltonian can be taken 

as that of a free electron and a free nucleus. Radiative corrections 

to this assumption are shown to be negligible. The total Hamiltonian 

can then be diagonalized in the 1 F, j, 1, mF> representation. 

Matrix representations of the Hamiltonian are given for all n = 2 

states of hydrogen and deuterium. We give theoretical predictions 

for the Q = 1 hyperfine intervals in hydrogen and deuterium which 

are accurate to 10 ppm. Values of the Lamb shift calculated 

from the recent Zeeman level crossings of Robiscoe and Cosens 

are tabulated. 
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I. INTRODUCTION 

The n = 2 Zeeman structure of atomic hydrogen Andy deuterium has served as a 

precise testing ground of quantum electrodynamics. Our knowledge of the Lamb shift, 

the 2Pl,h 2Sl,2 interval, and the fine structure separation, the 2P 3,2- 2Pl,2 inter- 

val, has been determined from an extrapolation to zero field of experimental measure- 

ments of the atomic spectrum in a non-zero magnetic field. In this paper we calcu- 

late in detail an accurate extrapolation of the Zeeman levels. This seems especially 

important now in view of the discrepancy of the measured and predicted Lamb shift. 

The first comprehensive analysis of the precise Zeeman structure theory re- 

quired to interpret the experimental spectrum was given by Lamb in conjunction with 

the pioneering experiments performed by Lamb and his co-workers. 1 The same 

type of analysis was also applied by Robiscoe and Cosens’ to their recent measure- 

ments of level crossings. A precise analysis of the dependence of atomic levels on a 

magnetic field is also necessary in order to interpret the results of experiments in- 

volving the new technique of resonance fluorescence. 3 

The analysis given by Lamb and Robiscoe involves a complicated perturbation 

theoretic treatment of the Zeeman spectra. Many contributions which individually 

could have affected the determination of the Lamb shift at the order of 0.01 MHz 

were not included; the intrinsic accuracy of their analysis is thus not certain. 

In this paper we give a complete and hopefully straightforward analysis of the 

n = 2 Zeeman structure which is intrinsically accurate to 1 ppm for determining 

the Lamb shift from present experiments. 

The method used here is essentially a diagonalization of the total Hamiltonian 

of the hydrogen or deuterium atom in a uniform magnetic field. It is shown that, 

to sufficient accuracy, 4 this Hamiltonian may be written as the sum of two parts: 

(1) A magnetic Hamiltonian appropriate for the interaction of a free electron 

and a free nucleus with a uniform magnetic field. (See Appendix A. ) 
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(2) The Hamiltonian of the atom with no external field applied. 

All that is required for the latter part of the Hamiltonian is the eigenfunctions 

and eigenvalues for n = 2. Our philosophy is to take the accurately known 

experimental numbers for this spectrum whenever possible. For example, the 

2s hyperfine separation has been accurately measured, and is used in the analysis. 

The P state hyperfine levels must be calculated from theory, but to the 

accuracy required (z 100 ppm), this can readily be done without considering 

corrections from quantum electrodynamics. The derivation is given in Appendix B. 

The Lamb shift and fine structure interval can be considered as parameters 

which may be adjusted to fit the observed Zeeman spectrum, and then compared to 

theory. 

An order of magnitude estimate is givenof all uncomputed contributions. In 

particular, the analysis of Appendix A shows that there are no important radiative 

corrections to the Zeeman structure which have not been taken into account. 

In this paper we do not consider the complications due to asymmetry of the 

line shape, but confine ourselves to the magnetic field dependence of the energy 

levels (line centers) of a stationary atom in a uniform magnetic field. The line 

shapes which occur in the experimental measurements depend critically on the 

experimental details. A complete discussion of how line asymmetry corrections 

have been treated in the experiments of Ref. 2 will be published shortly. 5 Most of 

.the symbols in this paper are defined in Table I. 

II. THEORY 

A. The Total Hamiltonian 

We write the Hamiltonian for a hydrogen-like atom in a constant external 

magnetic field H as #=a1 + .v2 +d3. Rlis the magnetic Hamiltonian for 
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the electron (subscript 1) in the external potential J& = i 2l x E and includes a 

term for the anomalous magnetic moment of the electron. 

