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ANALYTIC CONTINUATION OF GROUP REPRESENTATIONS, VI 

Robert Hermann 
Stanford Linear Accelerator Center 

Stanford, California 

I. INTRODUCTION 

We continue work on the order of ideas introduced in the earlier papers of 

this series [4]. The main types discussed here are: Further development of 

the Gell-Mann formula [3] , and development of the theory of asymptotic behavior 

of matrix elements of group representations. 

II. THE GELL-MANN FORMULA IN TERMS OF 
THE ENVELOPING ALGEBRA 

Suppose that g is a Lie algebra, with a basis Zi (15 i, j, . . .Sn; summation 

convention) such that: 

[ 1 Zi'Z. = c.. J qkZk ’ 

Suppose ,P is an abelian Lie algebra, with a basis Xa (15 a, b, . . . < m). 

Suppose that g’ = 5 + ,P is a Lie algebra with ,P an ideal, i.e., 

c 1 zi’xa = CiabXb 
Form the elements: 

of U(s’), the universal enveloping algebra of s’ (A is the second order Casimir 

operator of I$. In [ 3] we have investigated the condition that [ 1 XA X; be a, 

expressible in terms of the Z’s, where $ is realized as a Lie algebra of skew- 

Hermitian operators on a Hilbert space H. Here, we will present a representation- 

independent version of this calculation, aiming to find conditions that be 
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expressible within the enveloping algebra of ,G’ in terms of the Z’s and the Casimir 

operator of s’. (Such a calculation has been done in [4] for the case 5 = S0(2,R), 

,P’ 2-dimensional, i.e. , g’ = Lie algebra of the group of rigid motions of the plane.) 

Let us proceed to the calculation. A is of the form g. .Z .Z.. For 
1.l 1 3 

x 6 ,p, x0 = [A’X] = fi(X)Zi ’ ga(x)xb, where each fi(X) is a linear polynomial 

in the X’s, and each ga is a real number. 

For Z E 5, we have 

[Z,XO] = ~, [Z,X]] = fi ~rZ,XJ)Zi + ga ([Z’XJ) Xa 

= [ 1 Z,fi(X) zi+ fi(X) z,zi + g,(X) c 1 
= [ 1 ‘, fi(X) ‘i + fi(X) ‘ij(‘) ‘j ’ ga(x) Cab(Z) xb? 

where cij(Z) and cab(Z) are defined by: 

c I z,zi = Cij(Z) z. J 

c 1 z,x, = Cab(Z) xb 
Thus, Z+ (cij(Z),) and kab(Z)) define matrix representations of K, that are, 

in fact, just the matrix representations corresponding to AdK acting in K, and ,P, 

respectively. Comparing these two calculations gives the relations: 

cz ,fj(x~ + cij(Z)fi(X) = fj (CZ~xl) 
gb ([z,x]) = gatx) Cab(Z) 

for X E ,P, Z e E 

Put: 

(2.1) 

(2.2) 

X’ = fi(X)Z i for X 6 P 
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For X,Y E I?, 

[x’,YIJ = fi(X)Zifj(Y)Zj - fi(Y)Zifj(X)Zj 

= fi(X)fj(Y)ZiZj - fi(Y)fj(X)ZiZj 

= fi(X)fj(Y) zi, zj c 1 
+ fi(X) ~j ([zi,y]) - ‘kj jl.i)ikty)) ‘j 
-fi (Y) ~j (~i,x]) - ‘kj (zijfktx)) ‘j 

Set this equal to: 

with 

fj(X,Y) Xj P-3) 

fj(X,Y) = fi(X)fj (pi,‘]) 

+ ‘jk (z ‘) pi(y)fk(x) - fi(x)fk(y)) 1 
Also, we have: 

[Z,X’] = [Z,X]’ for ZEIC, XE,P 

Hence, 

[bq’. Y’j + pc [Z,Y];J 

= [Z,fj(X,Y)] Zj + fj(X,Y) p,Zj] , or 

fk ([z>x] ‘y) + fk x, ([z’y]) 

“jk(‘) fj(X,Y) P* 4) 

-4- 



3 

Let us make explicit that fi is a second-degree polynomial: 

where (Xa) (1 < a,b, 5 m) is a basis for z. 

Then, Aabj(X, Y) can be supposed symmetric in the indices a, b, and skew- 

symmetric in X and Y. Suppose 

A’ = gab XaXb 

is a Casimir operator of ,G, i.e. , 

[I& A’] = 0 

If there are constants (cabi) such that: 

[ I Xi, X;, = A’ cabiZi, 

then we have a relation of the following form: 

=c 
Z abi i 

(2.5) 

(2.6) 

Thus, at the expense of addition to U(G) elements that are more general than 

polynomial “functions” of the elements of G, we have constructed a new Lie 

algebra whose basis is hit x~/~)’ 

The existence of the (c 
abi 

) and (gab) can be approached in two ways: 

Either they can be constructed explicitly in the needed special cases, or one can 

attempt to prove by using basic principles that conditions 2.4 imply conditions 

in the tensor ( Aabj(Xc,Xd)) that in turn imply it must be of the form 2.5. The 

latter approach involves a generalization of Kostant’s results [7] on the decomposition 
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of the universal enveloping algebra under the action of a linear group, and will 

not be attempted in this paper. Note, however, that 2.6 implies that the Gell- 

Mann formula holds for representations of G_‘, a topic we have analyzed in [3J , 

at least for representations in which the operators of P are “diagonalizable.” 

