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Summary 

Finite conductivity of the vacuum cham- 
ber  wall can cause unstable coherent t rans-  
ve r se  oscillations of the center of charge and 
also oscillations of the t ransverse  c r o s s  sec-  
tion of a beam of charged particles. 
fo rmer  case,  which can be character ized by a 
dipole oscillation, has  been studied extensively 
by others. In this work, a study has  been 
conducted of the c r o s s  sectional oscillations 
of a nearly c i rcu lar  beam centered in a c i rcu-  
l a r  pipe, and a self-consistent solution has  
been obtained for  both monopole and quadru- 
pole oscillations. 
oscillation frequencies have been found, and 
conditions for stability have been deduced. 
.For the quadrupole instability the growth r a t e  
and threshold are ve ry  close to  those obtained 
for  the dipole instability, 1 g  differing only by 
a geometrical factor of order  unity; whereas, 
for the monopole instability, the growth r a t e s  
a r e  s o  small  that the oscillations in present  
electron accelerators  and storage r ings will be 
suppressed by radiation damping. 

The 

Dispersion relations for  the 

Introduction 

Laslett,  Neil and Sess le r l  have demon- 
s t ra ted  the possibility for a beam of charged 
particles. to  have unstable coherent t ransverse  
oscillations due to  the finite conductivity of the 
vacuum chamber walls. 
Laslet t  e t  al. assumed that the Longitudinal 
charge density variation was zero;  Courant 
and Sessler ,  and Dikanskii andSkrinski i3  
found that i t  is also possible to  have unstable 
coherent t ransverse  oscillation for the case  
where the beam was bunched due to the wake 
field of one bunch acting upon another bunch 
and upon itself in successive revolutions. In 
the above papers  the unstable oscillations were 
oscillations of the center of the beam. In this 
work we t r ea t  some casffiof the oscillation of 

In their  analysis, 

the t ransverse  s ize  of a longitudinally uniform 
or bunched beam which is confined within a 
c i rcu lar  pipe, with the center of the beam 
fixed along the pipe axis. 

In Sec. I1 we character ize  the monopole 
and quadrupole oscillations of a beam, uniform 
o r  bunched, by some assumed charge densities 
and present  the equations of motion for  the 
par t ic les .  

Section 111 contains the body of the 
analysis in which we solve the Vlasov equation 
combined with the equations of motion given 
in Sec. I1 fo r  a self-consistent charge dis t r i -  
bution and obtain a dispersion relation for  the 
oscillation frequencies. The dispers ion 
relation is analyzed in Sec. IV, culminating in 
the determination of the growth t imes  and the 
stability c r i t e r i a  for  the oscillations. 

Some numerical  illustrations of the 
resu l t s  and experimental observations a re  
given in Sec. V. The effects of Landau 
damping, resulting from a spread in the ampli- 
tude of oscillations, is considered in Sec. VI. 

11. Monopole and Quadrupole 
Char R e  Oscillations 

In this  section we character ize  by some 
simple models the monopole and quadrupole 
oscillations of a uniform or bunched beam 
inside a metallic vacuum chamber. As the 
major  curvature  of the vacuum chamber has  
l i t t le influence on the calculation of the fields, 
the chamber is taken to be a s t ra ight  pipe 
of radius  b. 
assumed to  be moving longitudinally in the 
z-direction, along the axis of the pipe, with a 

The par t ic les  in the beam a re  

constant velocity, v. 

The unperturbed beam is taken 
form in the t ransverse  c ros s  section 

as uni- 
over a 
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circle  of radius a, wi th  the center of the beam 
fixed along the pipe axis. Thus, for the charge 
density of the unperturbed beam 

( 2 . 1 )  

where H(x) is the Heaviside unit function. For  
the uniform beam e A is the charge per unit 
length, while for the bunched beam e h = eN 
f ( z - z o -  1-t) with the function f(x) normalized 
such that eN is the charge in the bunch 

I 

In the perturbed beam, we assume the 
radius  var ies  as  ( a  + 5 ) for  monopole oscil- 
lation and ( a +  5 cos 2e) for quadrupole oscil- 
lation with the perturbation amplitude 5 given 

( 2 . 2 d  

(2. 2b) 

As a consequence of the perturbation, to first 
order  in 3 the charge density can be written 
as 

where 

(monopole be am) 

(quadrupole be am) 

(2 .  3) 

(2.4a) 

(2. 4b) 

For a particle in the beam, the equations 
of motion a r e  

(2. 5b) 

0 , ah& 5'- .Ir (2. 5c) Px = w e r e  P,, Py and P, a r e  the conjugate 
momenta, and the upper and lower signs cor-  
respond to  the monopole and quadrupole oscil- 
lations. The contribution of both the external 
fields and the elec romagnetic fields due t o p o  
a r e  included i n d )  , while the contribution of 
the electromagnetic fields produced by a r e  
contained in the constant K. 
a r e  determined from Maxwell's equations and 
the resu l t s  a r e  presented in  Appendix A. 