2 I’ 1 = -q l e &I+(gs-2)$- 2-2 

I  I  (1) 

Similarly, d2 is the magnetic Hamiltonian for the nucleus and includes a term 

for its magnetic moment. We write, for hydrogen, 

2f 2 = $3 l e A I I -2 - t2KP) k L' ,H 3 (2) 

and for deuterium 

where A = 1 -2 2 22 xH,* 67[3 is the remainder of the total Hamiltonian, and thus 

contains all the electron-nucleus interaction (as could be derived from the full 

Bethe-Salpeter equation) as well as all the self-interaction of the particles. It 

is shown in Appendix A that g/3 is essentially independent of the external field, 

in fact 

h13(H) -a3(H=O) =0(01~~, II) . (4) 

Thus we will take.?f3 as its H = 0 value: a, -7//3 (H= 0) = yo. It can be 

specified,for our purposes,by its eigenvalues for those eigenstates with which we 

are concerned. Some of the eigenvalues of 3 o can be determined accurately 

by experiment, for example, the Q = 0 hyperfine splitting and the fine structure 

interval of the n = 2 levels. Other eigenvalues must be determined from theory 

such as the P # 0 hyperfine structure and the Lamb shift. Once the spectrum of 

/a 0 is known, we can diagonalize the Hamiltonian and obtain a precise prediction for 

‘the Zeeman levels of the atom. 

-4- 



The spectrum of ;‘ro in lowest order is the (n, j) spectrum of the reduced 

mass Sommerfeld formula. The degeneracy with respect to I is removed by 

quantum electrodynamic self-energy and vacuum polarization level shift corrections 

as well as by relativistic reduced mass corrections as defined by the Bethe-Salpeter 

equation. Finally the hyperfine interaction removes the degeneracy with respect to 

the total angular momentum ,F where E = 2 + L = & -I- s + L. The spectrum of 

g-4, o can thus be specified by the states6 ln,W,Q ‘“F >. The radial dependence of 

the eigenfunctions is described accurately by the Dirac equation using reduced 

coordinates except at very smal1 distances. 7 

B. The Spectrum of3fo for n = 2 

In this section we review the current state of knowledge of the spectrum of 

for n=2. 

The theoretical predictions for the Lamb shift 2Sl,2 - 2Pli2 are8: 

s = 1057.57 2 0.08 MHz for hydrogen 
(5) 

s = 1058.83 2 0.08 MHz for deuterium . 

The error in the theoretical predictions correspond to 1 s. d. error in o and 

include theoretical estimates of uncalculated terms of order cu(ZrY)6mc2 and 

higher. In Section V we compare these values with 3 obtained from experiment. 

The total hyperfine splitting of the 2Sli2 state in hydrogen and deuterium 

have been measured’ and found to be 

hy(2Sl,2, H) = 177.55686 f. 0.00005 MHz 1 s.d. 

(6) 

aY(2Sl,2, D) = 40.924439 + 0.000020 MHz 1 s.d. 
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and the hyperfine levels are 

WQ’ H) = Av(~S~,~, H) <La ,J > 

v(~S~,~, D) = i$ Av(~S~,~, D)<I* J> . N N 

The hyperfine splitting of the Q = 1 levels must be predicted from theory. 

One complication is that the hyperfine interaction is off-diagonal in j. For the 

diagonal part of the hyperfine Hamiltonian (proportional to i l ,J) we find (see 

Appendix B)l” 

vGQ2, H) = 

W,-2) 
8 

(7) 

1+ 2 (za)2 1 <pp 

G’Pl/2, D) = fy + $g- (g$][ 1 +s (Zc1)2]<1. ;> 

~(2P3/2~ D) = 45/2 
gs 5(gs-q 5m 

2 - 8 +4MD (zcY)2 I CL l 5 > 

where EF is the Fermi splitting for the 2s 
l/2 

state” 

(9) 

and where gs is the measured electron gyromagnetic ratio 12 

g 
s = 1.00159622 + 0.00000023 . 2 
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The off-diagonal hyperfine Hamiltonian is 13 

(19 

for hydrogen, and 

[2-%+e (&)]<$,> l (lob) 

