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ABSTRACT 

The use of Warnsdorff’s rule for finding a Knight’s tour 

is generalized, and applied to the problem of finding a Hamilton 

path in a graph. A graph-theoretic justification for the method 

is given. 
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1. Introduction 

A path in a graph is a Hamilton path if and only if it goes through each node of 

the graph once and only onceh These paths were named for Sir William Hamilton 

who invented and analyzed a game to find these paths through the vertices of a 

regular dodecahedron. A problem of this type is the classic knight’s tour problem 

(Fig. 1) on a chessboard. The knight is placed on a square and must cover the 

whole board, moving to each square once and only once. 
n 

Many mathematicians’ proposed specialized methods for finding a knight’s 

tour, 
3 but general methods for Hamilton paths on graphs and similarly for 

knight’s tours on any shape or size board are lacking. In 1823,H. Warnsdorff 

proposed the following-rule for knight’s tours: 

Select the move which connects with the fewest number of 

further moves, providing this number is not 0. If a tie occurs 

it may be broken arbitrarily. 

This rule proved unusually successful and generally applicable4 until a few 

carefully constructed counterexamples showed that in case of ties some of the 

options failed to find knight’s tours. However, not much was done in analyzing 

the rule and its failures because of the large computational effort involved in 

using the rule. The rule was justified on the common sense grounds that it elim- 

inated bad squares as quickly as possible, leaving many possibilities for success. 

2. Problems and Background 

The finding of a Hamilton path in a graph is generally attacked with combina- 

toric methods, which for large richly connected graphs are not feasible. Warnsdorff’s 

rule is a simple computational rule for finding knight’s tours. It presents an attrac- 

tive method for finding Hamilton paths in richly connected graphs. In understanding 

the reasons for its successes and failures an improved generalization of the rule 
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has been devised and implemented, and the general theory of the method has been 

examined. 

The problem of a knight’s tour can be displayed as a graph for which the con- 

nections (edges) are knight’s moves. Consider a 3 by 3 board (Fig. 2). It is readily 

described as a graph with the center square unconnected. Therefore, there can be 

no tour even though the remainder of the graph is two-connected5 and has a path. 

The 4 by 4 board is more complicated, involving 16 squares and 48 connec- 

tions. Although all the squares are at least two-connected (Fig. 3a) and the graph 

is richly connected, the graph has no Hamilton path. The graph may be broken 

into 4 factors : 

I 
I 

1 
I 

(1, 1) , (2, 3) 9.(4, 4) 9 (3, 2) 1 9 (1, 4) , (3, 3) f (4, 119 (2, 2)l 3 

I (4, 2) , (2, 1) , (L 3) , (3,4) 1 and 
i 

(2, 4) , (4, 3) 9 (3, 119 (1, 2>\ * 

However, there are only enough transition squares to link three of them. The 

maximum path is 15 squares (Fig. 3b) and Warnsdorff’s rule does indeed find it. 

The first non-trivial square board to have a tour is a 5 by 5 on which the 

knight must start on a square such that 

(row number ) + (file number ) = (even integer) 

because of parity. 6 Traditionally the 8 by 8 board or ordinary chessboard has 

gotten the most attention. First let us look at the number of connections from each 

square of the board (Fig. 4). They range from two to eight, totaling 336 connections, 

and giving an average of slightly over five connections per square. This average 

increases asymptotically to eight as the board size increases, but the corner 

squares remain two-connected. 

Warnsdorff’s rule maximizes the number of connections remaining at the cur- 

rent point in the path. A Knight’s tour is.a path on the chessboard which maximizes the 

number of connections at the 63rd move, i. e. , there is one remaining move and 
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there can be at most one at this point. The move tree of the various paths of 

the knight is exponential in nature, and maximization at the 63rd level is not 

computationally possible. Maximizing the current level propagates down the 

move tree, and therefore is likely to maximize the later levels. Warnsdorff’s 

rule is just an approximation to the algorithm of searching the complete tree for 

a connection at the 63rd level. 