The values of K 

The t ransverse  position of each particle 
in  the beam can be found by solving the equa- 
t ions of motion with some known initial condi- 
tions. Knowing the position of every particle 

in the beam, in principle, we can construct 
the charge density of the beam. A self-con- 
sistent solution is obtained if  the charge densi- 
ty we constructed is the s a m e  as  the one we 
assumed ( f  in eq. 2. 3). A convenient method 
by which to obtain this self-consistent solution 
is to find the particle distribution function in 
phase space. 

111. Self- consistent Distribution 
Functions in Phase Space 

In this section we proceed to find the self- 
consistent particle distribution functions in 
phase space, y.'(x, y, Z, P,, Pyl P,, t), which 
give r i s e  to the charge densities assumed in 
Section 11. In analogy to Eq. (2. 3) we write 

Y = [X& 2j 8 31) 7 SY(% 2, Pd , )]XS(p, - 3.), ( 3. 1) 
where l+J and VI a r e  the particle distribu- 
tion functions corresponding to the charge 
densit ies P o  and , i. e. ,  

and 

(3.2) 

(3 .  3) 

In general, the particle distribution 
function sat isf ies  the Vlasov equation 

When we substitute eqs. (2. 5) for the 
t ime derivatives of the coordinates and momenta 
and eq. (3.1) for  [L' into the Vlasov equation, 
we obtain to first order  in 5 

with the upper and low signs for  the monopole 
and quadrupole oscillations, and k = 0 for  the 
bunched beam. 

When a self-consistent solution y o  that 
sat isf ies  eqs. (3. 2) and (3. 5) is inser ted into 
eq. (3. 6), a self-consistent solution v/1 that 
sat isf ies  eqs. (3. 3j and (3. 6) is found with the 
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oscillation frequkncy, JJ, obeying the disper-  
sion relation 

2 L 
4k;, - ( g y  - L . 1 )  = Aa . (3. 7) 

The consequences of this dispersion relation 
a r e  explored in the next section. 

IV. Consequences of the Dispersion Relation 

In this section the dispersion relation, 
eq. (3. 7), is analyzed, The values of k a r e  
res t r ic ted  to ky = n 2 ,  with R the revolution 
frequency, n a positive integer for the uni- 
form beam, and n equal to zero  for the 
bunched beam. It is convenient to write 
d o  = do.n with d o  the unperturbed number 
of betatron oscillations per  revolution, so  that 
we obtain for the dispersion relation: 

(4.1) 

where Kr and Ki denote the r ea l  and imag- 

?rm<<vo42  SO that two of the roots  
of eq. (4. ~f for  0 w e :  

a r t s  of K. In practice 

w =  ( n  -t JZ.)~)L 

For the case  of the uniform beam the 
sign of the imaginary par t  of K (W ) is 
determined by the sign of w , so  that 

with the upper sign representing fast  wave, the 
lower sign representing a slow wave, and 
Ki(1 m k 27) > 0. Since the motion is 
damped when imaginary par t  of cJ is negative, 
the fast wave is always damped, while the 
slow wave is damped only for  n 4 2 -&? o. How- 
ever  for n >. 2 .ll the slow wave grows 
exponentially with an e-folding t ime given by 

(4. 4) -- ' 4 4 2  
( -  

For the bunched beam K r ( d  ) = Kr( -d) 
a Ki ( ~ n  a -2t5 SI- I )  

and KiW = -Ki(-W ) so  that the dispersion 
relation is given by 

Hence oscillation is damped if Ki(2 -L!,.R) > 0 
and grows exponentially for  Ki(2 d o s l ) <  0 
with an e folding t ime, 7, given by 

(4. 6) 
Unstable mGnopolk oscillations have very 

long growth t imes (many years)  and thus im- 
pose no practical  limitations on the design of 
accelerators  and storage rings. However, for  
unstable quadrupole oscillations the growth 
t imes a re  short  enough to be of practical  
importance. Hence, we res t r ic t  our attention 
to only quadrupole oscillations. We find for a 
single bunched beam that quadrupole oscil- 
lations a r e  always stable if  

with ~3 an integer. For unstable quadrupole 
oscillations the maximum growth rate, l/r2, 
is related to the maximum growth rate of the 
unstable dipole oscillations of Laslett, Neil, 
and Sessler ,  l/T1 , by: 

(4. 8) 

In general, the actual growth ra te  is l e s s  that 
(l/7 ) calculated from eq. (4. 6) because, in the 
analysis thus f a r ,  all of the par t ic les  have been 
assumed to  have the same unperturbed fre-  
quency, do, i. e . ,  Landau damping has  not 
been considered. 
ing will be discussed in the next section. 

