COMPARISON OF MODERATE ENERGY PROTON-PROTON MODELS. III*

by

H. Pierre Noyes

Stanford Linear Accelerator Center, Stanford University, Stanford, California

and

Peter Signell and N. R. Yoder Department of Physics Michigan State University East Lansing, Michigan

and

Robert M. Wright Lawrence Radiation Laboratory University of California Livermore, California

ABSTRACT

The predictions of 12 proton-proton models and phase shift representations are compared to a selected but comprehensive set of 9-330 MeV scattering data. The best fit was found to be produced by a quadratic interpolation of Arndt and MacGregor's phase shift table, with a ratio of χ^2 to its expected value of 1.4. The best potential is that of Hamada and Johnston, with a ratio of 3.1. The ratio for the Tabakin potential is 28.

Supported in part by the U. S. Atomic Energy Commission.

I. INTRODUCTION

In this paper we bring up to date the comparison (1,2,3) of published proton-proton models and energy-dependent phase shift analyses with data that, in our opinion, represent the most accurate experimental information currently available on proton-proton scattering between 9 and 330 MeV. The models we consider were constructed for a variety of purposes and were fitted to various other selections of the data, so that a simple χ^2 listing does not necessarily serve as a figure of merit as to how well the original authors' purposes were served. However, these models are often used for other purposes, accompanied by some statement to the effect that "this model agrees with existing scattering data". To the best of our knowledge, this is not true for existing models according to the usually accepted statistical criteria; on the other hand the discrepancies may be irrelevant for some applications. This point obviously should be investigated in each case. For example, a small adjustment of the parameters might improve the fit to the data without affecting the calculation at hand; but it also might be extremely significant. In other cases, the model does provide a good fit over some energy ranges, but might be applied in an energy range where it is in violent disagreement with the data. Clearly this point should also always be investigated, and one of our purposes is to make this more obvious. Another is to give some indication of where the best existing models should be corrected. A third is to point up the fact that many popular models which are often used as if they were accurate representations of p-p scattering simply do not agree with existing information, and to urge caution in their application.

II. THE DATA

The data set used here was made by combining the independent sets maintained at the several institutions represented by the authors, with a closing date of September 1, 1966. Old data were dropped when they were clearly outclassed by more recent data on the basis of smallness of experimental standard deviations. The point here is that in any adjustment of model parameters for a <u>least squares fit</u>, data with large errors are effectively ignored if similar data with small errors are also present in the data set. In addition, some data have been eliminated on the basis of energy-independent phase shift analyses (5,6). Such analyses provide the best possible test for inconsistencies in the data groups used, since they are virtually model-independent: they use only the short range of the strong force, the usual symmetries, and the one-pion-exchange (OFE) interaction for the longer-range part of the strong force.

Our final data set contained 648 individual values in the energy range 9-330 MeV laboratory energy. The upper limit was raised slightly from the value of 320 MeV used in the previous comparisons^(1,2) in order to include a new group of data⁽⁷⁾; we believe it is still low enough to avoid complications due to pion production. The lower limit allows us to avoid examination of effects due to vacuum polarization, since a recent analysis⁽⁸⁾ of the 9.69 MeV differential cross section⁽⁹⁾ together with (10) the ratio of A_{yy} to A_{xx} at 11.4 MeV has shown that these effects are negligible at this energy. This analysis also shows that the well established fact that the longest range contribution to the strong interaction between two protons can be accurately computed from OPE allows one to fit all p-p scattering data at 10 MeV and below in terms of only two phenomenological

-2-

parameters at each energy, namely the ${}^{1}S_{0}$ phase shift and the J-weighted average of the ${}^{3}P_{0,1,2}$ phase shifts.⁽¹¹⁾ It also shows that the energy variation of the former can be completely described by the scattering length and effective range, once the OPE effect is included, while the energy variation of the latter can be described by a single parameter which measures the ratio of the strength of the effective intermediate range central P-wave interaction to OPE. We therefore assume that anyone who wishes to use the p-p model for any application which requires good agreement with data at 10 MeV and below will first check to see whether it is in agreement with these three numbers, and confine our attention here to the agreement of the models with data at higher energy.

Where experiments quote both relative and absolute error, the normalization factor was included in the χ^2 calculation and χ^2 minimized with respect to all such parameters. Normalizations with experimental errors were not counted in the number of data, while those lacking errors were counted against the number of data. The data set was considered too extensive to list here: it is, however, available⁽¹²⁾ in its entirety along with references.

III. MODELS AND COMPARISONS

The models of our previous communications which gave the poorest fit to the data of that time have been dropped. (13) An exception is the Brueckner-Gammel-Thaler (BGT)⁽¹⁴⁾ hard core potential, which continues to be mentioned in occasional textbooks and calculations.

Table I lists the models considered, along with the goodness-of-fit parameter χ^2 for each of them. At the time of our last connumication, the best-fitting model was the 21-parameter phase shift representation CR21⁽²⁾. Arndt and MacGregor have adopted the procedures used by the CR21 authors⁽²⁾, except for a change of representation, and have made a least squares fit to

a recent data set. No record of Arndt and MacGregor's 35 T=l representation parameters was saved by them⁽¹⁵⁾, so we have used a quadratic interpolation to the phases in their published table⁽¹⁵⁾. The resulting phase shifts produced the best fit to our data set of any of the models tested, as can be seen in Table I. The next best fit is that of the Yale group's phase-shift-versus-energy curves labeled YRB1(K₀)⁽¹⁶⁾. The old 21-parameter phase shift representation CR21⁽²⁾ is third, and the 12-parameter one-boson-exchange model of Scotti and Wong⁽¹⁷⁾ is fourth. We note, however, that the phase shift table supplied to us by Scotti and Wong does not correspond precisely to the true predictions of their model parameters, since they used an incorrect coulomb correction in making their pp phase shift predictions⁽¹⁸⁾. The earlier fit from the Yale group (YIAM)⁽¹⁹⁾ is not as good as their latest work⁽¹⁶⁾, but is included because it has been used in a number of calculations.

The 15-parameter hard core Hamada-Johnston potential (20) is followed by the more recent version HJM(21), which is identical to the Hamada-Johnston potential except for a short range cut-off on the quadratic spinorbit component. These potentials are followed by the similar 31-parameter Yale potential (22), and by the Bryan-Scott potential.

The one-boson-exchange Bryan-Scott⁽²³⁾ potential posed something of a problem since it was not intended to be used for S-states. The Livermore group has added the Bryan-Scott L \geq 1 phases to their latest ${}^{1}S_{0}$ energydependent representation⁽²⁴⁾ and have then adjusted the parameters of the latter for a least squares fit to their data set. We note that the more recent Bryan-Arndt⁽²⁵⁾ one-boson-exchange amplitude model uses <u>effective</u> scalar-and vector-boson-exchange coupling constants which differ by a factor of 10 from those of the corresponding Bryan-Scott proton-proton potentials.

-4-

The Tabakin potential $\binom{26}{}$ is non-local, with different parameters in each partial wave state. The partial-wave potentials are separable for the case of chargeless particles, but in order to include the local Coulomb potential, one must solve an integro-differential equation. This has been done for the current calculation. It is likely that a change in the published parameters would improve the fit to p-p data thus obtained; this question should obviously be investigated before the published model is used in other calculations. The well-known Brueckner-Gammel-Thaler (BGT)⁽¹⁴⁾ potential is identical to the Gammel-Thaler⁽²⁷⁾ potential for proton-proton scattering and consists of hard cores with single-range Yukawa tails. The ranges of the latter were free parameters and so do not correspond to one-pion or one-boson exchange.

IV. DETAILS OF THE FITS

The partial χ^2 contributions to the leading three models from various energy ranges are shown in Table II. There are three obvious misfits: AMIV below 20 MeV, YRBI(K₀) in the 25-35 MeV range, and CR21 in the 310-330 MeV range. That the AMIV fit should not be extended below 24 MeV was known to the authors and was indicated in their paper. One way they could achieve a good low energy fit would be to add the effective range contributions to their representation⁽²⁴⁾, as was done in the CR21 representation.

Data which give large χ^2 contributions to any one of the three representations are shown in Table III. Nearly half the high χ^2 contribution to YRB1(K₀) in the second energy range is seen to result from the 25.7 MeV measurements of A_{xx} and A_{yy}. Since these are determined primarily by the ³P phase parameters, we compare these parameters to the other models in Table IV. It is seen that ³P₀ is high and ¹S₀ is low both compared to the

-5-

other models and to single-energy phase shift analyses at that energy. Again, a correlated adjustment of parameters should remove this difficulty.

V. CONCLUSION

Examination of the existing fits to the best proton-proton scattering data reveals discrepancies in the fits which should be taken account of in any application where these discrepancies are potentially important. If this paper encourages more care to be taken in applying these models in specific cases, we will have accomplished our purpose.

VI. ACKNOWLEDGMENTS

The calculations of χ^2 were carried out in the Computer Laboratory of Michigan State University. We wish to thank our many colleagues in the various accelerator laboratories who have helped us in the compilation and treatment of the data. Receipt of the manuscript of the article by Breit and Haracz on nucleon-nucleon scattering⁽¹⁶⁾ prior to publication is gratefully acknowledged. TABLE I. The goodness-of-fit parameter χ^2 for various model and phase shift representation predictions compared to 648 proton-proton scattering data in the energy range 9-330 MeV.

0.	Model	Year	Origin of Phases	χ ² /648	Ref.
<u></u>					• • •
1	Livermore: AMIV	1966	table	1.38	15
2	Yale: YRB1(K _O)	1966	table	1.94	16
3	CR21	1964	parameters	2.08	2
4	Scotti-Wong-2-o	1965	table	2.53	17
5	Scotti-Wong-2- $\pi\pi$	1965	table	2.70	17
5	Yale: YLAM	1960	table	2.77	19
7	Hamada-Johnston	1962	potential	3.08	20
3	HJM	1965	potential	3.73	21
Э	Bryan-Scott (+ ¹ S ₀)	1964	table	3.90	23
C	Yale potential	1962	potential	3.91	22
1	Tabakin	1964	potential	28.	26
2	BGT	1958	potential	106.	14

.

TABLE II. χ^2 contributions from various data energy ranges, for the three leading representations. Each value quoted is χ^2 divided by the number of data in the energy range (Column 2).

			· · · · · · · · · · · · · · · · · · ·	
Energy Range (MeV)	No. data	AMIV	YRB1(K _O)	CR21
9.68 - 20.0	38	4.34	1.09	1.28
25. 62 - 36.9	40	0.93	6.25	1.97
39.4 - 69.5	118	1.84	2. 12	1.80
70 122.	116	1.74	1.67	2.24
127 155.	210	1.37	1.50	2.12
210 276.	50	1.10	1.86	1.94
310 330.	76	1.26	1.46	2.68

.

Energy	Angle	Туре	χ^2 : Amiv	χ ² : YRBl(K ₀)	χ ² : CR21
9.68		Ν _σ	38	10	17
25.7	90 ⁰	А _{уу}	0	96	0
25.7	90	A	0	39	l
34.2	90	σ	5	24	6
45.04	90	σ	24	48	8
49.7	45	P	8	12	23
50.02	90	σ	0	30	2
68.3	13.2	σ	22	5	0
70.		^o int.	22	8	9
98.		N _P	21	22	27
108.		$\sigma_{\text{int.}}$	19	12	28
310.	6.5	orel	l	1	22
3 15 <i>.</i>	21.7	σrel	1	l	37
	i.				

TABLE III. Data with a χ^2 contribution of 20 or more for any one of the three leading representations.

Model	l _{So}	³ _{P0}	3 _{P1}	³ P ₂
AMIV	48.0	8.2	- 4.8	2.7
YRB1(K _O)	49.2	12.1	- 5.8	2.6
CR21	46.6	8.7	- 5.7	3.2
EIPSA ^a	48.6 ± .4	7.6 ± .6	- 4.1 ± .5	2.4 ± .2

TABLE IV. Phase shifts at 27.6 MeV from the three leading models and an energy-independent phase shift analysis (EIPSA).

^a P. Signell, Phys. Rev. <u>139</u>, B315 (1965).

References

- 1. P. Signell and N. R. Yoder, Phys. Rev. <u>132</u>, 1707 (1963).
- 2. P. Signell and N. R. Yoder, Phys. Rev. <u>134</u>, B100 (1964).
- 3. A preliminary version of this paper was presented at the New York
- Meeting of the American Physical Society in January, 1967 (N. R. Yoder and P. Signell, Bull. Am. Phys. Soc. <u>12</u>, 50 (1967)); numerical results given here supercede that report.
- 4. Since this work was completed, work by both the Yale and the Livermore groups as reported at the Special Topics Conference on the Nucleon-Nucleon Interaction, Gainsville, Florida, March 23-25, 1967, is in much closer agreement with the data and with each other than any phase representation discussed in this paper. Also a new potential model was reported from La Jolla, and a new revision of the boundary condition model from M.I.T. For this recent work the reader should consult the abstracts in the Bull. Am. Phys. Soc. (in press) and the appropriate papers in the July 1967 issue of the Rev. Mod. Phys. (in press).
- 5. P. Signell, N. R. Yoder, and J. E. Matos, Phys. Rev. 135, B1128 (1964).
- 6. P. Signell and D. L. Marker, Phys. Rev. 134, B365 (1964).
- F. Betz, J. Arens, O. Chamberlain, C. Schultz and G. Shapiro, Phys. Rev. <u>148</u>, 1289 (1966); D. Fischer and G. Goldhaber, Phys. Rev. <u>95</u>, 1350 (1954), as listed in W. N. Hess, Rev. Mod. Phys. <u>30</u>, 368 (1958); Chamberlain, Pettengill, Segre and Wiegand, Phys. Rev. <u>93</u>, 1424 (1954).
- 8. H. P. Noyes and H. M. Lipinski, SLAC-PUB-268; submitted to Phys. Rev.
- 9. L. H. Johnston and D. E. Young, Phys. Rev. 116, 989 (1959).
- P. Catillon, M. Chapellier, and D. Garreta, Paper 6.3 presented at the Gatlinburg Conference, 1966.