The 2P3,2 - 2Pl,2 fine structure can be predicted from theory using the 

accurate value of a! from the ac Josephson effect 8,14 

x gs [( ) e 
-1+g a”+% 3 Qn (a21 1 

= 10969.0542 MHz , 

= 10972.0485 MHz . (11) 

If we wish, the fine structure separation and the Lamb shift can be considered 

as parameters which are to be adjusted to fit the observed Zeeman spectrum and 

then compared with the theoretical results given in Eq. (5). In our analysis we 

concentrate on determining the Lamb shift from the data in Ref. 2. For this purpose, 

we can adopt the theoretical value for AE since a 75 ppm change Jn AE is required 

to produce a 1 ppm change in the determined Lamb shift. 
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The spectrum of &#, (excepting,#&) for n = 2 is thus known. The radial 

dependence of the eigenfunctions is not known exactly, but from perturbation theory 

we know that they differ from the n = h 7 2 Dirac wavefunctions only for r <<cc. 

The eigenfunctions are then completely specified by 1 F, j, Q, mF > . 

C. Evaluation of the Magnetic Hamiltonian 

If one performs the radial integration for the n = 2 states, then al + a2 

is replaced by a general form 

= + ; ALLz + + L A 
zL + AI Iz PoH 1 

+ 0 (e2$/m), (12) 

where Sz, Lz, and I, are the z-components of the electron spin, relative orbital 

angular momentum and the nucleon spin operators respectively. The z-direction 

is defined as the direction of g and H z IHI. N The coefficients As, AL, and AI 

are 

AI = 
-gIH for hydrogen 

-gID for deuterium 

gs (1 + g W/m) for Q = 0 
As = 

g, I+, ( 4 W/ m) for Q = 1 

AL= gL(I+W/m - E* L, (2W/5m)) for Q = 1 

(13) 

where W is the Bohr energy of the n = 2 state: W = -(Za)2m/8 . Here 

gL = (l-m/lQ) for hydrogen and gL = (1 - m/MD) for deuterium to kake 

into account the magnetic interaction of the nucleon motion about the atomic center - 

of-mass. 15 
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The binding corrections given here are just the first term in the expansion 

in (Zcr)2 obtained from the Dirac wavefunctions. The error made in not using 

the exact eigenfunctions of a0 should be of the same order as if W were re- 

placed by the actual binding energy. Such corrections are of order (Za)2m/Mp. 

Thus the theoretical expressions given for As and AL are accurate to 0.1 ppm. 

Note that for a uniform magnetic field H, # ,H (2)) quantum electrodynamics 

affects As only through the static anomalous magnetic moment and does not 

affect AL. 

The quadratic Zeeman term < 2 ’ e2A 2 - 1 > is approximately 0.01 MHz for 

H = 1500 G. l5 However all n = 2 levels are affected similarly and the maximum 

change in separation of any two n’ = 2 levels is 0.001 MHz for H = 1500 G. 

This term can thus be ignored in our analysis, as well as the negligible AQ = 2 

state mixing it induces. 

We have also ignored the negligible An # 0 contributions of ao. 

III. CALCULATIONS 

Our task in this section is to find the eigenvalues of the total Hamiltonian 

a o + &+3,* To do this we shall require matrix representations of Sz, 

Iz’ Lz’ FZ and L l L, in the basis of eigenfunctions of the diagonal part of flo. 

In this basis, F and mF are good quantum numbers and FZ 1 F, j,Q,m, > = 

mF 1 F,jd,mF’ . We can eliminate Lz by Lz = FZ - Iz - Sz. The matrix 

elements of Sz, Iz and & l g are most easily calculated by the general methods 

of angular momentum in quantum mechanics. 16 

For S = l/2 

<j’, I’, F’ , mFt lszl j91&mF> 
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= (-1) i+s+I+1+2j’-mF 
%s %e’ %I’ 

X $ (2F’ -t 1) (2F + 1) (2j’ + 1) (2j + 1)] l/2 

<j’, I’, F’, mFt IIz/ j91,F9mF > 

= (-1) F’+ F-l-j-mF Dot b’SSt dII( dj j t  

(14) 