Thus, the conditions presented in [3] can be regarded as necessary conditions that 

a Gell-Mann formula of type 2.6 hold in the enveloping algebra. 

We now turn to computing some examples. 

III. THE GELL-MANN FORMULA FOR ROTATION GROUPS 

Let K = SO(n,R), ,P = Rn, with the representation of K on P just the 

“vector” representation of SO(n,R). We shall show that the Gell-Mann formula 

holds within the enveloping algebra of s’ = g + I?, in the sense described in 

Section II. We will not use the technique described in SectionII, but another that 

has interesting geometric consequences. 

Regard 5 as a Lie algebra of differential operators on Rn: Z.. , l_< 1, j, . . .-<n 
1J 

summation convention in force, are the generators of K, with 

z.. = 
1J 

x a. -xj ai 
i J 

( Notation: xi the Euclidean coordinates on Rn, aj = a 
a - XJ > 

,P is realized as the vector space generated by the xi. 

A=ZZ ij ij is the second degree Casimir operator of SO(n,R). 
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Following the Gell-Mann formula prescription, we construct the operators: 

xk 

with the following notations: 

Now, 

= z.., Xk z.. [ I 1J 1.l 
= 

( 
xi (jjk - xj ‘j.& zij 1 

= x i ‘ik 
- x. z 

J kj 

= 2xi Zik 

= 2xi ( xialc - Xkdi 1 

= 2 r2ak 
( 

- XkX ) 

(3.1) 

(3.2) 

r2 = xx i i, x = Xi& 

X(x,) = X,Xk = \ [ 1 
i I x,4 = -ak 
i I X, r2 = 2r2 

L I 
a,, r2 = 2xj 

kk,r2]= 2(2r2xk - 2r2xk) = 0 

k,Xk]= 2(2r2a1,-r2ak-$X) 

(3.3) 

(3.4) 
Hence, 

= 2x.3 - djkx - x a. 3 k k J 
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Thus, 

= 2r2 djkX + xj $ - 2xlaj) 
( 

-2 r26 
( jk - xjxk ) 

X 

-x -x 
( ) k j 

2r2 6 X + 2r2x a - 4r 2 ZZ 
jk j k 

xkdj 

- 2r26 
jk 

X + 2x x 
0 X + 2xkr2a. 3 - 2xkxjx 

z 2r2 x 3 
j k - Xkaj 

2 = 
2r xkj (3.5) 

Let 9’ = pg, the Lie algebra of the group of rigid motions of Rn, 

although we have calculated in terms of a realization of U($) by differential 

operators on R n, the results are also true in U(g), since the realization of 

U(G’) by differential operators on Rn is faithful. 3.4 is then interpreted as a 

Gell-Mann formula giving the Lie algebra of SO(n, 1) in terms of elements of 

U(s)): In fact, 

L I 
3- 3L 
2r ’ 2r Z 

jk (3. f-4 

which show that the Z and 3 
jk 

2r together generate the Lie algebra of SO(n, 1). 

3.4 has an interesting geometric interpretation. Interpret Xk as a first 

order differential operator, i.e., as a vector field on R n. 3.4 then says that 

this vector field is tangent to the surfaces 

r2 = constant , 
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i.e., to the spheres in Rn. Of course, the Z ij are also tangent to these spheres; 

the Z.. and X 
11 k when restricted to each such sphere generate a transformation 

group, whose Lie algebra is isomorphic with SO(n, 1). One knows that SO(n, 1) is 

just the group of conformal transformations (of the metric constant curvature) on 

the sphere. Now, the group generated by the Z.. acts as a group of isometries 
1J 

of this metric. It is reasonable, then, to suspect that the one-parameter group 

generated by each Xj on the spheres 3.6 is a group of conformal transformations. 

In fact, we will now prove that this is so, using methods of differential geometry [6]. 

We must calculate the Lie derivative 

= 2 d (Xk(xi)) dxi 

= 4 2xj dxd J ki - dxk ki - xk dxi dx. 
1 

= 4 2xjdx ( j d”k - d-r( xi dxi - “k dxi dxi) 

On the hypersurface 3.6, 

x. dx. 
J J 

= 0, hence with the relation, 

Xk (dxi dxi) = - 4Xk (dxi dxi), 

which shows that Xk is an infinitesimal conformal transformation on the sphere 

3.6. 

Thus we see that there is a close relation between the Gell-Mann formula 

for SO(n, 1) and the geometric fact that the group acts as a group of conformal 

transformations on the plane. 
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IV. DEFORmTION OF THE GELL-MANN ENVELOPING 
ALGEBRAIC RELATIONS 

Let us return to the general setting for the Gell-Mann formula, i.e., 

St = K_’ + Et is the semidirect sum of a Lie algebra K, and an abelian Lie 

algebra ,P. Let Zu, 1 _< u, v, . . .s m, be a basis for K, Xi, (15 lj, . . . 5 n) 

for a basis for P. Let 

xp = zu, xi zu 1 1 (4.1) 

In [5J we pointed out the following fact: If ,G’ is realized as a Lie algebra of 

operators on a vector space H, if the Zu and X0 given by 4.1 span a Lie 

algebra of operators, then the following operators also span the same Lie algebra, 

i.e., the Gell-Mann formula enables us to analytically continue representations: 

xA = z i [ 1 u, xi zu + A x. 
1 

Now, we would like to inquire what this relation may mean in terms of the 

enveloping algebra interpretation of the Gell-Mann formula given in Section II. 