In implementing Warnsdorff’s rule on a B5500 in extended Algol, the rule 

was tried starting from each square of an 8 by 8 board and found to fail at least 

once for each of five fixedorderings 7 of moves. In fact, the rule failed twelve 

times with a median of three failures for a given move ordering. 8 This high rate 

of failure was a disappointment as it seemed that for some fixed ordering of moves 

Warsndorff’s rule could generate a knight’s tour from each square of the board. 

Initially, the rule was investigated with a view to correcting these failures. 

3. Generalization and Analysis 

To improve on Warnsdorff’s arbitrary selection in case of ties, the following 

tie-breaking method was proposed and tested. For each tie move, sum the number 

of moves available to it at the next level and pick the one yielding a minimum. In 

theory this can be carried through as many levels as necessary for tie-breaking. 

For computational purposes the breaking of ties of the ordinary Warnsdorff’s rule 

(first level minimization) was only carried one more level (second level tie-breaking). 

In symmetric positions, ties cannot be broken at any level. In unsymmetric posi- 

tions, many-level tie-breaking methods are not computationally practical because 

of exponential growth of the move tree. The second level method always yielded 

a knight’s tour from all squares of the 8 by 8 board. The generalized method was 

tried with several of the positions and move orderings which had previously failed 

and it was successful in each case. The ordinary Warnsdorff’s rule on the chess- 

board had occasionally failed a.nd the improvement brought complete success for 

the knight’s tour problem. 
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This modification to Warnsdorff’s rule is a generalization of the original 

concept. In terms of the connections of the unreached squares it is again a maxi- 

mizing rule, with sufficient power always to work with a knight on a chessboard. 

The generalized rule (for method of order k) is: 

Consider all paths of k moves and count the remaining 

number of connections for each path. Select the first move of 

the path whose number is maximum, providing this path is not 

a dead end. Ties are broken by going to k + 1 moves. 

In our case k has been 1. 

The argument for Warnsdorff’s rule has previously been an appeal to com- 

mon sense. However, the maximization of connectivity at the first level as an 

approximation to a full search of the move tree is a firmer explanation and yet 

is not enough. While mathematicians have searched for a proof of Warnsdorff’s 

conjecture, modified to account for any solution from a tie point, the rule may 

only be justified as above. A graph-theoretic proof would have to account for 

Warnsdorff’s rule working in general, which it does not. A typical counter- 

example is Fig. 5, a graph with a Hamilton path which cannot be found by appli- 

cation of Warnsdorff’s rule. To find it would require the generalized rule with 

k = 9. Certain nodes in a graph9 independently of their connectivity, play crucial 

roles as transition squares between otherwise independent components of the 

graph. (To see this, re-examine the 4 by 4 graph in Fig. 3a. ) 

4. Conclusions 

Warnsdorff’s generalized rule is a powerful yet practical method of finding 

a Hamilton path in a graph. In terms of a knight’s tour on a chessboard a random 

generation of moves has virtually no chance of success, but the second level 

tie-breaking program was always successful. The program was also used to find 
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several Hamilton paths in an especially tricky regular graph 10 of degree 3 with 

46 nodes, proposed by W. Tutte. In Fig. 6 the nodes are labeled by their move 

number in a Hamilton path found by the program. 

The time needed to find a path is directly proportional to the total number of 

edges in the graph,. In contrast an enumeration procedure would be impossibly 

long and some recent methods 11 using Boolean connection matrices and linear 

systems of equations are useful only for sparse graphs. The modified Warnsdorff’s 

method has proved so powerful in practice that it has generated solutions for 

2 0 by 20 and 40 by 40 boards. The method may be viewed as an approximation 

to a full search on the move tree. The higher order the method, the better the 

approximation but the longer the computation. 

There is much to be explored theoretically and empirically in using maxi- 

mizing methods in graph theory. Certainly other tie-breaking modifications war- 

rant attention. One could check the next level for the square with minimum 

connectivity instead of the sum as used in the program (see RecurNumofmov in 

appendix). Alternatively one could use a hybrid method in which the sum would be 

used unless a square is two-connected, in which case this path would be followed. 