- 11. H. P. Noyes, Phys. Rev. Letters 12, 171 (1964).
- 12. The actual data used are included as an Appendix to the Stanford Linear Accelerator Center preprint (SLAC-PUB-269) version of this paper.
- 13. As reported at Gainsville by Lomon (cf. Ref. 4), a new adjustment of the parameters of the boundary condition model (H. Feshbach, E. Lomon, and A. Tubis, Phys. Rev. Letters <u>6</u>, 635 (1961)) gives a χ^2 value comparable to that obtained by the model of Scotti and Wong⁽¹⁷⁾ against the same data table.
- 14. K. A. Brueckner, J. A. Gammel, and R. M. Thaler, Phys. Rev. 109, 1023 (1958).
- 15. R. A. Arndt and M. H. MacGregor, Phys. Rev. <u>141</u>, 873 (1966) and private communication from R. A. Arndt to P. S. Signell.
- 16. G. Breit and R. D. Haracz, Vol. I, "High Energy Physics", Academic Press, Inc., New York, 1966 (in press). This fit was reported at the Dubna Conference on High Energy Physics in 1964, but not in a form which allowed direct numerical comparison with the data. We are indebted to G. Breit for kindly supplying us with copies of this manuscript prior to publication.
- 17. A. Scotti and D. Y. Wong, Phys. Rev. <u>138</u>, B145 (1965).
- 18. L. Heller and M. Rich, Phys. Rev. <u>144</u>, 1324 (1966). Scotti and Wong ⁽¹⁷⁾_{used} N/D equations for the amplitude $e^{i\delta}\sin\delta/\delta_{2}^{2}q$, but included only the coulomb modification of the left cut computed from coulomb plus OPE in the first Born approximation; this ignored the coulomb modification of the higher mass one-boson-exchange cuts. The effect of the latter modification has been estimated by the use of a single scalar boson exchange with constants adjusted to fit the low energy ${}^{1}S_{0}$ phase shift. The full coulomb modification shifts the chargeless value of the ${}^{1}S_{0}$ phase shift at 10 MeV by - 2.5°, while the Scotti-Wong-type modification shifts it by - 5.3°. We are indebted to L. Heller and M. Rich for the discussion and numbers in this footnote (private communication from L. Heller to P. Signell).

- 19. G. Breit, M. H. Hull, Jr., K. E. Lassila, and K. D. Pyatt, Jr., Phys. Rev. 120, 2227 (1960).
- 20. T. Hamada and I. D. Johnston, Nucl. Phys. <u>34</u>, 382 (1962).
- 21. T. Hamada, Y. Nakamura, and R. Tamagaki, Prog. Theor. Phys. 33, 769 (1965).
- K. E. Lassila, M. H. Hull, Jr., H. M. Ruppel, F. A. McDonald, andG. Breit, Phys. Rev. 126, 881 (1962).
- 23. R. A. Bryan and B. L. Scott, Phys. Rev. <u>135</u>, B434 (1964).
- 24. This representation goes to the correct scattering length and effective range at low energy; it has now been published (R. A. Arndt and M. H. MacGregor, Phys. Rev. <u>154</u>, 1549 (1967).
- 25. R. A. Bryan and R. A. Arndt, Phys. Rev. <u>150</u>, 1299 (1966).
- 26. F. Tabakin, Ann. Phys. 30, 51 (1964).
- 27. J. A. Gammel and R. M. Thaler, Phys. Rev. 107, 291 (1957).

APPENDIX

PROTON-PROTON SCATTERING DATA USED IN THE COMPARISON

Since we used published values for the results of various scattering experiments, repeating them in a published paper is in a sense redundant, so this appendix will not be submitted to the Physical Review. However, as anyone who has tried to make a quantitative confrontation between 648 diverse pieces of data and any representation knows, the possibility for clerical error, differences in judgement, readjustment or renormalization due to communication with the experimenters, etc., etc., etc... is enormous. The only safe course, we believe, is to present an exact photoduplicated record of the numbers as they existed in the computer at the time the calculations were made. This is done below, with journal references (including data omitted and the reasons for omission). We trust the notations are obvious to anyone who will wish to use this tabulation.

As an example of the need for detailed examination of data tables we note two corrections to that given below which slipped by us up to the point of preparing the preprint. The corrected data were used in computing the numbers in the χ^2 tables, but have not been corrected in the table given below.

49.9 MeV polarization measurement at 45° (RUTHERFORD 1963). The error should be increased from 0.0017 to 0.0020 to account for the 3% absolute error not included in the smaller number.

95 MeV differential cross section measurement, set which includes measurement at 35° (HARVARD 1956D). The errors listed in the data set are, as quoted in Table VI of the Reference (Phys. Rev. <u>101</u>, 1079 (1956)), about 1% due to counting statistics only, whereas the relative errors listed in Table VIII are 3.7%; the latter figure should obviously be used. On consultation with Richard Wilson, we find that a better value to use, according to the thesis on which the paper is based, would be 3.0%. The last value was <u>not</u> used in the calculations quoted above, but should have at most a trivial effect on the results.

9.68 MEV ABS CS, MINNESOTA	(1959)A	
CM ANGLE	VALUE	STD DEV
90.000	54,600	0.650
9.69 MEV DIFF CS, MINNESOTA	(1959)B	
CM ANGLE	VALUE	STD DEV
NORM	1,0000	0.0073
10.026	854,900	22,000
12.031	400,200	5.300
14,035	219,200	2.000
16.041	138,800	1.000
18.046	95,800	0.710
20.051	75,500	0.560
22.055	64,400	0,480
24,060	58,100	0.430
26.064	54,700	0.410
28.069	53,100	0.390
30.074	51,800	0.380
32.079	51,800	0.380
34,083	51,400	0,380
36,087	51,000	0.380
38,091	51,700	0,380
40.096	51,400	0,380
44.103	52,600	0.390
50.113	53,100	0.390
54.120	53,200	0,390
60.128	53,900	0,400
64.133	54,050	0,400
70.139	54,100	0,400
76.144	54,400	0,400
80.145	54,400	0.400
86.148	54,300	0.400
89.852	54,600	0.400
9.73 MEV CS, BERKELEY (1954) D	
10. MEV AYY, SACLAY (1965)	1	
CM ANGLE	VALUE	STD DEV
90.000	-0,975	0,020
16.20 MEV POL, PRINCETON (1	959)	
CM ANGLE	VALUE	STD DEV
50.200	0.006	0,007
18.20 MEV DIFF CS, PRINCETO	N (1954)	
CM ANGLE	VALUE	STD DEV
NORM	1,000	0.015
30.000	25,000	0.370
36.000	25,980	0.390
40.000	26,500	0,310
50.000	27,270	0.280
60.000	27,420	0,240
70.000	27,470	0.200
80.000	27,290	0,200
90.000	27,320	0.200
20,00 MEV CNN, SACLAY (1962)	
	VATUE	CTD DEV

!

	90.000	-0,9 <u>1</u> 0	0.050
21.95 MEV /	ARS CS, RUTHERFOR	D HIGH ENER	GY LAB (1964)A
25.62 MEV 4	ARS CS. RUTHEREOR	D HIGH ENER	Y 1 AR (1964)R
	CM ANGLE	VALUE	STD DEV
		18 300	
	<u> </u>	10,000	<u>U.1U9</u>
25.63 MEV I	DIFF CS. MINNESOT	A (1960)	
	CM ANGLE	VALUE	STD DEV
	NORM	1.0000	0,0093
	10.070	109,600	2,900
	12,080	56,310	0.920
	14.090	33,200	0.300
	16,110	23,760	0.180
	18.120	19,900	0.150
	19,130	18,700	0,140
	20.130	17,980	0.130
······································	22.150	17.330	0.130
	24.160	1/,090	0,130
	27,100	1/,160	0.130
	20.1/0	1/.1/0	0.130
	ZD 100	47 470	<u>U_130</u>
	30.170 30.170	17 620	0,130
	34.220	. <u>17 800</u>	
	36.230	17.930	0,130
nen ander en	40.250	18.200	0 140
	44.270	18.330	0.17U N 14N
	50.300	18.520	n 14n
	00.340	18,560	0.140
· · · · · · · · · · · · · · · · · · ·	70.370	18,650	0.140
an ann an tha an that an that an that an that an the state of the sta	89,380	18,600	0.140
	89.610	18,590	0.140
	N		
27,/ MEV 44	T, SAULAY (1965)		
	LM ANGLE	VALUE	SID DEV
	AA.600	=U,/25	0,020
25.7 MEV AX	X. SACLAY (1965)		
	CM ANGLE	VALHE	STD DEV
	90,000	-0.920	
-	арана 	· ≁ ∦ * €, U	U • U & U
27,05 CNN,	LOS ALAMOS (1966)	
an an the second sec	CM ANGLE .	VALUE	STD DEV
	90.000	-0,689	0.070
27.4 MEV PD	U, HARWFLL (1963) A	
27.6 MEV R.		ENERGY LAD	(1965)
and a set of the set of the	CM ANGER	VALUE	eth neu
	NORM	1.000	
	23.200	-0.324	0.030 0.063
a na ann an A	<9.000	-0.187	0.000
	54.600	-0.243	0.026
	BUT THE PROFESSION		
CI-D MEV A	- HOTHERFORD HIGH	ENERGY LAB	(1965)A
	LM ANDLE MUDM	VALUE	STD DEV
	ייאטאיי מא כא כ	T.000	0.030
	<pre><0.609</pre>	0.012	0.030
		u,us/	0.025

.		54,600	0,090	0.022
	28.16 MEV AF	S CS, MINNESOTA	(1959)A	
<u>-</u>	•• ⁻	CM ANGLE	VALUE	STD DEV
		90.000	16,270	0.310
			- ,	• • • • • •
	30,00 MEV PC	NL, RUTHERFORD H	IGH ENERGY LAB	(1963)
		CM ANGLE	VALUE	STD DEV
		45,000	-0.0004	0.0033
1	and the second second		• • • •	
	30.33 MEV AF	S CS, RUTHERFOR	D HIGH ENERGY L	AR (1964)R
		CM ANGLE	VALUE	STD DEV
		90.000	15.010	0.090
	31,15 MEV AF	S CS, MINNESOTA	(1959)A	
		CM ANGLE	VALUE	STD DEV
		90.000	14,680	0,220
	34.20 MEV AF	S CS, MINNESOTA	(1959)A	
		CM ANGLE	VALUE	STD DEV
	· ·	90.000	13,360	0,200
			D HIDE CHECKAY	
	34.27 MEV AL	S US, RUTHERFOR	D HIGH ENERGY L	AH (1904)H
		CM ANGLE	VALUE	STU DEV
-		90,000	12,820	0.077
	72 0 000 100	3809516 74077	۱ ۸	
	30.0 MEV MUL	,, THAKAELE (1903	/7	
	36.90 MEV A	S CS, MINNESOTA	(1959)A	
		CM ANGLE	VALUE	STD DEV
		90.000	12.140	0.180
State of a state	39.3 MEV 201	, HARWELL (1963) A	,
	70 AD MEN 11	LEE DO MINNEROT	1 110581	
-	OATHN WEA DI	CM ANDER	VALUE	STO DEV
		UM ANGLE		
		· · · · · · · · · · · · · · · · · · ·	103 800	6 200
		0,000 10 100	100,000 100,000	0.200 1 070
	an an A	10 100 Th'fnh	40,020 00 476	, 1, UOU
			20,030	0.200
		14.170	TO'DAA	0.004
		10.1/0	10,0/0	0.081 0.071
L.		17.180	10.200	Ų,U/6
		18.180	10,010	0.0/4
		19,200	Y, 980	0.074
		20.200	9.790	0.073
		21.220	9,820	0,073
		22.230	9,850	0.073
-		23.230	9,930	0.074
		24.250	9.940	0.074
• .		25.250	10.070	0.075
		27.270	10,270	0.076
		30.300	10,520	0.078
		36.350	10.750	0.080
		40.330	10.860	0.081
		44.420	10,980	0.081
		50.450	11.100	0.082
	· · ·	56,590	11.130	0.083
		60.520	11,160	0.083
		64.530	11,180	0.083
		70.570	11.170	0.083

· •

76.53	11.180	0,083
80.581 89.401) <u>11,160</u>) <u>11,160</u>	0.083
39.6 MEV ABS CS. MINES	TA (1959)A	
CM ANGL	VALUE	STD DEV
90,000	11,190	0.170
40.75 MEV ARS CS. RUTH	REARD HIGH ENERGY	LAR (1964)P
CM ANGLE	VALUE	STD DEV
90.001	10,540	0.064
41.0 MEV ABS CS. HARVA	RD (1956)	
CM ANGLE	VALUE	STD DEV
90.000	11,400	0.800
44.66 MEV APS CS. MINNE	SOTA (1959)A	
CM ANGLE	VALUE	STD DEV
<u> </u>	9,510	0.160
45.04 MEV APS CS. RUTHE	REORD HIGH ENERGY	LAR (1964)R
CM ANGLE	VALUE	STD DEV
90.00	9,270	0.054
46.0 MEV POL. HARVARD	10581	
CM ANGLE	VALUE	STD DEV
45.50(0.011	0.012
	WICH ENERCY LAD C	10451
CM ANGLE	VALUE	<u>(1905)</u> STD DEV
NORA	1.000	0.050
23.500	-0,061	0.031
39.000	-0.011	0.034
24.700 71 300	-0,009	0,025
87.100	0,166	J.022
47.8 MEV R. BUTHERFORD	HIGH ENERGY LAR (1965 \ A
CM ANGLE	VALUE	STD DEV
NORM	1,000	0,050
23,500	-0.318	0.046
39.000 54.700	-0.327	0.044
71.300	-0.435	0 032
	-0,488	0.033
47 8 MEV 4. PUTHERFORD	HIGH ENERGY LAD (104514
	VALUE	STD DEV
NORM	1.000	0.050
23.500	0,017	0.044
39.000	-0.001	0.038
54.700	-0,000	0.033
	<u> </u>	0.029
	10/710	
49.7 MEV FUL, HARWELL (CM ANOLE	1963)B VALUE	
45.000	0.0207	0.0033
		v • 0 0 0 0
49.9 MEV POL, RUTHERFOR	U HIGH ENERGY LAB	(1963)
	VALUE	STD_DEV