In fact, interpret 4.2 as a formula in the enveloping algebra U($‘). Suppose 

that: 

where A’ is an element of the center of U(G’), and Z.. are elements of K. ‘v 1;1 
Then, 

E:x;]= [XP+AXi,X;+hX:j 

= AZij + A @Xi, X;] + k;, XJ) 

(4.2) 

(4.3) 

= AZij + $Xi, X;] jXj, X:il) 
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But, 

i 1 
xp, x. = 

J 

which is clearly symmetric in i and 

ku’ ‘i] ku’ xj] 

j (since [I&P]CNp, and [_P, ,P] = 0) 9 i.e. 9 

Z ij ’ hence: 

(4.5) 

Let 

(4.4) 

We can now prove another useful fact about the Gell-Mann formula. Let US 

compute : 

AK = z.. z.. 
1J 1J 

xAxA . . 
AA = e 

Assume that: 
I 1 
AA’ i xA = 0 

AK =B kf, X;-- p X;] 

(J-6) 

(4.7) 

=~2 i j'i j Axi ,,Ax~,Ax~ = Z [ 1 A, ,A 
ji j 

= 2(3 zji $) 

(4.8) 
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. 

Suppose now that ,P admits a positive definite quadratic form that is 

invariant under AdK. Suppose that the Xi were originally chosen to be 

an orthonormal basis with respect to the quadratic form. Then, it is readily 

verified that % is a Casimir operator of K, i. e. , is invariant under 

A%. Hence, so is the right-hand side of 4.8. But, this involves operators 

of G,h ( 
,Gh is the algebra generated by the Zu and 

is a nontrivial relation. 

V. RELATIONS BETWEEN THE CASIMIR OPERATORS FOR 

THE SO(n,R) GELL-MANN FORMULA 

Return to the situation considered in Section III, i.e. , K = SO(n,R), 

,p = R”, X. = x 
1 k’ 

= r2 ak - xk x + h”k 

Thus, we know from Section IV that: 

Xh X? i I- 1 A- = z 
r r ij = x.3. - x.3. . 

1 J J 1 

For each value of h, let us compute the Casimir operator of the SO(n, l)-algebra 

generated by Z. ., 
iJ 

XA 
I 

r , as a function of h and r . 
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xhXh = 
k k ( 

r2a x X+x k-k k >( 
r2d k -xkx+hr() 

= r2ak r2dk - r2akXkX + hr2dkr( 

- x Xr2dk + xkXxkX - hx k 
Xx k k 

+ A xkr2ak - r2X + hr2 

2 4 2 2 2 = 2r xkak+r A-nr X-r X 

2 2 2 2 
+ nhr + hr x - 2r xkak - xkr xak 

+ r2X + r2X2 - hr2 - Ar2X 

+ A r2X - hr2X + h2r2 

= 2r2 -m2+hr2-2r2+ r2-hr2+hr2 - hr2 X + r4A -r2X2+xkr2ak 

+ (-r2+-r2)X2+nhr 
2 + r2 (A2 - N 

ZZ r4 A - r2X2 + (2-n)r2X + nU2 -t r2 (A2 - A), 

hence: 
x; x; 

A; = -- = r2A - X2 + (2-n)X + (nh + h2 - M 
r r 

= % + A(n - 1 + A) 
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Now, G - AK is the Casimir operator of the SO(n, l)-algebra generated by 

the Z ij’ X:/r. Hence, we have: 

Theorem 5.1: The second degree Casimir operator of the 

representation of SO(n, 1) defined by the Gell-Mann formula 

has the value: 

A(n - 1 + A) 

Finally, notice that there is a curious resemblance between this theory and 

that of the group-theoretic treatment of the hydrogen atom, by means of the 

Runge-Lenz vector [2]. 

VI. COMPLEXIFICATION OF THE GELL-MANN FORMULA 

Most of our work up to now has been concerned with semidirect product 

algebras 9’ = 0 and with K a compact Lie algebra. ‘v 

Suppose we consider an algebra of the form: 

,G” = K” + PO, with PO, P” = 0 , and such that rv N [ 1 N N 
(a) I$ and 5’ have the same complexification, i.e., 5 + i ,K is isomorphic with 

K” + i go. ‘y 

(b) ,P” + i go is isomorphic to ,P + i g, and the isomorphism is compatible 

with (a). 