A further possibility is to try Warnsdorff’s rule and, if it fails, backtrack to where 

it is practical to derive the rest of the solution by using the Boolean system of 

equations for the graph. At this point the remaining unreached subgraph should 

be sparse. Some order of the generalized method outlined above is a useful basis 

method for finding Hamilton paths in graphs. 
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APPENDIX 

procedure HAMILTONPATH (BOARD, ROW, FILE); 
value ROW, FILE; integer ROW, FILE; 

integer array BOARD; 

comment BOARD is a collection of nodes through which is generated 

a Hamilton path (connection of all the nodes passing through each 
node once and only once). The path is started at the node specified by 

BOARD [ROW, FILE] ; 

begin 

integer i, j, nummov, move, min, Tl, T2, T2L2; boolean flg; 
integer array NextR, NextF [1:8] ; 

comment The Hamilton paths to be found will be knight’s tours where 8 

is the maximum number of moves (connections); 

procedure Listofmov (CR, CF, XR, XF, Il); -- 
value CR, CF; integer CR, CF, II; 

XF; integer array XR, 

comment From the current position specified by CR, CF this procedure 
generates in XR [i] , XF [i] a list of the coordinates of the possible moves 
and their number II. The B5500 program used a CASE statement which for 
Algol 60 purposes is translated to a switch list; 

begin 
integer i, rr, ff; 

Ll: 
L2: 

L3: 

L4: 
L5: 

L6: 

L7: 
L8: 

switch case: = Ll, L2, L3, L4, L5, L6, L7, L8; 
It:= 0; 

for i:=l step 1 until 8 do - - 
begin 

go to case [i] ; 
rr:=CR-1; ff:=CF+2; go to check; 
rr:=CR-1; ff:=CF-2; go to check; 

rr:=CR+l; ff:=CF+2; go to check; 

rr:=CR+l; ff:=CF-2; go to check; 
rr:=CR+B; ff:=CF+l; go to check; 
rr:=CR+B; ff:=CF-1; go to check; 
rr:=CR-2; ff:=CF+l; go to check; 
rr:=CR-2; ff:=CF-1; 



check: comment check whether a legal connection or move; 
if BOARD [rr, ff] = 0 then - 
begin II : =II+~; XR[R] :=rr; XF [a] :=ff end 

end loop i 

end procedure Listofmov; 

integer procedure Numofmov (CR, CF) ; 

value CR, CF; integer CR, CF; 

comment This procedure is a simplification of Listofmov for efficiency. 
It is used only to obtain number of legal moves; 

begin 

i, ii, rr, ff; integer 
switch case: = Ll, L2, L3, L4, L5, L6, L7, L8; 
ii:= 0 ; 

for i:=l step 1 until 8 do -- 
begin 

go to case [iJ ; 

Ll: rr:=CR-1; ff:=CF+2; go to check; 

L2: rr:=CR-1; ff:=CF-2; go to check; 
L3: rr:=CR+l; ff:=CF+2; go to check; 
L4: rr:=CR+l; ff:=CF-2; go to check; 
L5: rr:=CR+2; ff:=CF+l; go to check; 
L6: rr:=CR+2; ff:=CF-1; go to check; 
L7: rr:=CR-2; ff:=CF+l; go to check; 
L8: rr:=CR-2; ff:=CF-1; 

check: if BOARD [rr, ff] = then ii:=ii+l 
end loop i; 
Numofmov:=ii 

end procedure Numofmov; 

integer procedure RecurNumofmov (CR, C F, Level) ; 
value CR, CF, Level; integer CR, CF, Level; 
comment This is a recursive routine to the depth Level for counting 
the nodes of the move tree; 



begin 
integer tt, i, nn; 

[ 1:8] ; integer array ra, fa 

BOARD [CR, CF] :=l; 

if Level=1 then RecurNumofmov:=Numofmov (CR, C F) 
else 

begin 

Listofmov (CR, CF, ra, fa, nn); 
tt:=o; 

for i:=l step 1 until nn do 

tt:=tt + RecurNumofmov(ra [i] , fa [i] , Level-l) ; 

RecurNumofmov:=tt 

e&; BOARD [CR, CF] :=0 

end procedure RecurNumofmov; 

comment The program deals with knight’s tours on a chessboard. Warnsdorffls 

rule is applied and the improvement of reapplying the rule to resolve ties is used 

and is sufficient for generating knight’s tours on chessboards; 

for i:= -l,O, 9,lO do 

begin BOARD p, j]TBOARD [j, i] := -1 end; 

comment Initializing the boundaries of the BOARD to -1 prevents moving there. 