· · ·

	45.000	0,0316	0.0017
50.00 MEV D, HAR	FLL (1963)C	a 1221 - 11220 - 21220 - 21220	un analista an in successo any articles analogo cara su an fai since - a
	1 ANGLE	VALUE	STD DEV
·····	70,900	-0,241	0,075
50.02 MEV AHS CS.	RUTHÉRFORD	HIGH ENERGY LA	B (1964)B
CM	ANGLE	VALUE	STD DEV
	90.000	8,340	0,049
50 17 MEN AGO CO	MINNESOTA /	1950\/	
01,17 HEV AP3 03,	ANGLE	VALUE	STD DEV
	90.000	8,400	0.140
· · · · · · · · · · · · · · · · · · ·			
51.5 MEV DIFF CS.	INSTITUTE Q	F NUCLEAR SCIE	NCF (1961)A
CN	1 ANGLE	VALUE	STD DEV
	NORM	1,000	0_045
	10.290	0./00	0,4/0
	17.200	0,400	0,290
	10.200	0,400	0.270
and the second secon	20.300	0,200	0.260
	22.300	0,010	0.270
	24.500	/,000	0.270
	26.300	/.100	0.280
	30.400	/./00	0,150
	35.500	/./00	0.150
51,7 MEV POL, HAR	WELL (1963)B	an sesse en la contra marte contra antena	1. p Bar and a - Thank - Nanon and Thanks a state and the second second second second second second second
Cr	1 ANGLE	VALUE	STD DEV
	60.000	0,0364	0.0089
51.8 MEV DIFF CS,	INSTITUTE O	F NUCLEAR SCIE	NCE (1961)B
C N	ANGLE	VALUE	STD DEV
	NORM	1,000	0.025
	35,500	7,700	0,150
	40.500	7,900	0.160
	45,500	7,600	0.150
	50.600	7,900	0.160
	55.600	7,700	0.150
	60.700	7,800	0,160
	70.700	7,600	0,150
	80,800	8,000	0.160
	90.800	8,000	0,160
52.0 MEV CS, HARV	ARD (1956)A		
			4 + ~ 4 7 1
52.0 MEV UNF, INS	STITUTE OF NU	ULEAR SCIENCE	(1963)
CM	1 ANGLE	VALUE	STD DEV
	90.000	-0.034	0,095
52.0 MEV CKP, INS	STITUTE OF NU	CLEAR SCIENCE	(1963)
	ANGLE	VALUE	STD DEV
0.1	90.000	0.130	0.110
1.1	- · / • · / · · /	-,	, <u>, , , , , , , , , , , , , , , , , , </u>
53.2 MEV POL, HAP	WELL (1963)B		
CP	1 ANGLE	VALUE	STD DEV
	75.000	0,0075	0.0077
56.00 MEV POL. HA	RVARD (1958)		
	1 ANGLE	VALUF	STD DEV
	45.500	0.043	0.006
the state of the s			LINE & MARKAN, AND

• •

EA TE MEN AND	CO HI INCOTA	(1)5014	· · · · · · · · · · · · · · · · · · ·
20,12 PULLY APS	S USE MINESULA	(19097A	
And a second	CM ANGLE	VALUE	STD DEV
,	94.900	/,450	0.120.
ED E HEN DO) • • • • • • • • • • • • • • •		
58.5 MEV PUL,	HARWELL (1963) B	
	CM ANGLE	VALUE	STD DEV
	45.000	0,0384	0.0098
Management and			
61.92 HEV ALS	S CS, MINNESOTA	(1959)A	
	CM ANGLE	VALUE	STD DEV
	90.000	6,760	0.110
66.0 MEV POL,	HARVARD (1958)	
	CM ANGLE	VALUE	STD DEV
	MORM.	0.933	0 028
	20.400	0.050	0 014
•••• • • • • •	25 500	0 047	
	34 500	0 077	0.009
anno a constant a a a	36 600	0 <u>1077</u>	0.010
	10 700 10 700	0.040	U.U.U.B
	40.700	0,002	U_UU8
	42,700	U,U69	0.008
n i i i i	50,300	U.067	0.008
	55.900	0,059	0.008
Annual contractor contractor at	60. <u>200</u>	V,058	0.007
	65.900	0,053	0.007
	71,000	0,038	0.007
68.3 MEV DIFF	CS, MIJNESOTA	1960)A	
	CM ANGLE	VALUE	STD DEV
	NORM	1,000	0.011
	10.180	12.840	0.320
	12.210	7.050	0.010
nanna ann an ann an ann an ann an ann an a	13.230	6.140	<u>1</u> 077
	14.250	5.530	0.073 n n40
	16.280	5.10n	0 4 7 7 0 11 7 0
	18.320	5 0 3 n	0.000
	20 KN	- <u></u> 5 5 6 6	0.044
	20 ×020	2,200 5 440	0,041
	26.020	2,00U	0.042
	29+920	2,810	0.043
	26.450	5.940	0.044
	28,480	6,110	0,045
	30.520	6,230	0.046
	32,550	6,280	U,047
and the second	34,580	6,330	0.047
	36,610	6,300	0.047
· · · · · · · · · · · · · · · · · · ·	40.660	6.340	0.047
	44.720	6.301	n n47
	50.790	6.320	0.047
- 19	54.830	6.360	0,077 0 047
	60.890	6.340	0.047
	64.920	6 201	V • V 4 / n n 4 7
	70 370	N + C 7 U 6 0 1 n	0.04/
	76 080	. ₩ <u>₹</u> ₹₩	U.U46
	79,700	0,100	U.U46
	10.346	0.100	0.046
	ウエ・リエロ	0.1/0	0.046
	88,98(6,160	0.046
	A.S	(. OF	
07,42 MEV APS	US, ALMNESOTA	(1959)A	
	CM ANGLE	VALUE	STD DEV
		6,130	0,100

	DA'N WEA UDS C21 HAKAARD (TS	956)	
<u></u>	CM ANGLE	VALUE	STD DEV
	90.000	5,960	0.360
······································	70.0 MEV POL. HARWELL (1963)) R	
	CM ANGLE	VALUE	STO DEV
	45.000	0.0579	0 0058
			0,0050
1	70.0 MEV INT CS, HARVARD (19	964)	
	CM ANGLE	VALUE	STD DEV
	12.100	38,510	0.480
<u> </u>	90.000		
	71.0 MEV POL. HARVARD (1958))	
<u></u>	CM ANGLE	VALUE	STD DEV
	45.800	0,063	0,008
	78.0 MEV PUL, HARVARD (1958)		070 DEV
	UM ANGLE	VALUE	STD DEV
	42,800	<u>, 198</u>	U.UO/
	78.5 MEV ABS CS, HARVARD (19	956)B	
	CM ANGLE	VALUE	STD DEV
	90.000	5,400	0.320
,	86.0 MEV POL, HARVARD (1958)) 	
	CM ANGLE	VALUE	STD DEV
	45.900	0.097	0.007
		94)	
-	95. MEV REL CS, HARVARD (195	6)C	
	95. MFV REL CS, HARVARD (195 CM ANGLE	6)C VALUE	STD DEV
	95. MFV REL CS, HARVARD (195 CM ANGLE 40.000	6)C VALUE 4.930	STD DEV 0.180
	95. MFV REL CS, HARVARD (195 CM ANGLE 40.000 50.000	6)C VALUE 4,930 4,810	STD DEV 0.180 0.170
	95. MFV REL CS, HARVARD (195 CM ANGLE 40.000 50.000 60.000	66)C VALUE 4,930 4,810 4,810	STD DEV 0.180 0.170 0.170
	95. MFV REL CS, HARVARD (195 CM ANGLE 40.000 50.000 60.000 70.000	66)C VALUE 4,930 4,810 4,810 4,680 4,680	STD DEV 0.180 0.170 0.170 0.170
	95. MFV REL CS, HARVARD (195 CM ANGLE 40.000 50.000 60.000 70.000 80.000	66)C VALUE 4.930 4.810 4.810 4.680 4.530 4.540	STD DEV 0.180 0.170 0.170 0.170 0.170 0.160
	95. MFV REL CS, HARVARD (195 CM ANGLE 40.000 50.000 60.000 70.000 80.000 90.000	6)C VALUE 4,930 4,810 4,810 4,680 4,530 4,540	STD DEV 0.180 0.170 0.170 0.170 0.160 0.160
	95. MFV REL CS, HARVARD (195 CM ANGLE 40.000 50.000 60.000 70.000 80.000 90.000 95. MEV REL CS, HARVARD (195	6)C VALUE 4,930 4,810 4,810 4,680 4,530 4,540	STD DEV 0.180 0.170 0.170 0.170 0.170 0.160 0.160
	95. MFV REL CS, HARVARD (195 CM ANGLE 40.000 50.000 60.000 70.000 80.000 95. MEV REL CS, HARVARD (195 CM ANGLE	66)C VALUE 4.930 4.810 4.810 4.680 4.530 4.540 VALUE	STD DEV 0.180 0.170 0.170 0.170 0.160 0.160 STD DEV
	95. MFV REL CS, HARVARD (195 CM ANGLE 40.000 50.000 60.000 70.000 80.000 90.000 95. MEV REL CS, HARVARD (195 CM ANGLE 30.000	66)C VALUE 4,930 4,810 4,810 4,810 4,680 4,530 4,530 4,540 66)D VALUE 4,860	STD DEV 0.180 0.170 0.170 0.170 0.160 0.160 STD DEV 0.030
	95. MFV REL CS, HARVARD (195 CM ANGLE 40.000 50.000 60.000 70.000 80.000 90.000 95. MEV REL CS, HARVARD (195 CM ANGLE 30.000 35.000	66)C VALUE 4,930 4,810 4,810 4,680 4,530 4,540 66)D VALUE 4,860 4,870	STD DEV 0.180 0.170 0.170 0.170 0.160 0.160 STD DEV 0.030 0.040
	95. MFV REL CS, HARVARD (195 CM ANGLE 40.000 50.000 60.000 70.000 80.000 95. MEV REL CS, HARVARD (195 CM ANGLE 30.000 35.000 40.000	6)C VALUE 4,930 4,810 4,810 4,680 4,530 4,540 6)D VALUE 4,860 4,870 4,910	STD DEV 0.180 0.170 0.170 0.170 0.160 0.160 STD DEV 0.030 0.040 0.040
	95. MFV REL CS, HARVARD (195 CM ANGLE 40.000 50.000 60.000 70.000 80.000 90.000 95. MEV REL CS, HARVARD (195 CM ANGLE 30.000 35.000 40.000 80.000	6)C VALUE 4,930 4,810 4,810 4,680 4,530 4,540 6)D VALUE 4,860 4,870 4,910 4,620	STD DEV 0.180 0.170 0.170 0.170 0.160 0.160 STD DEV 0.030 0.040 0.040 0.030
	95. MFV REL CS, HARVARD (195 CM ANGLE 40.000 50.000 60.000 70.000 80.000 95. MEV REL CS, HARVARD (195 CM ANGLE 30.000 35.000 40.000 80.000 90.000	6)C VALUE 4,930 4,810 4,810 4,810 4,680 4,530 4,530 4,540 6)D VALUE 4,860 4,870 4,910 4,620 4,650	STD DEV 0.180 0.170 0.170 0.170 0.160 0.160 STD DEV 0.030 0.040 0.040 0.030 0.040 0.030 0.060
	95. MFV REL CS, HARVARD (195 CM ANGLE 40.000 50.000 60.000 70.000 80.000 95. MEV REL CS, HARVARD (195 CM ANGLE 30.000 35.900 40.000 90.000 95. MEV ABS CS, HARVARD (195	6)C VALUE 4,930 4,810 4,810 4,680 4,530 4,540 6)D VALUE 4.860 4,870 4,910 4,620 4,650 6)E	STD DEV 0.180 0.170 0.170 0.170 0.160 0.160 STD DEV 0.030 0.040 0.040 0.030 0.040 0.030 0.060
	95. MFV REL CS, HARVARD (195 CM ANGLE 40.000 50.000 60.000 70.000 80.000 90.000 95. MEV REL CS, HARVARD (195 CM ANGLE 30.000 35.000 40.000 90.000 95. MEV AUS CS, HARVARD (195 CM ANGLE	6)C VALUE 4,930 4,810 4,810 4,680 4,530 4,540 6)D VALUE 4,860 4,870 4,910 4,620 4,650 6)E VALUE	STD DEV 0.180 0.170 0.170 0.170 0.160 0.160 STD DEV 0.030 0.040 0.030 0.040 0.030 0.060 STD DEV
2	95. MFV REL CS, HARVARD (195 CM ANGLE 40.000 50.000 60.000 70.000 80.000 90.000 95. MEV REL CS, HARVARD (195 CM ANGLE 30.000 35.000 40.000 90.000 95. MEV ABS CS, HARVARD (195 CM ANGLE 90.000	6)C VALUE 4,930 4,810 4,810 4,680 4,530 4,540 6)D VALUE 4,860 4,870 4,910 4,620 4,650 KALUE 4,650	STD DEV 0.180 0.170 0.170 0.170 0.160 STD DEV 0.030 0.040 0.040 0.030 0.040 0.030 0.060 STD DEV 0.250
22	95. MEV REL CS, HARVARD (195 CM ANGLE 40.000 50.000 60.000 70.000 80.000 90.000 95. MEV REL CS, HARVARD (195 CM ANGLE 30.000 35.000 40.000 90.000 95. MEV ABS CS, HARVARD (195 CM ANGLE 90.000 95. MEV ABS CS, HARVARD (195 CM ANGLE 90.000	6)C VALUE 4,930 4,810 4,810 4,810 4,680 4,530 4,540 6)D VALUE 4.860 4,870 4.910 4.620 4.650 6)E VALUE 4.650	STD DEV 0.180 0.170 0.170 0.170 0.160 STD DEV 0.030 0.040 0.040 0.030 0.040 0.030 0.060 STD DEV 0.250
	95. MEV REL CS, HARVARD (195 CM ANGLE 40.000 50.000 60.000 70.000 80.000 95. MEV REL CS, HARVARD (195 CM ANGLE 30.000 35.000 40.000 95. MEV ABS CS, HARVARD (195 CM ANGLE 90.000 95. MEV REL CS, HARVARD (195 CM ANGLE 90.000	6)C VALUE 4,930 4,810 4,810 4,810 4,680 4,530 4,540 6)D VALUE 4,860 4,870 4,910 4,620 4,650 6)E VALUE 4,650 8)A	STD DEV 0.180 0.170 0.170 0.170 0.170 0.160 STD DEV 0.030 0.040 0.040 0.040 0.030 0.060 STD DEV 0.250
	95. MFV REL CS, HARVARD (195 CM ANGLE 40.000 50.000 60.000 70.000 80.000 95. MEV REL CS, HARVARD (195 CM ANGLE 30.000 35.000 40.000 90.000 95. MEV ABS CS, HARVARD (195 CM ANGLE 90.000 95. MEV REL CS, HARVARD (195 CM ANGLE 90.000 95. MEV REL CS, HARVARD (195 CM ANGLE 90.000	6)C VALUE 4,930 4,810 4,810 4,810 4,680 4,530 4,540 6)D VALUE 4,860 4,870 4,910 4,650 6)E VALUE 4,650 6)A VALUE 4,650	STD DEV 0.180 0.170 0.170 0.170 0.170 0.160 STD DEV 0.030 0.040 0.040 0.030 0.040 0.030 0.060 STD DEV 0.250 STD DEV
	95. MFV REL CS, HARVARD (195 CM ANGLE 40.000 50.000 60.000 70.000 80.000 95. MEV REL CS, HARVARD (195 CM ANGLE 30.000 35.000 40.000 90.000 95. MEV ABS CS, HARVARD (195 CM ANGLE 90.000 95. MEV REL CS, HARVARD (195 CM ANGLE 95. MEV REL CS, HARVARD (195 CM ANGLE 90.000 95. MEV REL CS, HARVARD (195 CM ANGLE 95. MEV REL CS (195 CM ANGLE 95. MEV REL CS (195 CM ANGLE 100 100 100 100 100 100 100 10	6)C VALUE 4,930 4,810 4,810 4,810 4,680 4,530 4,540 6)D VALUE 4,860 4,910 4,910 4,650 6)E VALUE 4,650 6)A VALUE 4,650	STD DEV 0.180 0.170 0.170 0.170 0.170 0.160 STD DEV 0.030 0.040 0.040 0.030 0.040 0.030 0.060 STD DEV 0.250 STD DEV 0.080
	95. MFV REL CS, HARVARD (195 CM ANGLE 40.000 50.000 60.000 70.000 80.000 95. MEV REL CS, HARVARD (195 CM ANGLE 30.000 35.000 40.000 95. MEV ABS CS, HARVARD (195 CM ANGLE 90.000 95. MEV REL CS, HARVARD (195 CM ANGLE 90.000 95. MEV REL CS, HARVARD (195 CM ANGLE 90.000 95. MEV REL CS, HARVARD (195 CM ANGLE 25.700 35.800	6)C VALUE 4,930 4,810 4,810 4,810 4,680 4,530 4,540 6)D VALUE 4,860 4,910 4,910 4,620 4,650 6)E VALUE 4,650 8)A VALUE 4,650	STD DEV 0.180 0.170 0.170 0.170 0.170 0.160 STD DEV 0.030 0.040 0.040 0.040 0.040 0.040 0.030 0.060 STD DEV 0.250 STD DEV 0.080 0.080 0.080
	95. MFV REL CS, HARVARD (195 CM ANGLE 40.000 50.000 60.000 70.000 80.000 90.000 95. MEV REL CS, HARVARD (195 CM ANGLE 30.000 35.900 40.000 90.000 95. MEV ABS CS, HARVARD (195 CM ANGLE 90.000 95. MEV REL CS, HARVARD (195 CM ANGLE 90.000 95. MEV REL CS, HARVARD (195 CM ANGLE 90.000 95. MEV REL CS, HARVARD (195 CM ANGLE 25.700 35.800 40.900	6)C VALUE 4,930 4,810 4,810 4,810 4,680 4,530 4,540 6)D VALUE 4,860 4,570 4,910 4,620 4,650 6)E VALUE 4,650 8)A VALUE 4,650 4,678	STD DEV 0.180 0.170 0.170 0.170 0.160 STD DEV 0.030 0.040 0.040 0.040 0.040 0.030 0.060 STD DEV 0.250 STD DEV 0.080 0.080 0.080 0.080
2 2 2 3 7 5 1	95. MFV REL CS, HARVARD (195 CM ANGLE 40.000 50.000 60.000 70.000 80.000 90.000 95. MEV REL CS, HARVARD (195 CM ANGLE 30.000 35.000 40.000 90.000 95. MEV ABS CS, HARVARD (195 CM ANGLE 90.000 95. MEV REL CS, HARVARD (195 CM ANGLE 90.000 95. MEV REL CS, HARVARD (195 CM ANGLE 25.700 30.700 35.800 40.900	6)C VALUE 4,930 4,810 4,810 4,810 4,680 4,530 4,540 6)D VALUE 4,860 4,970 4,910 4,620 4,650 6)E VALUE 4,650 6)A VALUE 4,650 76)A VALUE 4,670 4,771 4,678 4,740	STD DEV 0.180 0.170 0.170 0.170 0.160 STD DEV 0.030 0.040 0.040 0.040 0.030 0.040 0.040 0.030 0.060 STD DEV 0.250 STD DEV 0.080 0.080 0.080 0.080