(15) 
X [(2F’ + 1) (2F + 1) (2I + 1) (I + 1) (I)] 1’2 

x (IF, p, ii) I:’ P J , 

and for Q # 0 and I # 0 

<jr, I’, F’, mFt I;&1 j,I,F,mF> 

= (-1) 2j-tQ+ F+I+3/2 
‘FF’ dmFmF, ‘QQ’ ‘SS’ d II’ 

(16) 

X [(2j+ 1) (Zj’+ 1) (21+ 1) (I+ 1) (I) (ZQ+ 1) (Q+ 1) (Q)] 1’2 

The 3-j symbol (il 2, i3) is zero unless m + m + m 1 2 3=0 andthe 

vector triplet (j,, j,, j,) satisfies the triangular condition 1 j, - j, 15 j,~ s j,+ j, 

- 10 - 



(if ml =m=m 2 3 = 0, j, + j, + j, must be odd). The 6-j symbol 

is zero u.nless the triplets (j,,j,,j,), (j3,j4,j,), (jl,j5,j6) and (j2,j4,j6) 

satisfy the triangular condition. Thus we can easily obtain selection rules for the 

matrix elements of Sz, Iz and 1-L. In order that < Sz> , < Iz > NN and <k,L > be 

non-zero, the triplets (F ‘, F, 1) and (j ‘, j, 1) must satisfy the triangular condi- 

tion and we must have mF = mFt In addition, if mF = mF, = 0, then 1, + F 

+ F’ must be odd for < Sz> and < Iz> to be non-zero. 

From the selection rules, we see that the matrix representation of the mag- 

netic Hamiltonian for a hydrogen-like atom in the n = 2 state can be separated 

into submatrices of a given Q and m F. The basis states for these submatrices 

are then characterized by F and j. In Tables II and III, these submatrices are 

tabulated for I = L 2 (hydrogen) and I = 1 (deuterium). 

The notation in these tables is as follows. All matrix elements are of the 

form 

y.,H Fzk + Sz (As -AL) - Iz (4 +AL) [I 1 + E 
(17) 

z FZ, Sz, Iz 
( 1 

+ E , 

where E is the matrix element of a o. 

Since the effective values of As and AL depend on Q and j, the appropriate 

values given in Eq. (13) should be used when computing the numerical value of the 

matrix elements. The energy of a Zeeman line for a given magnetic field can then 

be found by solving for the eigenvalues of the submatrix. The submatrices are 

symmetric and only elements of ~8 >.. for i < j are given. The results have 
1J 

been cross-checked by several methods. 
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IV. LAMB SHIFT 

Robiscoe and Cosens2 have recently remeasured then Lamb shift in the 

n = 2 state of hydrogen and deuterium. In their experiments a magnetic field 

was applied to a beam of neutral me&stable atoms in the 2s 
l/2 

state and in a 

definite hyperfine state. The magnetic field was adjusted so that the energy of 

the atom was degenerate with one of the 2Pl,2 levels. The crossings which 

obey 9 = 0 are observable by coupling the levels via a static electric field. 

These crossings are marked A and B in hydrogen in Fig. 1 and are marked 

A, B, and C in deuterium in Fig. 2. 

By knowing the magnetic field at which these transitions occur, one can 

extrapolate back to zero magnetic field and determine the 2Sl,2 - 2Plj2 

separation at H = 0 (the Lamb shift). 

In the Robiscoe and Cosens experiments, the magnetic field was measured 

by observing the proton m frequency vc in water and calculating Hc from 

g 
where 2 0 gP o 

is the ratio of the g-factor for free electrons and the g-factor for 

protons in water. A measurement of this ratio has been made by E. B. D. Lambe 

and reported by DuMond 17: 

6, 0 gP0 

= 658.22759 -I 0.000022 (19) 

The relevant eigenvalues for the Robiscoe and Cosens experiments have been 

calculated. The apparent value of the Lamb shift has been determined for several 

assumed values of the magnetic field for a zero frequency crossing. These values 

are tabulated in Tables IV - VIII. These predictions for the Lamb shift are accurate 
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to 1 ppm. If the parameters gL, gs, OL, AR, K, and AZJ are altered 

from their nominal value by 1 s . d. in the case of experimental numbers and by 

an order of magnitude estimate of error in the case of theoretical numbers, the 

resultant error in the Lamb shift is less than 1 ppm. 