Suppose the Gell-Mann formula holds within the enveloping algebra of s’: 

Does it hold within G,’ ? For example, we have proved in the last section that 

the enveloping-algebra Gell-Mann formula holds for K = SO(4,R), E = vector 

representation. Choose 

A Gell-Mann formula for 

K0 = SO(3,l). 

this would give 

_G” is then the Poincare Lie algebra. 

in a way of relating the de-Sitter Lie 
* 

algebra to the Poincarg Lie algebra. 
* 
Such a relation has been discovered by R. Hwa, and one of the aims of this 
section is to show how this relation follows from the general theory. 
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Suppose that A0 is a Casimir operator of E”, and that, for X0 E go, we 

form: 

Suppose A” is a Casimir operator of 

skew-symmetric bilinear mapping that 

[ 1 A’, X0 

go. Suppose To : PO x go 4-K’ is a 

commutes with the action of Ad K”. Form: 

[ 1 X0’, Yof - Aof To (X0, Y”) for X0, Y0 tz go (6-l) 

Notice that it vanishes if and only if its complexification vanishes. Thus, if A 

is a CaSimir Operator Of K,; if T : ,P x P N -5 is a skew-symmetric bilinear 

mapping commuting with Ad K; if A’ is a Casimir operator of s’, such that: 

(1) X’ = k,X] , PI, Yj = A’ T(X,Y) for X,Y 6 P, 

(2) A = A’, T = To, Ato = A’ under the isomorphism of the 

complexification of 5” and I& To N and x, 

then 6.1 does in fact vanish also, i.e. , the Gell-Mann formula holds within 

the enveloping algebra. 

There is, however, a new feature when K” is not a compact Lie algebra. 

The Casimir operator Aof of Go can have values of any sign in different 

representations. Thus, 6.1 is zero, we have 

1 = l To (X0, Y”) 

Thus, depending on the representation chosen for go, we can realize two different 

Lie algebras. ( For example, as is well-known, the Poincare algebra can be 

approximated by SO(3,2) and SO(4,l)). 
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VII. GROUP REPRESENTATIONS THAT ARE LINEAR IN 

THE DEFORMATION PARAMETER 

As we have indicated in [4], Part V, (following Nijenhuis and Richardson [8J ) 

there is a relation between deformations of group and Lie algebra deformations. 

Such relations are important, for example, in problems concerning the integral 

representation and asymptotic behavior of matrix elements of group representations. 

In [4], Part V, these relations were worked out in detail for the simplest example, 

SL(2,R). In this section we present several further general remarks, preparing 

the way for applications to representations satisfying the Gell-Mann formula in 

the following section. Let G, be a Lie algebra, p a representation of G by CI, 

linear transformations on a vector space H. Let V be the space of linear 

operators: H - H, and let $ be the following representation of G in V: 

&W(A) = PWJ [ 1 for A c V, XEG. 

Suppose pA is a one-parameter family of such representations, reducing to 

the given one at A = 0, of the form: 

p,(X) = P(X) + hw(X), (7.1) 

where o is a linear mapping g--V, i.e., a 1-cochain in Cl($). We know that 

w must satisfy the two conditions: 

(a) dw= 0 

03 p (3 9 o(Y)] = 0 for X, Y e G. N 

Theorem 7.1 Suppose X is a fixed element of G,, and A is an element 

of V such that: 

[P (WA] = o(X) (7.2) 

[A,WX)] = 0 (7.3) 

- 16 - 



The operator 

gh = exp (AA), exists, i.e., through the usual 

power series expansion. Then, 

Bh P,(x) = P (X) BA (7.4) 

Proof: If the usual power sense expansion for Bh holds, then 

[P(X), Bh] = h Bh-’ [p(X), B] 

= A BA-l [p(X), A] B 

= A Be(X) 

This proves 7.4. 

Note that BA is an intertwining operator between p,(X) and p(X). The 

physical interpretation of Bh is then that it is the “S-matrix” relating p(X) to 

ph(X). For if p,(X) and p(X) were Hamilton operators on the Hilbert space 

H that were the Hamiltonians of physical systems, then 7.4 is the characteristic 

property of the ‘S-matrix. If 

Note also that 7.4 implies (at least formally) that 

BA exP(t PA(X)) = exp (tP(X)) BA (7.5) 

This relation was our starting point in [4] , Part V, and we saw there how it 

could be used in the case G = 
( 

SL(2,R) 
> 

to derive results about the asymptotic 

behavior of the matrix elements of its representations. 

Now, we turn to consideration of a class of representations for which one 

can find this intertwining operator BA explicitly. However, we must change 

our emphasis from algebra to geometry. 
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VIII. CONTINUATIONS AND COCYCLES DETERMINED 

BY TENSOR FIELDS 

In this and the following sections, we will need the theory of differentiable 

manifolds and transformation groups, for which we refer to [1] and [6) . 

Let M be a manifold, with F(M) its ring of real-valued, Coo functions. 

(All manifolds, maps, tensor fields, etc. will be of differentiability class Coo 

unless mentioned otherwise.) 

A vector field, X, is a derivation of the ring F(M), i.e., a linear map 

f-X(f) such that 

X(fIf2) = X(f1)f2 + f2fl X(f2) for fI,f2 e F(M) 

V(M) denotes the set of vector fields. It is a Lie algebra, under the Jacobi 

bracket operation: 

f-+-G Y] (f) = X(Y(f)) - Y( X(f)) . 