.

		4.000	
	61.200	4,638	0,080
	66.300	4.629	0.080
	71.300	4.608	0.080
	76.400	4.581	0.080
annan an a	81.400	4.511	0.080
	86.400	4,458	0 080
	and a second		
95, M	EV POL, HARVARD (1958)H	} 	
	UM ANGLE	VALUE	STD DEV
		0.000	0,028
		0.444	0.010
		0 170	
	30.700	0.130	0.007
	35,800	0,131	0.007
	40.900	0,112	0.007
	40,000	0,120	0.007
	51.1UU 57.000	V,115 0 004	0.007
	20.200	0,096	0.007
	61.200	0,099	0.007
	66,500	U,087	0.007
	71.300	U,069	0.008
	76,400	0.058	0.007
	81.400	0,038	0.007
	86.400	0,023	0.007
97. M	EV POL, HARWELL (1963)B		
	CM ANGLE	VALUE	STD DEV
	45 000	0 1114	0 0057
98, MI	EV REL CS. HARWELL (196 CM ANGLE	0) VALUE	STD DEV
98, MI	42.000 EV REL CS, HARWELL (196 CM ANGLE 25.600 40.900	0) VALUE 4.050 4.470	STD DEV 0.100 0.100
98. MI	42.000 EV_REL_CS, HARWELL (196 CM_ANGLE 25.600 40.900 51.100	0) VALUE 4.050 4.470 4.460	STD DEV 0.100 0.100 0.100 0.100
98. MI	42.000 EV_REL_CS, HARWELL (196 CM_ANGLE 25.600 40.900 51.100 61.300	0) VALUE 4.050 4.470 4.460 4.450	STD DEV 0.100 0.100 0.100 0.100 0.100
98. MI	42.000 EV_REL_CS, HARWELL (196 CM_ANGLE 25.600 40.900 51.100 61.300 71.400	0) VALUE 4.050 4.470 4.460 4.450 4.460	STD DEV 0.100 0.100 0.100 0.100 0.100 0.100 0.100
98, MI	49.000 EV_REL_CS, HARWELL (196 CM_ANGLE 25.600 40.900 51.100 61.300 71.400 81.400	0.1114 VALUE 4.050 4.470 4.460 4.450 4.460 4.390	STD DEV 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100
98, MI 98, MI	42.000 EV_REL_CS, HARWELL (196 CM_ANGLE 25.600 40.900 51.100 61.300 71.400 81.400 EV_POL, HARWELL (1960)A	0) VALUE 4.050 4.470 4.460 4.450 4.460 4.390	STD DEV 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100
98, MI 98, MI	42.000 EV_REL_CS, HARWELL (196 CM_ANGLE 25.600 40.900 51.100 61.300 71.400 81.400 EV_POL, HARWELL (1960)A CM_ANGLE	VALUE 4.050 4.470 4.460 4.450 4.460 4.390 VALUE	STD DEV 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100
98, MI 98, MI	42.000 EV_REL_CS, HARWELL (196 CM_ANGLE 25.600 40.900 51.100 61.300 71.400 81.400 EV_POL, HARWELL (1960)A CM_ANGLE NORM	VALUE 4.050 4.470 4.460 4.450 4.460 4.390 VALUE 0.911	STD DEV 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 SID DEV 0.020
98, MI 98, MI	42.000 EV_REL_CS, HARWELL (196 CM_ANGLE 25.600 40.900 51.100 61.300 71.400 81.400 EV_POL, HARWELL (1960)A CM_ANGLE NORM 10.200	VALUE 4.050 4.470 4.460 4.450 4.460 4.390 VALUE 0.911 0.029	STD DEV 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 STD DEV 0.020 0.031
98, M	42.000 EV_REL_CS_HARWELL (196 CM_ANGLE 25.600 40.900 51.100 61.300 71.400 81.400 EV_POL, HARWELL (1960)A CM_ANGLE NORM 10.200 12.300	VALUE 4.050 4.470 4.460 4.450 4.460 4.460 4.390 VALUE 0.911 0.029 -0.004	STD DEV 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 STD DEV 0.020 0.031 0.033
98, M	49.000 EV_REL_CS, HARWELL (196 CM_ANGLE 25.600 40.900 51.100 61.300 71.400 81.400 EV_POL, HARWELL (1960)A CM_ANGLE NORM 10.200 12.300 14.300	VALUE 4.050 4.470 4.460 4.460 4.460 4.460 4.390 VALUE 0.911 0.029 -0.004 0.024	STD DEV 0.100 0.100 0.100 0.100 0.100 0.100 0.100 STD DEV 0.020 0.031 0.033 0.039
98, M	49.000 EV_REL_CS, HARWELL (196 CM_ANGLE 25.600 40.900 51.100 61.300 71.400 81.400 EV_POL, HARWELL (1960)A CM_ANGLE NORM 10.200 12.300 14.300 16.400	VALUE 4.050 4.470 4.460 4.460 4.460 4.460 4.390 VALUE 0.911 0.029 -0.004 0.024 0.085	STD DEV 0.100 0.100 0.100 0.100 0.100 0.100 0.100 STD DEV 0.020 0.031 0.033 0.039 0.035
98, MI 98, MI	49.000 EV_REL_CS, HARWELL (196 CM_ANGLE 25.600 40.900 51.100 61.300 71.400 81.400 EV_POL, HARWELL (1960)A CM_ANGLE NORM 10.200 12.300 14.300 16.400 18.500	VALUE 4.050 4.470 4.460 4.460 4.460 4.460 4.390 VALUE 0.911 0.029 -0.004 0.024 0.085 0.123	STD DEV 0.100 0.100 0.100 0.100 0.100 0.100 0.100 STD DEV 0.020 0.031 0.033 0.039 0.035 0.035
98. MI 98. MI	49.000 EV_REL_CS, HARWELL (196 CM_ANGLE 25.600 40.900 51.100 61.300 71.400 81.400 EV_POL, HARWELL (1960)A CM_ANGLE NORM 10.200 12.300 14.300 16.400 18.500 20.500	VALUE 4.050 4.470 4.460 4.460 4.460 4.460 4.390 VALUE 0.911 0.029 -0.004 0.024 0.085 0.123 0.110	STD DEV 0.100 0.100 0.100 0.100 0.100 0.100 0.100 STD DEV 0.020 0.031 0.033 0.039 0.035 0.035 0.019
98, MI 98, MI	49.000 EV_REL_CS, HARWELL (196 CM_ANGLE 25.600 40.900 51.100 61.300 71.400 81.400 EV_POL, HARWELL (1960)A CM_ANGLE NORM 10.200 12.300 14.300 16.400 18.500 20.500 22.600	VALUE 4.050 4.470 4.460 4.460 4.460 4.460 4.390 VALUE 0.911 0.029 -0.004 0.024 0.085 0.123 0.110 0.104	STD DEV 0.100 0.100 0.100 0.100 0.100 0.100 0.100 STD DEV 0.020 0.031 0.033 0.039 0.035 0.035 0.019 0.018
98, MI 98, MI	42.000 EV_REL_CS, HARWELL (196 CM_ANGLE 25.600 40.900 51.100 61.300 71.400 81.400 EV_POL, HARWELL (1960)A CM_ANGLE NOFM 10.200 12.300 14.300 16.400 18.500 20.500 22.600 25.600	VALUE 4.050 4.470 4.460 4.460 4.460 4.460 4.390 VALUE 0.911 0.029 -0.004 0.024 0.085 0.123 0.110 0.104 0,113	STD DEV 0.100 0.100 0.100 0.100 0.100 0.100 0.100 STD DEV 0.020 0.031 0.033 0.039 0.035 0.035 0.035 0.019 0.018 0.015
98, MI 98, MI	42.000 EV_REL_CS, HARWELL (196 CM_ANGLE 25.600 40.900 51.100 61.300 71.400 81.400 EV_POL, HARWELL (1960)A CM_ANGLE NOFM 10.200 12.300 14.300 16.400 18.500 20.500 22.600 25.600 30.700	VALUE 4.050 4.470 4.460 4.460 4.460 4.460 4.390 VALUE 0.911 0.029 -0.004 0.024 0.085 0.123 0.110 0.104 0.113 0.125	STD DEV 0.100 0.100 0.100 0.100 0.100 0.100 0.100 STD DEV 0.020 0.031 0.033 0.039 0.035 0.035 0.035 0.019 0.015 0.013
98, MI 98, MI	42.000 EV_REL_CS, HARWELL (196 CM_ANGLE 25.600 40.900 51.100 61.300 71.400 81.400 EV_POL, HARWELL (1960)A CM_ANGLE NORM 10.200 12.300 14.300 16.400 18.500 20.500 22.600 25.600 30.700 40.900	VALUE 4.050 4.470 4.460 4.460 4.460 4.460 4.390 VALUE 0.911 0.029 -0.004 0.024 0.085 0.123 0.110 0.104 0.113 0.125 0.121	STD DEV 0.100 0.100 0.100 0.100 0.100 0.100 0.100 STD DEV 0.020 0.031 0.033 0.039 0.035 0.035 0.035 0.019 0.018 0.015 0.010
98, MI 98, MI	49.000 EV_REL_CS, HARWELL (196 CM_ANGLE 25.600 40.900 51.100 61.300 71.400 81.400 EV_POL, HARWELL (1960)A CM_ANGLE NORM 10.200 12.300 14.300 16.400 18.500 20.500 22.600 25.600 30.700 40.900 51.100	VALUE 4.050 4.470 4.460 4.460 4.460 4.460 4.460 4.390 VALUE 0.911 0.029 -0.004 0.024 0.085 0.123 0.110 0.104 0.113 0.125 0.121 0.105	STD DEV 0.100 0.100 0.100 0.100 0.100 0.100 0.100 STD DEV 0.020 0.031 0.033 0.039 0.035 0.035 0.035 0.035 0.019 0.018 0.010 0.10
98, MI 98, MI	42.000 EV_REL_CS, HARWELL (196 CM_ANGLE 25.600 40.900 51.100 61.300 71.400 81.400 EV_POL, HARWELL (1960)A CM_ANGLE NORM 10.200 12.300 14.300 16.400 18.500 20.500 22.600 25.600 30.700 40.900 51.100 61.300	VALUE 4.050 4.470 4.460 4.460 4.460 4.460 4.390 VALUE 0.911 0.029 -0.004 0.024 0.085 0.123 0.110 0.104 0.113 0.125 0.121 0.105 0.107	STD DEV 0.100 0.100 0.100 0.100 0.100 0.100 0.100 STD DEV 0.020 0.031 0.033 0.039 0.035 0.035 0.035 0.035 0.019 0.018 0.015 0.010 0.010
98, MI 98, MI	42.000 EV_REL_CS, HARWELL (196 CM_ANGLE 25.600 40.900 51.100 61.300 71.400 81.400 EV_POL, HARWELL (1960)A CM_ANGLE NORM 10.200 12.300 14.300 16.400 18.500 20.500 22.600 25.600 30.700 40.900 51.100 61.300 71.400	VALUE 4.050 4.470 4.460 4.460 4.460 4.460 4.390 VALUE 0.911 0.029 -0.004 0.024 0.085 0.123 0.110 0.104 0.113 0.125 0.121 0.105 0.107 0.073	STD DEV 0.100 0.100 0.100 0.100 0.100 0.100 0.100 STD DEV 0.020 0.031 0.033 0.039 0.035 0.035 0.035 0.035 0.019 0.018 0.015 0.010 0.012
98, MI 98, MI	49.000 EV_REL_CS, HARWELL (196 CM_ANGLE 25.600 40.900 51.100 61.300 71.400 81.400 EV_POL, HARWELL (1960)A CM_ANGLE NORM 10.200 12.300 14.300 16.400 18.500 20.500 22.600 25.600 30.700 40.900 51.100 61.300 71.400 81.400	VALUE 4.050 4.470 4.460 4.450 4.460 4.450 4.460 4.390 VALUE 0.911 0.029 -0.004 0.024 0.085 0.123 0.110 0.104 0.113 0.125 0.121 0.105 0.107 0.073 0.043	STD DEV 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 STD DEV 0.020 0.031 0.033 0.039 0.035 0.035 0.035 0.035 0.019 0.018 0.015 0.012 0.011
98, M	42.000 EV_REL_CS_HARWELL (196 CM_ANGLE 25.600 40.900 51.100 61.300 71.400 81.400 EV_POL, HARWELL (1960)A CM_ANGLE NORM 10.200 12.300 14.300 16.400 18.500 20.500 22.600 25.600 30.700 40.900 51.100 61.300 71.400 81.400	VALUE 4.050 4.470 4.460 4.460 4.460 4.460 4.390 VALUE 0.911 0.029 -0.004 0.024 0.085 0.123 0.110 0.104 0.113 0.125 0.121 0.105 0.107 0.073 0.043	STD DEV 0.100 0.100 0.100 0.100 0.100 0.100 0.100 STD DEV 0.020 0.031 0.033 0.035 0.035 0.035 0.035 0.019 0.018 0.015 0.013 0.010 0.010 0.010 0.011 0.011
98, MI 98, MI 98, MF	49.000 EV_REL_CS, HARWELL (196 CM_ANGLE 25.600 40.900 51.100 61.300 71.400 81.400 EV_POL, HARWELL (1960)A CM_ANGLE NORM 10.200 12.300 14.300 16.400 18.500 20.500 22.600 25.600 30.700 40.900 51.100 61.300 71.400 81.400 EV_D, HARVARD (1960) CM_ANGLE	VALUE 4.050 4.470 4.460 4.460 4.460 4.460 4.390 VALUE 0.911 0.029 -0.004 0.024 0.085 0.123 0.110 0.104 0.113 0.125 0.121 0.105 0.107 0.073 0.043 VALUE	STD DEV 0.100 0.100 0.100 0.100 0.100 0.100 0.100 STD DEV 0.020 0.031 0.033 0.039 0.035 0.035 0.035 0.035 0.035 0.019 0.018 0.015 0.010 0.010 0.010 0.011 0.011
98, MI 98, MI 98, MI 98, MI	42.000 EV_REL_CS, HARWELL (196 CM_ANGLE 25.600 40.900 51.100 61.300 71.400 81.400 EV_POL, HARWELL (1960)A CM_ANGLE NOFM 10.200 12.300 14.300 16.400 18.500 20.500 22.600 25.600 30.700 40.900 51.100 61.300 71.400 81.400 EV_D, HARVARD (1960) CM_ANGLE 20.500	VALUE 4.050 4.470 4.460 4.460 4.460 4.460 4.460 4.390 VALUE 0.911 0.029 -0.004 0.024 0.085 0.123 0.110 0.104 0.113 0.125 0.121 0.105 0.121 0.107 0.073 0.043 VALUE	STD DEV 0.100 0.100 0.100 0.100 0.100 0.100 0.100 STD DEV 0.020 0.031 0.033 0.039 0.035 0.035 0.035 0.035 0.035 0.019 0.018 0.015 0.013 0.010 0.010 0.011 STD DEV 0.020 0.012 0.011