V. CONCLUSION 

In this paper, we have presented a method of calculating the energy levels 

of a hydrogen-like atom in a magnetic field. We have applied this method to the 

level crossing experiments of Robiscoe and Cosens. Their recent results for the 

corrected center mnr (proton in water) frequencies 2 along with the value of the 

Lamb shift calculated by our method are shown in Table IX. 

The difference between the theoretical prediction for the Lamb shift and the 

results listed in Table IX is 

0.45 * 0.13 for hydrogen 
s exp - sth= 0.53 -fr 0.13 for deuterium . 

The error interval given here is obtained by adding the one standard deviation 

experimental error to the estimated accuracy of the theoretical prediction. 

The perturbation theoretic treatment given by Robiscoe for the B crossing 

of hydrogen can be derived by keeping the leading terms of our result. 

Our results disagree with those obtained by Robiscoe and Cosens2 by less 

than 0.06 MHz. The differences are understandable since their perturbation 

treatment ignored several terms of order 0.01 MHz. The largest correction 

is attributable to radiative corrections and finite mass contributions to the hyper- 

fine splittings of the 2P1,2 state. 
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APPENDIX A 

We analyze here the extent of any residual magnetic field dependence in the 

total Hamiltonian beyond that already exhibited in al + a, in Section II-A. 

<?f l+g2 @ ves the entire interaction of free particles with a constant mag- 

netic field. This form is also clearly correct when the electron and nucleus inter- 

act through a potential with no momentum dependence; e. g. , the potential from 

one photon exchange. It is not true, however, that a-/ 1 + a2 gives the entire 

magnetic field dependence when selfenergy interactions or the full Bethe-alpeter 

interaction is taken into account. The type of correction we are seeking thus in- 

volves a computation of the dependence of the quantum electrodynamic level shifts 

on H. 

Following the approach of Erickson and Yennie, 8,18 one finds that the order (Y 

self-energy correction to the energy En of an electron in a static electromag- 

netic field A’ may be written in the form 

AEn = AEn + AEn + AEn (A* 1) 

where 

AEn = - -&- < n 
37rm2 

(A.2) 

AEJW = 5 a (-$)< ii 1 i$ apv @ “In>. (A* 3) 

AEn contains terms explicitly quadratic in tiV and terms which modify 

the operators in L and M at small distances, r < h /mc . Our notation is 
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the same as Ref. 8 with 

P2 
2mHm =2m &+ eAo+ en 1 - e%y FCL’-g*e$ -e&-E 

<?il($-m) = (JY-m)ln > = 0 
) 

e=- e I I 

PO 
= En = m - en 

(A. 4) 

We are interested in the dependence of AEn on the external magnetic field. 

When the part of FIFLv corresponding to H is inserted in AEn we obtain H 

the contribution of the anomalous moment of the electron to order (Y. This is 

already accounted for in $i 1. To evaluate AEn we follow the usual Bethe 

sum-over-states procedure. If we use a nonrelativistic approximation, then8 

AEn = -2 5 lxnlbl n’>m 
2 

( 
EM- Em n n’ 1 

This is the major contribution to the Lamb shift S where 1 n > corresponds to 

the 2Sl,2 state. The addition of an external magnetic field is reflected in AEn 

through the change in the binding energies 
NR en, . We thus find the change in the 

Lamb shift is of order 

S (HI 
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We also note that terms quadratic in the field strength in AEn yield correc- 

tions only of order ( poH/m) S . The external magnetic field changes the spin 

dependence of the wave function 1 n > . This affects AEn and one finds a 

correction of order (Y( z o)2 p,H . 

The vacuum polarization level shift contribution is unchanged to first order 

in p,H. The modification due to recoil and nucleon structure corrections as 

obtained through the Bethe-Salpeter equation are of order (Y (m/M) S . The change 

in the contribution due to an external magnetic field thus can be no larger than 

order NoH/Ry) (Y (m/M) s . 