If T is a tensor-field on M, X c V(M), X(T) denotes the Lie-derivative of 

T by X, a tensor-field of the same algebraic type as W. For example, if T is 

an r-fold covariant tensor field, i.e., an F(M) multilinear map 

(X1~~~~,Xr)~T(X1,.~~~,Xr), EF(M), for X1,...,Xr eV(~j, 

X(T) (XI,. . . ,X,) = X T(XI,. . . , Xr)) - ‘I’ ([W5] ,X2,. -. ,Xr) -. . l 

. . . . P’XJ 
Lie derivative acts as a derivation on tensor-products of tensor fields. 

Wl@ T2) = X(T1) 63 T2 + T1 G3 X(T2) . 
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Suppose that ,G is a Lie algebra of vector fields on M, and T is a tensor- 

field such that: 

X(T) = o(X)T for each X E s. 

o(X) is to be an element of F(M). 

Now, for X,Y E G, 

[KY] (T) = +X,Y])T 

= X(&Y) T) - Yk(X)T) 

T + o(Y) w(X)T - Y 

= X(w(Y))T - Y(,(X)) T, or 

x (w(Y)) - Y(wtX))- w([X,Y]) = 0 

Let V be the space of linear mapping: V(M)-V(M). For each 

X E G, defineq5(X) (A) as the commutator [X,A]: f-X A(f)- AX(f) . 

each o(X) as an element of V: 

f--+-w(X) f. 

(8.1) 

AcVtW, 

Interpret 

Then, o can be interpreted as 1-cochain of G with coefficients on V, i.e. , 

an element of Cl(q5). 8.1 then says that this is a cocycle, since: 

k% w(Y)] (0 = +Jtqtf) 
Since further [o(X) ,0(Y)] = 0, we know from our earlier work that defining 

P,(X) = x + Auw) for X E G 

gives a one-parameter family of representations of G by operators on F(M). 
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Let us see how o changes when T is changed in the following way: 

T’ = f T, for a function f e F(M). 

Then, 

X(T’) = o’(X) T’ 

= X(f) T + f&(X) T, or 

w’(X) = ( xp + W(X) ) , 01: 
W’W = X(log f) + w(X) (8.2) 

Thus, if log f e F(M), 0’ differs from o by a coboundary. 

Suppose that X is a fixed element of G, and we want to satisfy the hypotheses 

of Theorem 7.1, i.e., we want to find an A E V such that: 

c 1 X,A = o(X) 

[ 1 A,w(X) = 0 

We can satisfy the second of these conditions by demanding that A result from 

multiplication by a fixed function gx. Then, the first condition requires that: 

%g,) = o(X) (3.3) 

Suppose, in local coordinates (x1,. . . ,xn) for M, X = Al a/ax, + . . . 

+ An d/ax . n Then, gx is a solution of the differential equation: 

agX +A -= 
n ax, (J(X) ’ 

Let us examine the case where T is a differential form of the same degree 

as the dimension of M, i. e . , a volume-element differential form for M. 
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Suppose local coordinates (XI,. . . ,xn) chosen so that: 

T = dxlA... Adx , n 

and x = AI a/ax, + . . . + An a/ax, . 

Then, 

X(T) = X(dxI)Adx2A...Adxn + dX1Ax(dx2)A... Ad”, 

+ . . . dxlA . ..AX(dx.) 

= + . ..+ dxlA...~dxn, or 

aA 
aA 

o(X) = x t- . . . + 
n ax . 

1 n 
(8.4) 

Solving 8.3 means solving 

a+ 
A1 ax1 

. ..+ A &L- 
n axn - 

gE 

> 
(8.5) 

n 

One case where the solution can be written down can be immediately suggested. 

Suppose Al is a function AI of xl alone, A2(x2), etc. Then, g can 

be taken as: 

g=logA 
1 

+logA2+ . . . +logAn 

IX. CALCULATION OF THE INTERTWINING OPERATOR 

BA FOR CERTAIN REPRESENTATIONS 

(8.6) 

Let G be a non-compact, connected semisimple Lie group with finite 

center, K be its maximal compact subgroup, G, = K f P its Cartan N N 
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decomposition, i. e . , 

Let X0 be an element of ,P. Then, Ad X0 has real eigenvalues and is completely 

reducible [2 ] . Let HJXo) be the subspace of G spanned by the eigenvectors 

of Ad X0 with non-negative eigenvalues. H,(Xo) is a subalgebra of G,: 

Let H(Xo) be the connected subgroup of G generated by II( 

Let M’ be the coset space G/H, and let p, be the coset of the identity elements. 

Let E-(X0) be the subalgebra of G spanned by the eigenvectors of Ad X0 for 

negative eigenvalues. Thus G,, as a vector space, is the direct sum 

II + E-(X0). Let N-(X0) be the connected subgroup of G generated by 

the subalgebra E-(X0). Let M be the orbit N-(X0) . p . It is known that it 
0 

is an open subset of M, and the complement of M in M’ is a set of measure 

zero. (Typically, it is these spaces M that are used by Gelfand and Neumark 

to construct unitary representations of the classical groups [ 23 ). Now, G 

acts as a global transformation group on M’ = G/H. Hence, the Lie algebra 

,C acts on F(M’) as a subalgebra of V(M’): 

X(~)(P) = 3 lat f (exp (-xqp 
( ))I 

t4 

for X c G, f = F(M’), p E M’ 

Since M is an open subset of M’, ,G also acts as a Lie algebra of vector fields 

on M, i.e., ,G can be identified with a subalgebra of V(M) . 