-		40,900	0,000	. 0.08	0	
		51.100	-0,120	0.10	0	
		61.300	-0,110	0,16	0	

	98. MEV R. H.	ARWELL (1965)			
		CM ANGLE	VALUE	STD DE	v	
		31 300	-0 220	0 11	• n	
		41 600	-0,220	0 10	0 0	
		41.000	-0,400	0,10	0	
		51,700	- U - S 9 (I		U .	
		61,900	-0.120	0.13	0	
		72,000	-0,180	0.20	0	
_	98, MEV RPR,	HARWELL (19)	55)			
		CM ANGLE	VALUE	STD DE	V	
		31,600	0,260	0.14	O CHI≖	44,60
	an a la company de la comp	41.900	0.180	0.11	0 CHI=	44,40
		52.000	0.210	0.11	n CHI=	44.50
		62,600	0.270	0.18	n CHT=	43.90
				••••	••••	
	102. MEV REL	CS. HARVARD	(1958)0			
			VALUE		V.	
	a an an an an		VALUE A BOO		<u>у</u>	
		30.000	4,200	0.08	0	
-		40,100	4,200		U	
		66,400	4,620	0.08	0	
-						
	102. MEV POL	, HARVARL (1)	958)			
		CM ANGLE	VALUE	STD DE	¥	
		NORM	0,933	0.02	8	
		30.800	0.136	0.00	8	
		46.100	0.149	0.00	7	
		66.400	0.102	0 00	7	
	107. MEV POL	HARVARD (1)	2581			
		CM AND CL	VATUE	STD DE	······	
			VALUE 0.077	31D DE	V O	
• • • • • • • • • • • • • • • • • • • •			0,900	<u> </u>	5	11 A A
		30.800	0,15/	0.00	<i>y</i>	
		40 <u>,1</u> 00	0,151	0.00		
		66.500	0,103	0.00	/	
••••••••••••••••••••••••••••••••••••••					aparatik, Anna Kita Mita Ita	
	108. MEV INT	CS, HARVARD	(1964)			
-		CM ANGLE	VALUE	STD DE	¥ .	
		12.220	28,250	0.29	D	
		90,000				
	118, MEV REL	CS, HARVARD	(1958)C			
		CM ANGLE	VALUE	STD DE	V	
		20.500	3.630	0.06	1	
		25.800	3,990	0 06	, n	
		30 900	4 070	0.061	- 1	
		36 000	4 130	0.061	,	
		41 100	4 1 2 1	0,000	- 1	
er er an		41,109	7,120	U, UOI	<u>,</u>	terna ingen sie er i i i
		40,200	4.080 4.55	0,001		
		51.4 00	4,050	0,060	1	
		56.500	4,040	0,060	J	
		61.500	3,920	0,060]	
		66.000	3,970	.0.060)	
		71.700	3.910	0,061)	
		76.700	4.020	0.060	<u>ר</u>	
		81.700	4,000	0,060) (
		83.300	3,970	0.060)	
		86.800	4,110	0.06	כ	

88,200	4.020	0.060
	`	
TIN, MEV FUL, HARVARD (1990	VALUE	STD DEV
NORM	0 933	0 028
20.600	0,112	0.010
25.800	0.146	0.010
30,900	0,152	0.008
36,000	0,173	0.008
41.100	0,170	0,008
46,200	0,149	0.007
51,400	0,169	0,007
56,500	0.134	0.00/
61.20U	0,120	0.008
71 700	0.108	0.008
76.700	0.080	0.008
81.700	0.038	0.008
83.300	0,028	0.009
86.800	0,029	0.009
122. MEV INT CS. HARVARD (19	964)	
CM ANGLE	VALUE	STD DEV
12,260	25,850	0.210
90,000		
127. MEV POL, HARVARD (1958)	>	
CM ANGLE	VALUE	STD DEV
NORM	0,933	0.028
31.000	0,193	0.008
46,300	0,187	0.007
66.700	0,104	0,008
134. MEV INT CS, HARVARD (19	964)	de 19.000 a 20.000 a
CM ANGLE	VALUE	STD DEV
12.300	24,890	0.220
137, MEV PUL, HARVARD (1958))	
UMANULE	VALUE	
	0 105	0.005
Δ Κ Δ ΩΩ	0,199	0,000 0,007
66.900	0.133	0.008
137,5 MEV RP, HARVARD (1963))	
UM ANGLE	VALUE	STU DEV
43.900	0,202	0,052
	<u> </u>	0 068
72 500	0,078	0,000
82.100	0.251	<u> </u>
138.0 MEV POL, ORSAY (1963)		
138. MEV D, ORSAY (1963)A		
CM ANGLE	VALUE	STD DEV
31,000	0,130	0,030
41.300	0.190	0.060
61.400	0.230	0.130
	11 360	0.00

13	9.0 MEV A, HARVARD (1963)A			
	CM ANGLE	VALUE	STD DEV	
	NORM	1,000	0.040	
_	31.100	-0,368	0,029	
	41.400	-0,344	0.029	
400 V	51.700	-0.311	0,033	
	51,900 72 p.00	-0,231	0.046	
	82 100	-0,10/	n n79	
			0.072	
14	D, MÉV CNN, HARWELL (1965)A			
	CM ANGLE	VALUE	STD DEV	
		U,900	0,050	
		1 0000	0,030	
	90.000	1 ,00000	0,00001	
14	0.4 MEV RPR, HARWFLL (1964)			
	CM ANGLE	VALUE	STD DEV	
	31.400	0,306	0.026	CHI= 45.50
	41,700	0,264	0.033	CHI= 45,60
	52.000	V,190	0.039	CHI= 45.60
	51,800	V,101 0 209	0,032	UM1= 40,10 Cul- 45 90
	82 200	0.035	0,040 n n77	CHI= 97100 CHI= 45.00
	02.200	0,000	U , U / /	Aut- 49190
14	0.5 MEV R, HARVARD (1960)A			
and the second difference of the second of the second second second second second second second second second s	CM ANGLE	VALUE	STD DEV	
 .	31,100	-0,252	0.030	
	41.400	-0,227	0.028	
	51.700	-0,271	0,035	
	22 000 01,900	₩U,140 _0 154	0.037	
	82.100	=0.047	0,000	
-		••••	0,000	
14	0.7 MEV POL, HARWELL (1966)			
	CM ANGLE	VALUE	STD DEV	
	NORM	1,0000	0,0085	
	16,600	0,1657	0.0091	
		U,10/2	0,0089	
	20,700 25 0nn	0,1// 0 1804	0,007 0 0044	
	31.100	0.2114	0,0044	
	36.200	0,2057	0.0047	
	41.400	0,2089	0.0025	
	46.500	0,2006	0.0032	
••• ·	51.600	0,1981	0,0028	
	56.800	0,183	0.003	
-	61.900	0,1564	0,0032	
	66.900	0,1316	0.0032	
	/2.000	U,1068	0,0032	
	73,900 77 100	0,0977 0 081	0.0034	
	, 77.000	0.0718	0,003 0 0034	
	82.100	0.0532	0.0034	
	82.900	0,0466	0.0036	
	87.100	0,0157	0,0034	
	87.900	0.0144	0.0034	
**				
. 14	EIN NEV HOI DARMEEL (INOU)D			

...