In summary, we find that there are external magnetic field corrections to the 

Lamb shift s , but these corrections are of negligible order: goH/Ry) s . To 

this accuracy the magnetic interaction of the atom is given by the Hamiltonian 

corresponding to a free electron and nucleus. 

We, of course, ignore in our analysis the interaction of the electric quadru- 

pole moment of the deuteron with the external magnetic field which occurs due to 

the motion of the deuteron about the atomic center-o&mass. 

A discussion of the radiative corrections to the line shapes which are meas- 

ured in electromagnetic transitions has been given by F. Low. 19 
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APPENDIX B 

The one-photon exchange interaction of the electron and nucleus can be 

written as 20 

where 

v = 4:re2 u @I) yp u(p) AC” (B-1) 

(B-2) 

for hydrogen and 
-1 

Ap = - 
QP P 

s2 
E* (P ‘) 

(p + ,I)‘;1 #a 

P 2MD 
- fl+ KD) 

v’qa-g q 

2MD I 
E ,P) 

(Be 3) 

for deuterium. The plane wave solutions of the spin one nucleus satisfy the sub- 

sidiary conditions 

pa Eo(P) = Epc(Pl) ,,P = 0 VW 

which can be used to eliminate the zero-th component of the nuclear polarization 

vector E o!’ 
We have not included in Eq. (B. 3) a term which , added to the deuteron current, 

yields the measured static electric quadrupole moment. We will discuss its con- 

tribution at the end of this appendix. 

We are interested in the part of V which yields a potential dependent on the 

nuclear spin , 

i= + CT for hydrogen, 

(I k)ij = - i eijk for deuterium. 
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In the center-of-mass system, 90 = 0 and the spin dependent vector part of 

A’ is 

A(q) = -i q -& (I-X 5) L2 NN 
%. 

(B- 5) 

for H (I = $) and D (I = 1) . If we assume the electron is nonrelativistic and 

add in the electron’s anomalous magnetic moment we get 

P’& + 4-2’ 
A0 - N 2m 

g axq-~ +j,S - 
2; -1 . 2 (B. 6) 

The vector potential fs (2) yields the usual hfs potential in the electron’s 

position space. 

Vhfs(Z) = 2 & 9 - [ ?f S3(r) gs ??cf, 

+ gs 1 y3 N ( 2’ I - 35*2;*++ &)I 

W 7) 
The leading terms in Eqs. (8) and (10) are calculated from Eq. (B. 7). We 

must also consider the spin-dependent part of A”. 

For hydrogen, 

A0 = -1 :(pl) q 
k 

E +(l+KP) &= 
MP I u(P) 

P 

iA* (,P’ x ,P) 
M $ xh 

q 4M; 
-(l+KP) 

iL* z x(2+ P_‘) 

1 
x(P) 

N 
4M; 
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In the second line, we have kept only spin dependent terms and have discarded 

terms of order M -3 We thus obtain an additional contribution to Vhfs 22 
P * 

e2 p L 
+- 

2M2 
( 1 + 2Kp) N . 

P r3 

The contribution of this term is included in Eqs. (8) and (10). 

For deuterium, 

+(l+ KD) 
I 

Ep) 

- t1 + KD) ‘k (‘1 (B. 9) 

j, k = 1, 2, 3. 

We have made use of the subsidiary conditions,discarded a spin-independent 

term, and dropped corrections of higher order in l/MD . We then rewrite A0 as 

A0 = f Z(P’) 
PI Pk + Pk P. [’ 1 + (” ‘D)(‘jqk) 

2 2M; 2M; 

+ [I -(I +KD)] [CAj(p+p’k - qk(p+p’)jI 

4M; I 
e 

k 
(P) 

-1 = - CJ’P’) 
B 

iA* q X(g+E’) 
+ 

4M; KD 1 Ek(P) 9 
jk 

(B. 10) 
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again keeping only terms dependent on nuclear spin. The last term is an induced 

dipole moment for the deuteron and gives the position space potential 

e2 I* L N f- 
2M; 

N . KD r3 

The contribution of this term is included in Eqs. (8) and (10). The spin-dependent 

remainder of A0 corresponds to an induced quadrupole moment. The term pro- 

portional to K D is a contribution to the static electric quadrupole moment 

which necessarily accompanies the deuteron’s anomalous magnetic moment. We 

note, however, that the electric quadrupole moment can only affect the atomic 

2p3/2 level. The additional energy of this level is of order 0.006 MHz, 23 and 

may be neglected for determining the Iamb shift. The hyperfine splitting formulas 

in Eq. (8) include the lowest order binding corrections as given by Rose. 24 
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FIGURE CAPTIONS 

1. Zeeman diagram of the J = i levels in hydrogen, fi = 2, including hyperfine 

structure. Crossings marked A and B are observable transitions with 

Am,=O. 