In this section we will use a volume element-differential form dx on M 

that is invariant under N-(X0). Using this, we will, following the pattern 
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described in the last section, define o(X), for X c 5, as the function in F(M) 

such that: 

and define 

X(dx) = o(X)dx for X E C& 

Pptf) = xcf, + u(X) f for f eF(M), X E G,. 

Notice then that: 

w (Iy(xo)) = 0 

Given X E 5, our problem is to find the intertwining operator BA such 

that: 

P,(X) = B-A P,(X) Bh 

We shall first deal with the following case: 

X belongs to A,, a maximal abelian subalgebra of P which contains X also. ed 0 

Now, the elements of Ad 4 can be simultaneously diagonalized, and have 

real eigenvalues. Let 0 1’ . . . . ,g n be the non-zero, real-valued forms on 

,A resulting from this diagonalization. (The al, . . . , on are not necessarily 

distinct as linear forms on &.) For each ai, 15 i sn, there are elements 

Wi, Wmi 6 G such that: 

[ 3 
x,wi = c(X) w, 

[ I x,w-i = - a.(X)W. 
1 1 

for X e & 

For each i, there is a decomposition: 

W 
i 

= zi+Yi, 

wsi = z. -Y. 
4 1 
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1 

with Zie I$, Yi E P,, B(Zi,Zi) = - 1, 13(YiYi) = 1, 

= Oi(X)Yi, X,Yi 
c I 

= Oi(X)Zi for XEA. 

B( 9 ) is the Kelling form on g: it is negative definite on I$, positive 

definite on E. ) 
Suppose the ordering of the o’s is chosen so that: al,. . . , 0, are 

the forms that are non-zero on X0, while om+l(Xo) = 0 = . . . bn(Xo). 

Then, E-(X0) is spanned by Wel, . . . . WVm. Hence the bracket C Wei. Wmj 1 

is, if non-zero, an eigenvector of Ad A,. We see that E-(X0) is a nilpotent 

subalgebra of 5. M then admits a coordinate system (xl,. . . ,xm) such that: 

xi ( exp (tlWvl) exp(t2W-2) l l - exP ttmWmm) - PO 
) 

= ti 

for 1SiSm. 

In terms of this coordinate system for M, the vector field on M generated by 

an element X c A takes the form 

m 

X= c 
a - g ifx) xi K (9.1) 

i=l i 

The volume element-differential form dx on M that is invariant under N-(X0) 

takes the form: 

dX = dXIA dX2A...hdXm 

Hence, if o(X) is defined by 8.4, we have: 
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We see that everything is set up so that 8.6 applies: 

X(g) = o(X), where g = log (-l)m a,.(X)... am(X)xI...xm) 

This, combined with our previous remarks, proves the following 

Theorem 9.1 For X 6 A, the following intertwining operator links 

PAW and P,(X): 

for f e F(M). 

The important qualitative point to keep in mind is that the coordinate system 

t X 1 ,*a-, X m) valid in M’ is that for which the vector fields of b take the 

form 9.1. 

So far, we have used one property of the space M, namely that the orbit, 

N-(X0) . p is as open, dense subset which admits a coordinate system having 

nice properties. 

Now, this method of writing down the operators is not the most convenient for 

the purposes of physics: One wants the decomposition under K to be more 

explicit. This can be remedied by using a volume element that is invariant under 

K. In fact, one knows that K acts transitively on M. Let dp be a volume 

element-differential form for M that is invariant under the action of K. Suppose: 

X(dp) = w’(X)dp for X E G. 

Then, 

p,‘(x)(f) = X(f) + Aw’(X)f for f E F(M’) 
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defines another deformation of the representation po. Let us calculate ph’ in 

terms of ph : Suppose that 

dp = h dx, where h c F(M’) 

Then, for X C 2 

X(dp) = o’(X) dp 

= X(h)dx + h o(X) dx 

= X(log h)dp + w(X) dp, or 

o’(X) = X(log h) + o(X), hence: 

PA’(X) = p,(X) + A X (log h) 

The key fact is that X(log h), as an operator, commutes with the intertwining 

operator between p,(X) and p,(X). Thus, we have: 

Also, 

hence, 

= al(X)xl.. . am(X)xm 

hh ix + AX(log h) h)+ = X 

+ A X(log h) for f E F(M’). 

(9.3) 

P’(X) = (ol(X)xl. * l a,(X)x,) A P,(X) pp. - .xm)+ 

= ( al(x)...Xm h 
) ( 

P,(X) + h Wlog h)) p&X). . . xm) -A 

= ( al(X)xl.. . x,h )” (PO(W) (a,tX)x,. - -xmh) -A (9.4) 
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This is the most useful form of the indentity for the application to group 

representation theory. Let F(M’,C) be the complex-valued, Coo functions on 

M’, i.e., F(M’C) = F(M’) + iF(M’). Let us make F(M’, C) into an 

(incomplete) Hilbert space by adopting the following inner product: 

<$I z/J’> = 
/ V(P)* +‘(P) dp 
M’ 

for $4, $‘eF(M ,C) 

Consider F(M,C) = F(M) + iF(M) as a subspace of F(M’ , C), i.e., F(M, C) 

consists of those Coo functions that can be extended smoothly from M’ to M. 