The effects of Landay damp- 

V. Landau Damping of 
Quadrupole Oscillations 

If there  is a sufficiently la rge  spread in 
the unperturbed oscillation frequency, Wo, i t  
is possible to have stability as  a consequence 
of Landau damping for  cases  in which the 
stable condition eq. (4. 7) is not satisfied. A 
spread inWo may be achieved by a spread in 
the betatron oscillation frequency, $,, due to 
a variation in the oscillation amplitudes of the 
particles,  or a spread in the revolution f re -  
quency, 4 , due to an energy spread. Under 
these conditions, the dispersion relation for  
quadrupole oscillations of a uniform beam is 

with 

(5. 2) 
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and 

(5. 3) 

where f(E) and po(r) a re  the energy and 
radial  distribution functions of the particles, 
normalized such that 

and the other parameters  are defined in 
Appendiq A. 
s imi la r  to  the dispersion relation that has  been 
t reated exhaustively by Laslett,  Nei l ,  and 
Sess le r .  
the quantity, S I  defined by 

This dispersion relation is 

For  the case where the spread in 

s =  (n-24%) .a 
is l a rge r  than ,/- , the unstable oscil- 
lations a r e  Landau dam ed. But, i f  the spread 
in S is smal le r  than Jm and n, 2 go 
the oscillations are unstable and the maximum 
growth r a t e s  a r e  given by 

A s imi la r  dispersion relation holds for 
the quadrupole oscillations of a tightly bunched 
beam ( 7)L: / 2 7  R ~ L  1% ). 
the oscillations a re  Landau damped when the 
spread  in 2 d 0 2 .  is l a rge r  than,/-, 

For this assumption 

and 

pread in 2 dOSL" is less than 
and (m-1/2) 4 2 9 .<m, the 

quadrupole oscillations a r e  unstable and the 
maximum growth ra tes  a re  given by 

(5. 6) .- I .- - - A,. . 
? 

( m  

VI. Numerical Examples and Observations 

In most  accelerators  and storage rings, 
such as the Brookhaven AGS, Argonne ZGS 
and SLAC Ring (proposed), the c r o s s  sections 
of the beam and vacuum chamber a re  not circu- 
lar. Therefore, the theory must  be extended 

before it can be r igorously applied. 
fo r  the purpose of illustration, we calculate 
the spread  in ( 2  9,s~) necessary  to Landau 
damp quadrupole oscillations in  these machines 
and the maximum growth ra te ,  using the 
machine and beam pa rame te r s  given below, 

However, 

SLAC 
AGS Z GS RING 

R = 104 3 103 
L = 1 . 3  103 5 . 9  102 
7)o= 8 . 5  0. 8 
y = 1 . 5  3 
A = 1 . 3  x 108 3 . 2  x 108 
0- = 1016 1016 
a = 3  7. 5 
b = 6  1 2 . 5  

3 x 103 cm 
3 x 10  cm 
5. 25 
6 x l o 3  
3.7 x 109 ' cm-1 
0 . 4  x lo1' sec-1 
1 cm 
5 cm 

For these parameters ,  the local  damping 
fields r e s t r i c t  the range of unstable oscil- 
lations in the AGS to 8. 49< do< 8. 5 o r  
8. 9 9 ~  d 4 9 
to will produce Landau damping 
with 

While a spread  in 2 Jon equal 

Ai = -. 816 x l o 4  + . 9 3  ReG (2  do), 
Ai = 7. 04 + . 93 ReG ( 2  do), 

A plot of ReG(x) and ImG(x) is shown in 
Fig. 1. The maximum growth r a t e  is 

1 - = - sec-l . 
'm 

Similar  calculations a re  made for  the ZGS 
and SLAC Ring. For ZGS, oscillations may be 
unstable when 0.86 < do< 1 o r  0. 36<d0 < 
0. 5, with 

A, = - 0. 95 x l o 3  + 0.55  ReG(2 do) 

and 

Ai = 0. 46 + 0. 55 ImG(2 do). 

F o r  SLAC Ring, unstable oscillations may 
occur when 5. 41 4 do< 5. 5 or  5. 91<t/, 
< 6. 0, with 

A, = 0.471 + 0.013 ReG(2 do) 
and 

#i 



A. = 0.0168 + 0. 013 ImG(2 90). 
1 

-5 

-10 
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The perturbed electromagnetic fields 
and hence the perturbed forces  on a particle 
a r e  calculated from Maxwell's equation. 
value of K determined by the force is 

The 

F X  (A. 1) 

F o r  the uniform beam we obtain for  the mono- 
pole and quadrupole oscillations: 

and for the bunched be& we obtain: 

where ro = classical  radius of the p a r t i c l s  
L 
R 

= length of the bunch 
= radius of the machine 

= conductivity of the pipe 
-t/ =Ll/rr  

and f' (x) is the complete gamma function. 
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