2. Zeeman diagram of the J = i levels in deuterium, n = 2, including hyper- 

fine structure. Crossings marked A, B, and C are observable transitions 

with A n$ = 0. 
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TABLE I 

Glossary of Symbols 

m 

MP 

MD 

mH 

mD 

gS 

gL 

gIH 

gI.D 

2 

L 

L 

2 

,F 

Rya 

AEH 

AED 

KP 

KD 

pP 

PD 

pO 

vC 

mass of electron 

mass of proton 

mass of deuteron 

reduced mass of electron-proton system 

reduced mass of electron-deuteron system 

measured electron gyromagnetic ratio 

electron orbital gyrOmagm?tiC ratio 

Land; factor for the proton x 5.58 m/Mp 

Land&factor for the deuteron E 0.86 m/Mp 

electron spin vector 

orbital electron angular momentum vector 

nucleus spin vector 

total electron angular momentum = L + 2 

total atomic angular momentum ==k + I 

Rydberg for infinite mass 

fine structure interval (2P3,2 - 2PI,2) for hydrogen 

fine structure interval (2P 
3/2 - 2p1/2 ) for deuterium 

anomalous magnetic moment of the proton (1 + K px 2.79) 

anomalous magnetic moment of the deuteron 1 + K 
( 

De 0.86 (MD/Mp) 
> 

magnetic moment of proton k: 2.79 ( e/2Mp) 

magnetic moment of deuteron x 0.86 ( e/2Mp) 

electron Bohr magneton 

corrected center nmr (proton in water) frequency 
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TABLE II 

Submatrices of the Hamiltonian for I = l/2 (Hydrogen). 

The notation in this table is explained in Eq. (17). 
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F 

1 

\ 1 2’2 =- Q =0, mF=-1 
i 

F 

1 I = ;, Q = 0, mF = 0' 
I 

1 

j 1 
5 

; 
r 

(O,O,O) + v 

1 
2 1 

0 
1 
ii- 

(0, & -+) 
(O,O,O) -, 3Avcy~HJ 
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F 

1 

1 I = +, I =0, mF =4-i 
i 

1 

1 
z 

F 

2 

I = ;, P = 1, mF = -2 

2 
j 3 

5 

gs 5(g, - 2) -- 
2 8 1 + AE H 
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I I = $-, Q=l, mF~= -1 
i 

F 

j 

1 1 
z 

1 3 
-z 

2 3 
!z 

1 
1 
z- 

( 
-1, ;, -4 

1 
3 
T 

) + El1 (0, +, 0) + El2 

El1 = cE$) (a) [$ - (gs ,“‘I 

E22 = (z) (-;) [$ - 5’gs; “‘1 + AEH 

E33 = (E$) (;) [$ - 5’gs;2)] + AEH 

El2 = EF(H)(2 - %) ($) 

2 
3 
5 

0, -1,o 4-- 6 
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1 1 
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0 1 
z 

1 3 
z 

2 3 
z- 

I I =$ I = 1, mF=O I 

1 0 1 2 
1 1 3 3 
-i- z 2 'z 

- 

(0, 0, 0) + El1 0, 11 -2 -z (0, 0, 0) + El3 0, 4 -ij- 7 0 

(0, 0, 0) + E22 0, (0, 0, 0) 

(0, 0, 0) + E33 

(0, o,O) + Eti 

El1 = (Ee) (;) [!$ _ (” i2)] 

E33 = (.f$)(-;) [% - ‘(“; “1 + AEH 

E44 = (E)( ;) [ff - 5(g; “‘I+ AEH 

E 13 = EF(H) (2 - %) (2) 
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1 I = ;, 1 = 1, mF = -62 1 
F 2 

j 
3 
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2 ; [(K f> 3 * El11 

Ell = (%a$% - 

5(gs - 2) 
8 1 + AE 

H 
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TABLE III 

Submatrices of the Hamiltonian for I = 1 (Deuterium). 