·····

_ - -----

۰,

142.0 MEV POL, HARWELL (196)	יייייס (נ	
CM ANGLE	VALUE	STD DEV
NORM	0,911	0.020
5,190	-0,037	0.034
8.300	0,031	0.024
9.340	0,089	0.023
10,380	0,107	0.021
10,380	0,153	0.035
12.460	0,130	0.033
14,530	0.180	0.031
16,610	0,155	0.028
20,760	0,189	0.009
24,800	0,216	0.037
25,950	0,225	0.011
31.060	0,241	0.010
37,200	0,283	0,030
41,340	0,238	0,010
45,450	0,242	0,005
49,550	0,240	0.004
51,620	0,229	0.006
53,650	0,213	0,004
57.700	0,205	0.006
59.750	0,197	0.005
61,840	0,183	0.005
65,900	0,170	0,005
69,950	0,141	0.005
71,980	0,118	0.005
74,050	0.097	0.006
82.060 82.100 142.0 MEV D, HARVARD (1960)E	0,060 <u>0,051</u>	0,009 0,015
82.060 82.100 142.0 MEV D, HARVARD (1960)E CM ANGLE 12.460	0,060 0.051 VALUE	0.009 0.015 STD DEV
82,060 82,100 142.0 MEV D, HARVARD (1960)E CM ANGLE 12,460 20,760	0,060 0.051 VALUE -0.262 -0.008	0,009 0,015 STD DEV 0,063
82,060 82,100 142.0 MEV D, HARVARD (1960)E CM ANGLE 12.460 20.760 31.060	0,060 0,051 VALUE =0,262 -0,008 0,137	0,009 0,015 STD DEV 0,063 0,038
82.060 82.100 142.0 MEV D. HARVARD (1960)E CM ANGLE 12.460 20.760 31.060 41.340	0,060 0,051 VALUE -0.262 -0,008 0.137 0.156	0,009 0,015 STD DEV 0,063 0,038 0,033 0,031
82.060 82.100 142.0 MEV D. HARVARD (1960)E CM ANGLE 12.460 20.760 31.060 41.340 51.620	0,060 0,051 VALUE =0.262 -0,008 0.137 0,156 0.178	0,009 0,015 STD DEV 0,063 0,038 0,033 0,031 0,033
82.060 82.100 142.0 MEV D. HARVARD (1960)E CM ANGLE 12.460 20.760 31.060 41.340 51.620 61.840	0,060 0,051 VALUE =0.262 =0.008 0.137 0,156 0,178 0.076	0,009 0,015 STD DEV 0.063 0,038 0.033 0.031 0.031
82.060 82.100 142.0 MEV D. HARVARD (1960)E CM ANGLE 12.460 20.760 31.060 41.340 51.620 61.840 71.980	0,060 0,051 VALUE =0.262 =0.008 0.137 0.156 0.178 0.076 0.147	0,009 0,015 STD DEV 0,063 0,038 0,033 0,031 0,031 0,031 0,031 0,031
82.060 82.100 142.0 MEV D. HARVARD (1960)E CM ANGLE 12.460 20.760 31.060 41.340 51.620 61.840 71.980 82.060	0,060 0,051 VALUE =0,262 =0,008 0,137 0,156 0,178 0,076 0,147 0,286	0,009 0,015 STD DEV 0,063 0,038 0,033 0,031 0,031 0,031 0,031 0,031 0,070 0,099
82.060 82.100 142.0 MEV D, HARVARD (1960)E CM ANGLE 12.460 20.760 31.060 41.340 51.620 61.840 71.980 82.060 142.0 MEV R, HARWELL (1960)D	0,060 <u>0.051</u> VALUE =0.262 -0.008 0.137 0.156 0.178 0.076 0.147 0.286	0.009 0.015 STD DEV 0.063 0.038 0.033 0.031 0.031 0.031 0.070 0.099
82.060 82.100 142.0 MEV D, HARVARD (1960)E CM ANGLE 12.460 20.760 31.060 41.340 51.620 61.840 71.980 82.060 142.0 MEV R, HARWELL (1960)D CM ANGLE	0,060 <u>0.051</u> VALUE =0.262 -0.008 0.137 0.156 0.178 0.076 0.147 0.286 VALUE	0.009 0.015 STD DEV 0.063 0.038 0.033 0.031 0.031 0.031 0.070 0.099 STD DEV
82.060 82.100 142.0 MEV D, HARVARD (1960)E CM ANGLE 12.460 20.760 31.060 41.340 51.620 61.840 71.980 82.060 142.0 MEV R, HARWELL (1960)D CM ANGLE 24.000	0,060 <u>0,051</u> VALUE -0,262 -0,008 0,137 0,156 0,178 0,076 0,147 0,286 VALUE -0,224	0.009 0.015 STD DEV 0.063 0.038 0.033 0.031 0.031 0.031 0.070 0.099 STD DEV 0.051
82.060 82.100 142.0 MEV D, HARVARD (1960)E CM ANGLE 12.460 20.760 31.060 41.340 51.620 61.840 71.980 82.060 142.0 MEV R, HARWELL (1960)D CM ANGLE 24.000 32.700	0,060 0,051 VALUE =0,262 =0,008 0,137 0,156 0,178 0,076 0,147 0,286 VALUE =0,224 =0,203	0.009 0.015 STD DEV 0.063 0.038 0.033 0.031 0.031 0.031 0.031 0.070 0.099 STD DEV 0.051 0.051
82.060 82.100 142.0 MEV D, HARVARD (1960)E CM ANGLE 12.460 20.760 31.060 41.340 51.620 61.840 71.980 82.060 142.0 MEV R, HARWELL (1960)D CM ANGLE 24.000 32.700 45.700	0,060 0,051 VALUE =0,262 =0,008 0,137 0,156 0,178 0,076 0,147 0,286 VALUE =0,224 =0,203 =0,178	0.009 0.015 STD DEV 0.063 0.038 0.033 0.031 0.031 0.031 0.070 0.099 STD DEV 0.051 0.051 0.031
82.060 82.100 142.0 MEV D, HARVARD (1960)E CM ANGLE 12.460 20.760 31.060 41.340 51.620 61.840 71.980 82.060 142.0 MEV R, HARWELL (1960)D CM ANGLE 24.000 32.700 45.700 54.400	0,060 0,051 VALUE =0,262 =0,008 0,137 0,156 0,178 0,076 0,147 0,286 VALUE =0,224 =0,203 =0,178 =0,212	0.009 0.015 STD DEV 0.063 0.038 0.031 0.031 0.031 0.031 0.070 0.099 STD DEV 0.051 0.051 0.031 0.031 0.031 0.042
82.060 82.100 142.0 MEV D, HARVARD (1960)E CM ANGLE 12.460 20.760 31.060 41.340 51.620 61.840 71.980 82.060 142.0 MEV R, HARWELL (1960)D CM ANGLE 24.000 32.700 45.700 54.400 67.200	0,060 0,051 VALUE =0,262 =0,008 0,137 0,156 0,178 0,076 0,147 0,286 VALUE =0,224 =0,203 =0,178 =0,212 =0,213	0.009 0.015 STD DEV 0.063 0.038 0.031 0.031 0.031 0.031 0.070 0.099 STD DEV 0.051 0.051 0.031 0.031 0.042 0.040
82.060 82.100 142.0 MEV D. HARVARD (1960)E CM ANGLE 12.460 20.760 31.060 41.340 51.620 61.840 71.980 82.060 142.0 MEV R, HARWELL (1960)D CM ANGLE 24.000 32.700 45.700 54.400 67.200 76.100	0,060 0,051 VALUE =0,262 =0,008 0,137 0,156 0,178 0,076 0,147 0,286 VALUE =0,224 =0,203 =0,178 -0,212 =0,213 =0,147	0.009 0.015 STD DEV 0.063 0.038 0.031 0.031 0.031 0.031 0.070 0.099 STD DEV 0.051 0.051 0.051 0.031 0.042 0.040 0.063
82,060 82,100 142.0 MEV D, HARVARD (1960)E CM ANGLE 12.460 20.760 31.060 41.340 51.620 61.840 71.980 82.060 142.0 MEV R, HARWELL (1960)D CM ANGLE 24.000 32.700 45.700 54.400 67.200 76.100 84.000	0,060 0,051 VALUE =0.262 =0.008 0.137 0.156 0.178 0.076 0.147 0.286 VALUE =0.224 =0.203 =0.178 -0.212 =0.213 =0.147 =0.147 =0.142	0.009 0.015 STD DEV 0.063 0.038 0.031 0.031 0.031 0.031 0.070 0.099 STD DEV 0.051 0.051 0.031 0.031 0.051 0.031 0.042 0.040 0.063 0.136
82.060 82.100 142.0 MEV D, HARVARD (1960)E CM ANGLE 12.460 20.760 31.060 41.340 51.620 61.840 71.980 82.060 142.0 MEV R, HARWELL (1960)D CM ANGLE 24.000 32.700 45.700 54.400 67.200 76.100 84.000 90.000	0,060 0,051 VALUE =0.262 -0.008 0.137 0.156 0.178 0.076 0.147 0.286 VALUE -0.224 -0.203 -0.178 -0.212 -0.213 -0.147 -0.142 0.110	0.009 0.015 STD DEV 0.063 0.038 0.031 0.031 0.031 0.031 0.070 0.099 STD DEV 0.051 0.051 0.051 0.051 0.031 0.042 0.040 0.063 0.136 0.131
82.060 82.100 142.0 MEV D, HARVARD (1960)E CM ANGLE 12.460 20.760 31.060 41.340 51.620 61.840 71.980 82.060 142.0 MEV R, HARWELL (1960)D CM ANGLE 24.000 32.700 45.700 54.400 67.200 76.100 84.000 90.000	0,060 0,051 VALUE =0.262 =0.008 0.137 0.156 0.178 0.076 0.147 0.286 VALUE =0.224 =0.203 =0.178 =0.212 =0.213 =0.147 =0.142 0.110	0.009 0.015 STD DEV 0.063 0.038 0.031 0.031 0.031 0.031 0.070 0.099 STD DEV 0.051 0.051 0.031 0.051 0.031 0.042 0.040 0.063 0.136 0.131
82.060 82.100 142.0 MEV D. HARVARD (1960)E CM ANGLE 12.460 20.760 31.060 41.340 51.620 61.840 71.980 82.060 142.0 MEV R, HARWELL (1960)D CM ANGLE 24.000 32.700 45.700 54.400 67.200 76.100 84.000 90.000	0,060 0,051 VALUE =0.262 =0.008 0.137 0.156 0.178 0.076 0.147 0.286 VALUE =0.224 =0.203 =0.178 =0.212 =0.213 =0.147 =0.147 0.147 VALUE	0.009 0.015 STD DEV 0.063 0.038 0.031 0.031 0.031 0.031 0.070 0.099 STD DEV 0.051 0.051 0.031 0.051 0.051 0.031 0.042 0.040 0.063 0.136 0.131
82.060 82.100 142.0 MEV D. HARVARD (1960)E CM ANGLE 12.460 20.760 31.060 41.340 51.620 61.840 71.980 82.060 142.0 MEV R, HARWELL (1960)D CM ANGLE 24.000 32.700 45.700 54.400 67.200 76.100 84.000 90.000	0,060 0,051 VALUE =0.262 =0.008 0.137 0.156 0.178 0.076 0.147 0.286 VALUE =0.224 =0.203 =0.178 =0.212 =0.213 =0.147 =0.147 =0.142 0.147 =0.142 0.147	0.009 0.015 STD DEV 0.063 0.038 0.031 0.031 0.031 0.031 0.031 0.070 0.099 STD DEV 0.051 0.051 0.031 0.051 0.051 0.051 0.031 0.042 0.040 0.063 0.136 0.131 STD DEV 0.077
82,060 82,100 142.0 MEV D, HARVARD (1960)E CM ANGLE 12,460 20,760 31,060 41,340 51,620 61,840 71,980 82,060 142.0 MEV R, HARWELL (1960)D CM ANGLE 24,000 32,700 45,700 54,400 67,200 76,100 84,000 90,000 143.0 MEV D, HARWELL (1961) CM ANGLE 31,100 41,400	0,060 0,051 VALUE =0.262 =0.008 0.137 0.156 0.178 0.076 0.147 0.286 VALUE =0.224 =0.203 =0.178 =0.212 =0.213 =0.147 =0.147 =0.142 0.147 =0.142 0.147 =0.142 0.147 =0.142 0.147 =0.142 0.147 =0.142 0.147 =0.142 0.147 =0.142 0.147 =0.142 0.147 =0.142 0.147 =0.142 0.147 =0.142 0.147 =0.142 0.147 =0.142 0.147 =0.142 0.147 =0.142 0.147 =0.142 0.147 =0.212 =0.213 =0.147 =0.142 0.147 =0.212 =0.213 =0.147 =0.142 0.147 =0.212 =0.213 =0.147 =0.147 =0.212 =0.213 =0.147 =0.147 =0.147 =0.212 =0.213 =0.147 =0.147 =0.147 =0.213 =0.147 =0.147 =0.147 =0.212 =0.147 =0.147 =0.147 =0.212 =0.147 =0.147 =0.147 =0.212 =0.147 =0.147 =0.147 =0.147 =0.147 =0.147 =0.147 =0.147 =0.147 =0.147 =0.147 =0.147 =0.147 =0.147 =0.147 =0.147 =0.147 =0.147 =0.147 =0.142 =0.147 =0.142 =0.147 =0.142 =0.162	0.009 0.015 STD DEV 0.063 0.038 0.031 0.031 0.031 0.031 0.031 0.070 0.099 STD DEV 0.051 0.051 0.031 0.051 0.051 0.031 0.040 0.136 0.131 STD DEV 0.077 0.040
82.060 82.100 142.0 MEV D. HARVARD (1960)E CM ANGLE 12.460 20.760 31.060 41.340 51.620 61.840 71.980 82.060 142.0 MEV R, HARWELL (1960)D CM ANGLE 24.000 32.700 45.700 54.400 67.200 76.100 84.000 90.000 143.0 MEV D. HARWELL (1961) CM ANGLE 31.100 41.400 51.700	0,060 0,051 VALUE =0.262 =0.008 0.137 0.156 0.178 0.076 0.147 0.286 VALUE =0.224 =0.203 =0.178 =0.212 =0.213 =0.147 =0.147 0.05 0.147 0.147 0.147 0.147 0.147 0.212 0.147 0.147 0.147 0.213 0.147 0.147 0.147 0.147 0.213 0.147 0.110	0.009 0.015 STD DEV 0.063 0.038 0.031 0.031 0.031 0.031 0.070 0.099 STD DEV 0.051 0.051 0.051 0.051 0.051 0.040 0.136 0.131 STD DEV 0.077 0.040 0.050
82.060 82.100 142.0 MEV D. HARVARD (1960)E CM ANGLE 12.460 20.760 31.060 41.340 51.620 61.840 71.980 82.060 142.0 MEV R, HAHWELL (1960)D CM ANGLE 24.000 32.700 45.700 54.400 67.200 76.100 84.000 90.000 143.0 MEV D, HARWELL (1961) CM ANGLE 31.100 41.400 51.700 61.900	0,060 0,051 VALUE =0.262 =0.008 0.137 0.156 0.178 0.076 0.147 0.286 VALUE =0.224 =0.203 =0.178 =0.212 =0.213 =0.147 =0.147 0.213 =0.147 0.147 0.147 0.147 0.147 0.147 0.213 =0.147 0.147 0.147 0.147 0.147 0.147 0.213 =0.147 0.147 0.147 0.147 0.147 0.147 0.213 =0.147 0.147 0.147 0.213 =0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.212 =0.213 =0.147 0.147	0.009 0.015 STD DEV 0.063 0.038 0.031 0.031 0.031 0.031 0.070 0.099 STD DEV 0.051 0.051 0.031 0.051 0.051 0.051 0.040 0.136 0.131 STD DEV 0.077 0.040 0.050 0.060