Since the complement of M’ in M is (relative to the measure defined by dp) 

a set of measure zero, F(M, C) is (relative to the Hilbert space topology) dense 

in F(M’,C), and 

< $I@‘> = / J(P)* ‘4 ’ (P) dp for z,J 1,4’ E F(M,C). 

M 

Thus, for 5 6 G, $ ,J, ’ IZ F(M,C), 

<pi(X) gJ I$’ > = X(q)*+ h*w’(X)$*)Ji’ dp 
M 

= - #+ $’ 0’ (X) + A*o’ (X) ++ +’ 

= Q( (- x I- (A* - 1) w’ (X) 
> 

$1 > 
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We see that: ph’(G), acting the domain F(M, C), is skew-Hermitian if and only 

if 

A* + A = 1, or (9-5) 

A is the form l/2 + i b, with real b. 

We are now in position to show how to calculate the asymptotic behavior of 

matrix elements: 

<zjtl Ph(exp(tX)) $‘> as t-co 

X. ASYMPTOTIC BEHAVIOR OF MATRIX ELEMENTS 

Suppose the group G acts on a manifold M’ as a transformation group. Let 

pht ‘be a representation of G by operators in an (incomplete) Hilbert space H. 

Suppose, in fact, that H is just F(M’, C), the space of complex-valued, Coo 

functions on M’, with the inner product given by: 

<q qt> = J $ (P)* Ic) ’ (P) dp, 
M 

where dp is a volume element-differential form on M’. Suppose p;(X) is 

just the action $-+X(e) of X e G by derivations of F(M, C), describing the 

infinitesimal action of the one-parameter group t -+exp (t X) on M. 

Let X be a fixed element of G. Suppose hX is a function on M (possibly with 

singularities lying on submanifolds of M’) such that: 

(10.1) 
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(In terms of 9.4, hX can be identified with 

a,(X) x1.. . a,(X)x,h 

Then, 

exp (t P,(W) = $ exp (t potX,) hiA 

Now, for @CH, p c M’, 

exp (1. PO(W) ((4 (P) = Q+xp(-tX) *P) , 

where p- exp (tX). p is the given action of the one-parameter subgroup 

t-exp(tX) on M. 

Thus, for @, $J’ E H, 

= 
/ 

e(p)* h,(p? h (exp(-Wp) -’ P (exp(-tX)p) dp. 
M 

As we have seen in [4], Pt. V, for the case G = SL(B,R), there are two 

immediate interesting asymptotic problems: 

(a) Asymptotic behavior as t-oo, with h held fixed. 

(b) Asymptotic behavior as A goes to infinity. ( For example, for the 

case G = SL(B,R), lim 0 (t/A, A) exists. 
A-00 

In turn, 10.. 1 shows that these are reduced to various geometric questions 

concerning the asymptotic behaviour of the orbits exp (-tX) * p as t-oc hence 
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are closely related to the problems of the modern theory of dynamical systems. 

We will deal with these problems in full technical details in a paper that will be 

published in a mathematics journal. We will present here various heuristic 

remarks. 

The general problem we face can be described as follows: Suppose M’ is 

a space with a measure dp, such that the total measure of M’ is finite. Suppose 

t-g(t), defined for t 2 0, as a one-parameter semigroup acting on M! Suppose 

fl and f2 are measurable functions on M! Does there exist a number a such 

that: 

tEm t” / fl(p) f2(g(t)p) dp exists? 

M’ 

For example, suppose fl, f2 are bounded, continuous functions on M’, 

space such that continuous functions are measurable. Suppose the following 

condition is satisfied: 

There is a point p’ E M’ such that 

tlzag(t) . p = p’ for all p E M’ 

except possibly for a set of points of zero measure. 

Then, the sequence of functions, 

10.2 

with 

$ (P) = fl (P) f2 (g(t) P) 
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converges as t-oc to the function 

fq(P) = fI(P) f2(P’)9 

with the convergence taking place for all but a set of measure zero of points p. 

Thus, by the Lesbesque bounded convergence theorem, 

lim 
t-m / f; (P) dp = 

/ 
f4 (P) dp, or 

M’ M’ 

;ea /fl tp) f2 (gG)p) dp = f2@‘) Jfl (P) dp. 
M’ M’ 

Let us now consider a more general such problem. Suppose that 10.2 

continues to be satisfied, and the problem is to find the limit as t-ceof: 

/il tp) f2 (gtt,p) dps 
M’ 

as before. However, we do not assume that f2 (p) is everywhere continuous, 

but assume that it has poles. For example, suppose it has a pole at p = p’. 

To have no trouble with the convergence of the integral, let us suppose that: 

g(t) . p’ = p’ for all t > 0, and pb fl (P) fz(g(t)P) 10.3 

is continuous in a neighborhood of p’, i.e., fl(p) has a zero at p’ 

sufficiently strong to cancel out the pole at f2(p’). 