The BOARD proper is initialized to 0; 

for i:= 1 step 1 until 8 do - - 
for j:= 1 step 1 until 8 do- BOARD[i, j] :=O; -- 
comment Initialize the starting position; 

min:=O; T2:=1; BOARD [ROW, FILE] :=move:=l; 
for move:=2 step 1 while min $ 99 do - - - 
begin 

min:=99 

Listomov (ROW, FILE, NextR, NextF, nummov); 

for i:=l step 1 until nummov do - 
begin 

Tl:=Numofmov (NextR [i], NextF [i] ) ; 

if (min Tl) (Tl~O) then 
begin flg:=true; T2:=i; min:-Tl end 

else comment Above is Warnsdorff’s rule; --- 



begin comment Here is the improvement; 

TBLl:=RecurNumofmov (NextR [i] , NextF [i] ,2); 

if flg then 

TBL2:=RecurNumofmov (NextR [i] , NextF [i] ,2) ; 

if (T2L2 T2Ll) (T2Ll#O) then - 
begin T2L2:=T2Ll; flg:=false ; T2:=i end 

end tie breaking improvement; 
end loop i; 
if minS99 then - 

begin 

ROW:=NextR [ T2] ; FILE:=NextF [ T2] ; 
BOARD [ROW, FILE] :=move; move:=move+ 1 
end 

end loop move; 

OUTPUT (BOARD); 

comment Use an output procedure to print results; 

end procedure HAMILTONPATH alias the knight’s tour; 
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Footnotes and References 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

C. Berge, The Theory of Graphs and Its Applications, pp* 107-118 

(John Wiley and Sons,, New York, 1962). This book is useful for the general 

theory of graphs. 

Euler, Vandermonde, de Moivre) Roget, and others. 

For general material on the knight’s tour problem see the entertaining book 

of W. W.R. Ball. 

W. W. R. Ball, Mathematical Recreations and Essays, pp. 174-1.84 

(McMillan Co. , New York, 1947). 

It was called inelegant by many mathematicians because of its computational 

nature. 

Two-connected means that in one move from a square, two other squares 

may be reached. It correxponds to the degree of a node in an undirected 

graph without multiple edges (see Berge, Theory) . 

A board is ordinarily thought of as having white and black squares. On boards 

of odd length one color has to have an extra square. Knight moves alternate 

between colors, and therefore on a board with an odd number of squares the 

knight must start on a square of the majority color to be able to complete a 

tour. 

In cases where more than one minimum exists, the order in which the squares 

are evaluated determines the next move. The first square encountered with 

the minimum value is used. 

Ball remarks, “it would require exceptionally bad luck to happen accidently, 

[failures of Warnsdorff’s rulejon such a route. It Ball, Recreations, p 181. 



9. Certain nodes in a graph may be articulation points. These are nodes that, 

if removed from the graph, leave an unconnected subgraph. In Fig. 5, node 9 

is an articulation point. 

10. A regular graph is a graph where all the nodes have the same degree. In terms of 

terms of squares, each square has the same number of connections, 

Il. Berge, Theory, p. 115. 
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Graph of a 3 by 3 Board 
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Graph of a 4 by 4 Board 

FILE 

1234 

2 
ROW 

3 

4 

15 Move Path 

a 

b. 

679A3 

FIG. 3 



’ I 

697A4 

Connectivity of a Chess Board 
for a Knight 
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Counterexample for the generalized graph application of 
Warnsdorff ‘s rule. 

Warnsdorff’s rule selects node 9 which would make a 
Hamilton Path impossible. 
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Tutte’s Graph Planar of Degree 3 
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