÷

	•••	82.100 92.200	-0,037 -0,027	0,133 0,170
	143.0 MEV	A, HARWFIL (1963) D	
		CM ANGLE	VALUE	STD DEV
-	v	32.200	-0.405	0,032
		43.200	-0.377	0.037
-		54.600	-0.342	0.050
		65,000	-0.355	0,020
	<u>ىرىنى بولۇرد دەرە ئەلەر ئەرە رولۇلۇرە - دەرە بەرە بەرە مەرە مەرە مەرە مەرە مەرە م</u>	74.300	-0.198	0,079
		84.800	0.022	0.077
	-		VIUEL	0.174
- Contraction for	144.1 MEV	DIFF CS, HARWELL	(1966)	
		LM ANGLE	VALUE	STD DEV
Ballets as of the same of common service		NORM	1,0000	0,0088
		16.600	3,574	0.029
-		18.700	3,703	0,032
		20.700	3,779	0.026
		25.900	3,940	0.023
		31.100	4.041	0.024
The second se		36,200	4,018	0,018
	144.1 MEV	DIFF CS. HARWFU	(1966)	
		CM ANGLE	VALHE	STD DEV
		КОРМ	1 0000	
-				
		41,400	7,014	0.013
		40.500	4.019	0.014
		51.600	3,977	0.012
		56,800	3,944	0,011
		61.900	3,914	0.011
····		66.900	3,907	0,015
		68,000	3,859	0.017
		72.000	3.880	0.014
		73.000	3.850	0.018
		77 100	3 875	0 045
		77 900	3 ATA	
		22 4 0 ā	7 84 7	0.01/ 0.01/
.		02.100	2 079	V., V.1.4
		82.90U	3,837	0.016
	an an an and an	87,170	3,819	0,016
		87.900	3,833	0,015
	147.0 MEV	REL CS, HARVARD	(1958)D	
		CM ANGLE	VALUE	STD DEV
		12.400	3,790	0.100
		14.500	3,880	0,100
		16.600	4,020	0.100
_		18.700	4,030	0.100
		20.700	4.150	0.100
		22.800	4,140	0.110
		24.900	4,260	<u>0</u> 110
		31.100	4.220	0.110
2				tin tin tin tin tin tin tin tin tin tin tin
1	147.0 MEV	CH ANDLE	(1958)D VALUE	STA DEV
				310 DEV
		20.700	4,1/0	0,080
		25.900	4.290	0.080
		31,100	4,390	0,080
n Menti una presi generale provinsi na ungo a conjuntari no con		· · · · · · · · · · · · · · · · · · ·		
		36.300	4,310	0.080
••••••••••••••••••••••••••••••••••••		36.300 41.400	4,310 4,210	0.080 0.040
· ••••••••••••••••••••••••••••••••••••	- x	36.300 41.400 46.500	4,310 4,210 4,210	0.080 0.040 0.040

·

		· · · · · · · · · · · · · · · · · · ·
56,800	4,140	0.040
61,900	4,120	0.040
67.000	4,120	0,040
68,000	4,090	0.050
72.001) 4,070	0.040
72.900	4,14 0	0.050
77.100) 4.060	0.050
77,900) 4,120	0.050
82,100	4,070	0.050
82.900) 4,130	0.050
	4,110	0.050
87.600) 4,120	0.050
147.0 MEV INT CS, HARVA	RD (1964)	
<u>CM ANGLE</u>	VALUE	STD DEV
12.360	23,690	0,150
90,000)	· · · · · · · · · · · · · · · · · · ·
147.0 MEV POL, HARVARD	(1958)E	
CM ANGLE	VALUE	STD DEV
NURM	0,933	0.028
6.200	-0,004	0.014
8.340	0,045	0.014
10.400	0,103	0.014
12.400	0,126	0.011
14.500	0,155	0.014
16.600	0.180	0.010
18.700	0.193	0.015
20.700	0.198	0.009
22.400	0.183	0.015
24.900	0.227	0.014
25,900	0.203	0.011
31.100	0.228	0 009
36.300	0.247	0 011
41.400	0.239	0.006
46.500	0.233	0 006
51.700	0.229	0.006
56.800	0.205	0 006
61.900	0.171	0.006
	0 154	<u></u>
67.900 68.000	0 144	0,000 0,000
72 nnn	0 1 7 1	0.00 .2 .
72.000 72.000	0,100	0,000
77 100	0.198	<u>0004</u>
77.100 77 000	0,070 N AAA	n nne
82 1 nn	0 052	0.000
0011100 CR		0,000
SC+700 87.000		U.UU/
	0,030 0 004	0.000
	4.000	n.nna
155. MEV DIFF CS, ORSAY	(1961)	
CM ANGLE	VALUE	STD DEV
NURM		0.040
10.400	3,950	0,090
12,500	3.370	0.090
14,500	3.300	0,130
16.000	3,350	0.130
18.700	3.490	0.140
20.800	3,660	C.140
~ 22.900	3,870	0.070
325,000	3.580	0,060

26 000	3 620	0 060	
27.000	3,840	0.060	
29.000	3,750	0.060	
31.100	3,870	0.050	a an
35.500	3,850	0.050	- maximum and the
37,300	3,740	0,090	
41.500	3,880	0.050	
46.600	3,830	0.050	
51.700	3,820	0,050	
62,000	3,700	0.040	
	3,700	0.070	
72.000	3,710	0,040	
82 200	3 670	0.020	
89,800	3,710	0.040	
210. MEV POL. ROCHESTER (196	5 1 }		
CM ANGLE	VALUE	STD DEV	
NORM	1,000	0.022	
30.000	0,312	0,006	
40.000	0,3190	0,0085	
50.000	0,3030	0.0075	
60.000	0,240	0,006	
70.000	U,163	0.007	
80,000	0,084	0,007	
213. MEV REL CS, ROCHESTER (1961)A		
	VALUE 3 Ron	510 DEV	
	3 871	0 044	
50 000	3.740	0,040	
60.000	3.648	0.038	·
70.000	3.665	0.035	
80.000	3,662	0.031	
90.000	3,615	0.035	
213. MEV D, ROCHESTER (1962)			
CM ANGLE	VALUE	STD DEV	
30.000	0,200	0,016	
40.000	0,232	0.026	
50.000	0,240	0,018	
60.000	0,319	0.021	
	0 74 -	<u> </u>	
90.000	0,500	0.070	
anna an			
243. MEV R. DOPHECTED /10411	c		
213. MEV R, ROCHESTER (1961) CM ANGLE		STD DEV	
213. MEV R, ROCHESTER (1961) CM ANGLE 30.000	C VALUE -0.203	STD DEV	<u></u>
213. MEV R, ROCHESTER (1961) CM ANGLE 30.000 40.000	C VALUE -0,203 -0,133	STD DEV 0.012 0.017	
213. MEV R, ROCHESTER (1961) CM ANGLE 30,000 40,000 50,000	C VALUE -0,203 -0,133 -0,041	STD DEV 0.012 0.017 0.018	
213. MEV R, ROCHESTER (1961) CM ANGLE 30,000 40,000 50,000 60,000	C VALUE -0,203 -0,133 -0,041 0,071	STD DEV 0.012 0.017 0.018 0.026	
213. MEV R, ROCHESTER (1961) CM ANGLE 30,000 40,000 50,000 60,000 70,000	C VALUE -0,203 -0,133 -0,041 0,071 0,147	STD DEV 0.012 0.017 0.018 0.026 0.029	
213. MEV R, ROCHESTER (1961) CM ANGLE 30,000 40,000 50,000 60,000 70,000 80,000	C VALUE -0,203 -0,133 -0,041 0,071 0,147 0,248	STD DEV 0.012 0.017 0.018 0.026 0.029 0.042	
213. MEV R, ROCHESTER (1961) CM ANGLE 30,000 40,000 50.000 60,000 70.000 80,000 90,000	C VALUE -0,203 -0,133 -0,041 0,071 0,147 0,248 0,223	STD DEV 0.012 0.017 0.018 0.026 0.029 0.042 0.055	
213. MEV R, ROCHESTER (1961) CM ANGLE 30,000 40,000 50.000 70.000 80.000 90.000 213. MEV AR, ROCHESTER (1961	C VALUE -0,203 -0,133 -0,041 0,071 0,147 0,248 0,223	STD DEV 0.012 0.017 0.018 0.026 0.029 0.042 0.055	
213. MEV R, ROCHESTER (1961) CM ANGLE 30,000 40,000 50.000 70.000 80.000 90.000 213. MEV AR, ROCHESTER (1961 CM ANGLE	C VALUE -0,203 -0,133 -0,041 0,071 0,147 0,248 0,223)D VALUE	STD DEV 0.012 0.017 0.018 0.026 0.029 0.042 0.055 STD DEV	
213. MEV R, ROCHESTER (1961) CM ANGLE 30,000 40,000 50,000 70,000 80,000 90,000 213. MEV AR, ROCHESTER (1961 CM ANGLE 30,000	C VALUE -0,203 -0,133 -0,041 0,071 0,147 0,248 0,223)D VALUE -0,449	STD DEV 0.012 0.017 0.018 0.026 0.029 0.042 0.055 STD DEV 0.016	СНІ= 63.3
213. MEV R, ROCHESTER (1961) CM ANGLE 30,000 40,000 50.000 60,000 70.000 80.000 90,000 213. MEV AR, ROCHESTER (1961 CM ANGLE 30.000 40.000	C VALUE -0,203 -0,133 -0,041 0,071 0,147 0,248 0,223)D VALUE -0,449 -0,343	STD DEV 0.012 0.017 0.018 0.026 0.029 0.042 0.055 STD DEV 0.016 0.015	СНІ= 63.3 СНІ= 63.3

		60 000	-0 059	0.018	CU1- 43 30
		70 000	0 057	0 0 2 0	CUT = 47.70
		70.000	0,000	0.029	CHI# 03+30
		80,000	0,032	0.036	CHI= 63,30
213.	MEN KAB	, ROCHESTER	(1964)		
		CM ANGLE	VALUE	STD DEV	
		30,000	0,331	0.021	CHI= 61.22
		40,000	0,277	0.019	CHI= 61.13
		50.000	0.135	0.017	CHI= 61.07
<u></u>		80.000	-0.307	0 053	CHI=121.87
		90.000	-0.406	0.020	CHI-122.82
247	MEV POL	PACHESTER	(1961)8		
<u> </u>		PM ANDE		CTD DCH	
		UM ANGLE	VALUE	STD DEV	
		PURM	1,000	0.022	
		60,000	0,246	0.008	
		60.000	0,218	0.010	
		70.000	0,153	0.008	
		70,000	0,153	0.009	
		80.000	0.079	0.008	
		80.000	0.090	0.009	
	<u>,</u>			······································	
225.	MEV INT	CS. RERKELE	¥ (1954)		
		CM ANGLE		STD DEV	
			7ALUE 01 30A	STD DEV	
			21,000	<u> </u>	
		90.000			
276.	MEV POL	, BERLELEY ((1957)		
		<u>CM ANGLE</u>	VALUE	STD DEV	
		NORM	1,000	0.075	
		19.300	0,314	0.028	
		27.800	0,324	0.033	
		32,000	0.329	0.013	
		49.900	0,295	0.016	
		63,400	0.251	0 016	
		76.800	0.122	0 019	
		/		0101/	
310.	MEV D.	RERKELEY (19	257) 4		
0101		CM ANGLE	VALUE		
		23 100		<u>310 DEV</u>	
		20,000	0,249	0.079	
		22.000	<u><u>u</u> + <u>c</u> A A</u>	U_005	
		36,500	U,456	0.081	
		52.000	0.533	0.060	
		65.200	0,503	0.048	
		80.500	0,472	0.063	
310,	MEV R,	BERKELEY (19	957)A		
		CM ANGLE	VALUE	STD DEV	
		22.400	-0.324	0.139	
		34.400	-0.167	0,080	
		41.800	0.104	0 071	
		54.100	0.287	<u> </u>	and and a second se
		20.900	0.310	0.072	
		80.100	0.576	0 087	
		000 • ± 00	v, 270	u,uo/	
310	MEV REL	CS. REPRELE	Y (19541A		
01VI	in t it, i.	CH ANDER	・ 、 シンシュノス 		
		CH ANULE	VALUE	SIU DEV	•••••••••••••••••••••••••••••••••••••••
		0.DUU 7.400	10,/10	0,740	
			/ 460	0,580	
		8,700	4,850	0.370	
		11,000	4 420	0,000	

13.000	4,130	0.200
17.300	3,880	0.170
21.700	3,750	0.180
310. MEV POL. REPRETEY (1954)	2	
		CTD DEV
	VALUE	STU DEV
	1,000	0,043
6.500	-0,210	0.270
7.600	0,110	0.280
8.700	0,020	0,130
11.000	0,190	0.070
13.000	0,250	0.050
17.300	0.250	0.040
21.700	0,370	0.040
745 NEV DEL CO DEDUCTEV 7400		
SID. MEV MEL US, MERKELEY (195		
LM ANGLE	VALUE	STD DEV
21.600	3.640	0,060
32.305	3,600	0,070
42.900	3,750	0.050
53.400	3,680	0.070
63,900	3,650	0.070
76.200	3,700	0.070
89.400	3,600	0.070
345 NEV DOL DEDVELEY (4057)		
SID: MEV FUL, BERKELET (1957)	V . L . L m	
	VALUE	STD DEV
NUPM	1,000	0.040
21,600	0,305	0.020
32.300	0,378	0.022
42,900	0,379	0.013
53,400	0,303	0.022
63.900	0.251	0 025
76.200	0,142	0.025
345 MEV CARE DUDALA (1064)		
OID, MEV ONN, DOBNA (1964)A	N 4 1 115	
UM ANGLE	VALUE	STD DEV
90.000	0,760	0.150
315. MEV CNN, DUBNA (1965)		
CM ANGLE	VALUE	STD DEV
45.000	0.900	0 510
		0.210
315. MEV CKP, DUBNA (1965)		
CM ANGLE	VALUE	STD DEV
45,000	0,740	0.510
316. MEV A. BERKELEY (1956)		
CM ANGLE	VALUE	STO DEV
26 ANGL	-0 370	
51 ADD	0 007	U.U04
71,700	0,007	0.045
/o.out	0.230	0.050
320. MEV CNM, LIVERPOOL (1961)		
CM ANGLE	VALUE	STD DEV
90.000	0,770	0.110
	National Constants of the multiple state states are as a second	
JZO MEY MUL, MERKELHY (1964)	–	
EM ANGLE	VALUE	STD DEV
NORM	1,000	0.062
49.100	0,389	0.045

.

. .