The notation in this table is explained in Eq. (17). 
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F 

1 I=l,P=O,mF=-z 
I 

3 
z 

1 
z 

+A@S,D) 
3 1 

F 

1 
z 

3 
-z 

j 

1 
z 

1 
z 

1 
2 

1 
2 

I I=l,P=O,mF=-$ 
1 

3 
z 

1 
2 

-2 'El1 3 1 

3 
Ell= -f Av(2S,D) 

E 22 = + Av(2S,D) 
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11 
‘z z 

3 1 
z z 

I=l,Q=O,mF=+$ 

1 
2 

1 
2 

! ( -9 2 1 -6s 12 3 1 +Ell 

Ell= -f Av(2S,D) 

E22 =; Av(2S,D) 

3 
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1 
z 

( 
o,J2 4 

3' 3 ) 

1 ( 111 
Tj,gs?j +E22 ’ 1 

F 

1 I=l,Q=O,mF=+i 

3 
z 

3 1 
5 z 

+ Av(2S,D) 
3 1 
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I I=l,Q=l,mF=-% 
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j 
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5 3 5 1 

'z 2 [i -2s -29 -1 ’ +Ell 1 
El1 = (f&) (;) [+ - 5igs62)] + AED 
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11 
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(0, -g 0) 

El1 = re) ($) [+ _ tgs; “1 
E22z(;$')(;)[+ - w] +AED 

E33 =(g)(-;)[+ - 5'gs;2)] +AED 

El3 = EF(D)(2 -$) (+) 
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z 

(0,f3j+E13 - 
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2' -2 fE33 -30' 5 1 
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I=l,Q=l,m 1\ 
F =+a 
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3 1 
2 5 

1 1 
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'1 11 
,z) 3'3 +Ell ' ( 

0, -3, z$ 
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( 112 --- + 
2' 18'3 1 52 2 
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( 111 
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13 
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E13 = EF(D) (z - +) (-=& 

- 42 - 



I 

F 

j 

1~1, Q=l, mF=+g 

5 
;z 

3 
z 

5 3 
z z [($ f> 1) +,,,I 
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TABLE IV 

Lamb Shift for Crossing Hydrogen A 

H(Gauss) v,ww s (MHz) 

537.391 2288.000 1056.440 
537.626 2289.000 1056.867 
537.861 2290.000 1057.294 
538.095 2291.000 1057.720 
538.330 2292.000 1058.147 
538.565 2293.000 1058.573 
538.800 2294.000 1059.000 
539.035 2295.000 1059.426 

TABLE V 

Lamb Shift for Crossing Hydrogen B 

H(Gauss) vc @Hz) 3 (MHz) 

604.565 2574.000 1056.535 
604.800 2575.000 1056.962 
605.034 2576.000 1057.389 
605.269 2577.000 1057.816 
605.504 2578.000 1058.242 
605.739 2579.000 1058.669 
605.974 2580.000 1059.096 
606.209 2581.000 1059.523 
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TABLE VI 

Lamb Shift for Crossing Deuterium A 

H(Gauss) @Hz) s (MHz) 

563.227 2398.000 1057.655 
563,462 2399.000 1058.084 
563.697 2400.000 1058.512 
563.932 2401.000 1058.940 
564.166 2402.000 1059.368 
564.401 2403.000 1059.797 
564.636 2404.000 1060.225 
564.871 2405.000 1060.653 

TABLEVII 

Lamb Shift for Crossing Deuterium B 

H(Gauss) vc &Hz) !i? (MHz) 

57.3.092 2440.000 1057.484 
573.327 2441.000 1057.912 
573.561 2442.000 1058.340 
573.796 2443.000 1058.768 
574.031 2444.000 1059.196 
574.266 2445.000 1059.624 
574.501 2446.000 1060.052 
574.736 2447.000 1060.480 
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