Now, our assumption 10.2 is that, for all p except possibly for a set of 
lim measure zero, t,oog(t)p = p’. 
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Let us assume that 

f2 gtt)p -ce ( ) 
at as t-m 

Then, using the Lesbesque bounded convergence theorem as before, we see that: 

Cat /iltp)‘z (g(t)p> W--c /f10 dp 
M’ M’ 

This, then, is a sketch of our “geometricfL method for finding the asymptotic 

behavior of matrix elements of certain types of group representations. 

XI. AN ABSTRACT APPROACH TO THE PROBLEM OF ASYMPTOTIC 

BEHAVIOR OF MATRIX ELEMENTS OF REPRESENTATIONS 

There is an abstract pattern to the preceding work that is worth discussing 

separately. Suppose G is a Lie group, realized or a group of operators on a 

Hilbert space H. Let t -g(t) be a one-parameter subgroup of G, and let $ 

be an element of H. Let t-c(t) be a curve in C, the complex numbers. 

Suppose that @ is an element of H. Suppose that: 

--ia!fk 
c(t) 

11.1 

approaches ecI, via weak convergences as c--coo. (Recall this means that: 

lim <p I g(t)@> 
t-m c(t) = < e&f-J~ for each @,’ c H.) 

We will symbolize this relation as follows: 

g(t) ($4 - c(t) 0, 
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We will understand that H is not necessarily a complete Hilbert space: 

In fact, much of the same set of ideas can be applied to the case where H is a 

general set of topological vector space, and the elements 9’ are taken from a 

given family of complex-valued continuous linear functions on H. 

Our main concern in this section will be to consider (as far as possible without 

making further specific assumptions) what one can say about the action of the 

elements of G on limiting element @,. 

First, suppose that g is an element of G. Let g* be the adjoint 

transformation of g, i.e., 

<g*VI@=Q+!J’bt!J> for $,, @,‘cH. 

We will, in fact, suppose that g* is defined on H also. (This is why we want 

H to be non-complete.) Then: 

<II/‘/ gfjJ*>= <g*Vbm> 

lim = 
t c(t) 

= lim qb’l g g(t) + > c(t). 

We can read off immediately the following facts: 

Theorem 11.1 If g commutes with each g(t), then 

11.3 

Suppose now that g = g(s) for some real s. 

- 33 - 



Then: 

<VI$.g = lit”< $’ 1 g(t+s) qb/ c(t) 

= lim 
t < VJgtt) Wc(t-s) 

= lim < zj’lg(t) $J > c(t) 
t c(t) c(t-s) 

Suppose that: 
lim c(t) 

t -00 c(t-s) = b(s) 

Then, we have: 

Theorem 11.2 If 11. 4 is satisfied, then 

11.4 

11.5 

i.e., qoo is an eigenvector for each g(t). 

Now, suppose X is the infinitesimal generator for the one-parameter group 

g(t), i.e., 

g(t) = ew%tX) 

Suppose Y is an operator on H such that: 

[X,Y]= UY 

Then: 

Ad exp (tX) (y) = eotY, or 

exp (tX)Y exp (-tX) = eatY, or 

g(t) Y g(t) -’ = eatY . 
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Then, 

Suppose: 

Then, 

g(t) e 
-ot 

y m-l =Y 

h(s) = exp(sY) 

g(t) We 
-at 

4 = h(s) g(t) 11.7 

We will, in fact, use 11.7 the f~global’lformof 11.6. Then, using 11.3, 

we have: 

<$’ 1 h(s)$&= lim < $’ 1 h(s)g(t)$> t 
c(t) 

= lim <z,L’I g(t) h(e-Ots)JI > 
t c(t) 

Now, 

g(t) hte -at s)$ - g(t)+ = g(t) (We-% d’ 4) 

Theorem 11.3 Suppose that 

(a) 0 > 0. 

(b) The representation of G by operators on H is continuous. 

(c) The operators g(t)/c(t) on H have a common bound B. 

Then, 

h(s)& = +m foralls. 

Proof 

Hypotheses (a) and (b) tell us that: 

Ilh(e -at 
s)+- @II-O as t -40 . 
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Hence, 

@t)h(t)) hte-%+ - g(t)/c(t) $11 

<_B II h(e -at 
s) +- $11 

In particular, we see that it converges strongly to zero as t-co, hence also 

converges weakly to zero. 
lim We know that t 

argument, it equals 

< $’ 1 g(t) h( e-%s) Z/ > 
c(t) 

exists, hence, by the above 

lim <$’ Ig(t)$> 
t c(t) 

i e , 0’) 

h(s)+& = +a , since h(s)qoo - &‘iis perpendicular to all of H. 

This simple argument enables us to say that $oo is left fixed by a whole 

subgroup of G determined by X. Let E’ (X) be the subalgebra of G spanned 

by the eigenvector of AdX for positive eigenvalues. Let N+(X) be the connected 

subgroup of G. It is nilpotent, hence every element is a product of exponentials 

of the AdX-eigenvector generatorsof E+(X), hence, using Theorem 11.3, we 

have: 

N+(X) - Zc’Qo = +* l 
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