		52,200	0,349	0.031
		55.300	U.324	0.025
		58,400	0,317	0.022
		61,600	0,255	0.020
		64.800	0.256	0.027
		68.100	0,191	0.024
		71.400	0,165	0.023
		74.700	0,187	0.023
		79,400	0,094	0.027
		83.500	0.054	0.024
		85,300	0,163	0,035
		87.400	0,008	0,025
		88,900	0.016	0.027
	330. MEV DJ	IFF CS, BERKELEY	(1954)0	
		CM ANGLE	VALUE	STD DEV
		NORM	1,000	0,100
		6.520	8,590	0,820
		7,280	6,340	0.610
		8,570	4,150	0.330
		9,200	3,620	0,310
		10.160	3,290	0.330
		11.120	4,560	0.250
		11.430	3,140	0.360
		12,930	3,450	0.310
		14.30u	3,490	0,290
		16.770	3,580	0.230
		18.630	3,440	0.270
		20,870	4,020	0.240
		22.300	3,620	0.290
		24,270	3,750	0.310
		26,030	3,660	0.310
		27,570	3,630	0.350
		29,700	3,810	0.350
3	530. MEV IN	NT CS, RERKELEY (1	.954)	
		CM ANGLE	VALUE	STD DEV
		18.000	22,240	0.700
		90,000	18 for the second to a product resources the	

REFERENCES AND COMMENTS
BERKELEY (1951), CHAMBERLAIN ET AL, PR 83, 923 (1951) DROPPED BECAUSE OF ABNORMALLY HIGH CHI SQUARED IN PHASE SHIFT ANALYSES
BERKELEY (1954), CHAMBERLAIN ET AL, PR 93, 1424 (1954)
BERKELEY (1954)A, CHAMBERLAIN ET AL, PR 95, 1348 (1954)
BERKELEY (1954)R, CHAMBERLAIN ET AL, PR 95, 1348 (1954) NORMALIZATION FROM PR 105, 288 (1957)
BERKELEY (1954)C, FISCHER ET AL, PR 95, 1350 (1954) (GRAPH ONLY) DATA FROM HESS, RMP 30, 368 (1958) Hemoved 330 Mev DIFF CS Below 6.0 Deg (3) / Because of Coulomb effects
BERKELEY (1954)D, CORK ET AL, PR 94, 1340 (1954) IMPOSSIBLE TO FIT. VARIES TOO FAST WITH ANGLE
BERKELEY (1956), SIMMONS, PR 104, 416 (1956)
BERKELEY (1957), CHAMBERLAIN, PR 105, 208 (1957) Wilson has absolute errors marked as relative
BERKELEY (1957)A, CHAMBERLAIN, PR 105, 288 (1957)
BERKELEY (1964), BETZ, THESIS, UCRL-11505 NORMALIZATION ERROR GIVEN AS +0.065 +0.058 IN ORIGINAL PAPER
DUBNA (1964)A, VASILEVSKY ET AL, SOVIET PHYSICS, JETP 18, 327 (1964)
DUBNA (1965), KAZARINOV ET AL, SOVIET PHYSICS, JETP 20, 565 (1965)
HARVARD (1956), KRUSE ET AL, PR 101, 10/9 (1956) Wilson has 3 PER CENT Absolute error
HARVARD (1956)A, KRUSE ET AL, PR 101, 1079 (1956) Removed because errur is much greater than for nearby minn, and rhel dat
HARVARD (1956)B, KRUSE FT AL, PR 101, 1079 (1956)
HARVARD (1956)C, KRUSE ET AL, PR 101, 1079 (1956) TABLE III, HYDROCARBON TARGET WILSON (IN HIS BOOK) HAS CS NORM±0,03 WILSON (IN HIS BOOK) HAS COMBINED THE HYDROCARBON AND LIQUID HYDROGEN RU
HARVARD (1956)D, KRUSE ET AL, PR 101, 1079 (1956) TABLE VI, LIQUID HYDROGEN TARGET WILSON (IN HIS BOOK) HAS COMBINED THE HYDROCARBON AND LIQUID HYDROGEN RU WE HAVE NOT USED CS(25,) (MULTIPLE SCATTERING)
HARVARD (1956)E, FRUSE ET AL, PR 101, 1079 (1956)
HARVARD (1958), PALMIERI ET AL, AP 5, 299 (1958) HENORMALIZED AS RECUMMENDED IN PREPRINT FROM JARVIS AND ROSE
HARVARD (1958)A, FALMIERI ET AL, AP 5, 299 (1958) WILSON (IN HIS BOOK) HAS WITHDRAWN CS NORM WE HAVE REMOVED CS(20,6) DUE TO CORMACKS MULTIPLE SCATTERING CALCULATION

· · · · · · · · · · · · · · · · · · ·
HARVARD (1958) H. PALMIERT ET AL. AP 5. 299 (1058)
RENORMALIZED AS RECUMMENDED IN PREPRINT FROM JARVIS AND ROSE
POL NORM ERROR IS FROM WILSONS BOOK
HARVAPD (1958)C, PALMIERI ET AL, AP 5, 299 (1958)
HARVARD (1958)D, PALMIERI ET AL, AP 5, 299 (1958)
WILSON (IN HIS BOOK) HAS WITHDRAWN ALL CS NORMS AND CS(4,13) AND POL(4,13)
WILSON (IN HIS BOOK) HAS RAISED ALL OF THE LOW ANGLE CS DATA BY 1.04, AND
THE EIDST IS IN VAIN. SINCE CS NORM - 0
HI AND HE WERE COMBINED FOR CS
CS(6.2), CS(8.34), CS(10.4), REMOVED BY US BECAUSE OF CORMACKS MULTIPLE
SCATTERING CALCULATION
HARVARD (1958)E, PALMIERI ET AL, AP 5, 299 (1958)
RENORMALIZED AND NORMALIZATION ERROR CHANGED AS RECOMMENDED IN PRIVATE
COMMUNICATION FROM WILSON AND PALMIERI
WILSON (IN HIS BOCK) HAS DITOR FOR CONSISTENCE FOR A DITOR AND A
HARVARD (1960), THURNDIKE, PR 119, 362 (1960)
HARVARD (1900)A, THORNDIKE, PR 120, 1819 (1960)
HARVAPD (1960)B, HWANG, PR 119, 352 (1960)
HARVARD (1963), HFE, PR 132, 2236 (1963)
HARVADD (1963)A. HEE DD 132. 744 (1963)
DATA CONTAINS SYSTEMATIC EDDOD OF A DEPCENT SAY AUTHORS
WILSONS BOOK HAS SLIGHTLY DIFFERENT ERRORS
HARVADD (1964), DALMIERT, NP 55, 463 (1964)
REMOVED 91 MEV INT US / EXPERIMENTALISTS SAY IT IS OUT OF LINE
HARWEIL (1960), TAYLOR ET AL, NP 16, 320 (1960)
CS NORY (ST. DEV. = 0.05) AND CS(30.7) REMOVED BECAUSE OF LARGE CHI SQUARED
IN 95 MEV ENERGY INDEPENDENT PHASE SHIFT ANALYSIS
HARWELL (1960)A, TAYLOR ET AL, NP 16, 320 (1960)
RENORMALIZED AS RECUMMENDED IN PREPRINT FROM JARVIS AND ROSE
HARWELL (1960)B, TAYLOR ET AL, NP 16, 320 (1960)
REJECTED SEE PR 134B, 365 (1964)
HARNELL (1960)C, TAYLOR ET AL, NP 16, 320 (1940)
RENORMALIZED AS RECUMMENDED IN PREPRINT FROM JARVIS AND ROSE
POL HAS BEEN OBTAINED BY COMBINING TWO RUNS
HILSON HAS 0.05 FOR POL NORM IN HIS BOOK
WILSON HAS 0,11 FCR THE ERROR ON POL(82.06) IN FIS ROOK
IN PHASE SHIFT ANALYSIS
REMOVED 142 MEV REL POL AT 78 DEG / NOT FIT BY PHASE ANALYSIS
HARWELL (1960)D, AIRD, PRL 4, 302 (1960)
MARMELL (1901), BIRD, NP 27, 586 (1961) CH ANGLES CORRECTED BY US

HARWELL (1963)A. CHRISTMAS AND TAYLOR, NP 41, 388 (1963) REMOVED BECAUSE OF EXCESSIVE ENERGY SPREAD HARWEIL (1943)B. CHRISTMAS AND TAYLOR, NP 41, 388 (1963) RENORMALIZED AS RECUMMENDED IN PREPRINT FROM JARVIS AND ROSE HARWEIL (1963)C, HANNA ET_AL, PLA PROGRESS REPORT (1963) RUTHERFORD HIGH ENERGY LAB, PAGE 34, UNPURLISHED, MORE RECENT THAN RESULT GIVEN BY WILSON HARWELL (1963)D, JARVIS, NP 42, 294 (1903) HARWELL (1984), JARVIS ET AL. NP 50, 529 (1964) 72,1 DEGREE DATUM QUESTIONABLE SAY AUTHORS HARWFIL (1965), JARVIS FT AL, NP 61, 194 (1965) HARWELL (1965)A, BROGDEN ET AL, PRESENTED AT THE INTERNATIONAL CONFERENCE ON POLARIZED PHENOMENA OF NUCLEONS AT KARLSRUHE, PAPER 8/5-5 HARWEIL (1966), COX ET AL, WILLIAMSBURG CONFERENCE ON INTERMEDIATE ENERGY PHYSICS PRELIMINARY VALUES INSTITUTE OF NUCLEAR SCIENCE (1961)A, NISIMURA, INSJ 45 (1961) AND PRIVATE COMMUNICATION FROM NISIMURA. SEE PR 133, B1495 (1964) CS(12.2) NOT USED BY US BECAUSE OF AMBIGUOUS TREATMENT OF BEAM WIDTH ON FORWARD RISE INSTITUTE OF NUCLEAR SCIENCE (1961)B, NISIMURA, INSJ 45 (1961) AND PRIVATE COMMUNICATION FROM NISIMURA. SEE PR 133, B1495 (1964) INSTITUTE OF NUCLFAR SCIENCE (1963), NISIMURA ET AL, PROG THEO PHYS 30, /19 (1963) LIVERPOOL (1961), ALLABY ET AL, PROC, PHYS, SOC. 77, 234 (1961) LOS ALAMOS (1966), JARMIE ET AL, PRIVATE COMMUNICATION, TO BE PUBLISHED MINNESUTA (1958), JOHNSTON ET AL, PR 111, 212 (1958) WILSON HAS WRONG (PHOBABLE) ERROR MINNESOTA (1959)A, JOHNSTON ET AL, PR 115, 1293 (1959) WILSON HAS WRONG (PROBABLE) ERROR MINNESUTA (1959) R. JOHNSTON ET AL, PR 116, 989 (1959) WILSON HAS WRUNG (PROBABLE) ERROR MINNESUTA (1960), JOHNSTON ET AL, PR 118, 1080 (1960) WILSON HAS WRONG (PHOBABLE) ERROR MINNESOTA (1960)A, JOHNSTON ET AL, PR 119, 313 (1960) WILSON HAS WRUNG (PHOBABLE) ERROR ORSAY (1961), CAVERSAZIO, JOURNAL DE PHYSIQUE 22, 628 (1961) WILSON GIVES ENERGY AS 156, MEV (WRONG) ALLSON GIVES TENTHS OF A REGREE AS MINUTES (WRONG) FILSONS ERROR WRONG FOR 68, AND 77,8 DEGREE DATA REMOVED 155 MEV DIFF CS AT 8,3 DEG / NOT FIT BY PHASE ANALSIS

ORSAY (1943), CAVERSAZIO ET AL, JOURNAL DE PHYSIQUE 24, 1048 (1963)

PROPPED BECAUSE OF ABNORMALLY HIGH CHI SQUARED IN PHASE SHIFT ANALYSES ORSAY (1953)A, CAVERSAZIO ET AL, JOUKNAL DE PHYSIQUE 24, 1048 (1963) PRINCETON (1954), YNTEMA, PR 95, 1226 (1954) NILSON HAS WRUNG (PROBABLE) ERROR PRINCETON (1959), REANPIED, PR 116, 738 (1959) JILSON HAS WRENG (PHOBABLE) ERROR _____ ROCHESTER (1961), TINLOT, PR 124, 890 (1961) RILSON HAS ABSOLUTE ERRORS MARKED AS RELATIVE ROCHESTER (1961)A, KONRADI, THESIS (1961) WILSON (IN HIS BOOK) HAS WRONG CS NORM ERROR المساسمة المتحدية المار المستهديتين ROCHESTER (3961)B, TINLOT, PR 124, 890 (1961) ROCHESTER (1961)C, ENGLAND, PR 124, 561 (1961) ROCHESTER (1961) D. FNGLAND, PR 124, 561 (1961) AR(90.0) REMOVED BEUAUSE OF LARGE CHI SQUARE IN ENERGY INDEPENDENT PHASE SHIFT ANALYSIS, SEE PR 135, B1128 (1964) ROCHESTER (1962), GOTOW ET AL, PR 127, 2206 (1962) ROCHESTER (1964), GOTOW ET AL, PR 136, 81345 (1964) RPH(60.0) AND RPR(70.0) REMOVED BECAUSE OF LARGE CHI SQUARE IN ENERGY INDEPENDENT PHASE SHIFT ANALYSIS. SEE PR 135, B1128 (1964) -----RUTHERFORD HIGH ENERGY LAB (1963), BATTY ET AL, NP 45, 481 (1963) RITHEPFORD HIGH ENERGY LAB (1964)A, BATLY, NP 51, 225 (1964) VALUE SEEMS LOW SAYS AUTHOR DROPPED BECAUSE OF ABNORMALLY LARGE CHI SQUARE (=57) IN ENERGY DEPENDENT ANALYSIS RUTHERFORD FIGH EVERGY LAR (1964)B, BATLY, NP 51, 225 (1964) RUTHERFORD HIGH ENERGY LAB (1965), ASHMURE ET AL, NP 65, 305 (1965) RUTHERFORD FIGH ENERGY LAB (1965)A, ASHMORE ET AL. NP 73, 256 (1965) SACLAY (1962), ABRAGAM ET AL, PL 2, 310 (1962) SACLAY (1965), CATILLON ET AL, PROCEEDINGS OF THE INTERNATIONAL CONFERENCE DM POLARIZED PHENOMENA OF NUCLEONS, KARLSRUHE, 1965, PAPER 8-4 WILSON, THE NUCLEON AUCLEON INTERACTION, INTERSCIENCE, 1963