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ABSTRACT 

The Bethe-Salpeter equation in the ladder approximation for 

spinless particles is treated for 21.1 > KE > 1-1 where an explicit 

expression is derived for 47r k Im f(0). In order to achieve inelas- 

tic unitarity and maintain a precise correspondence to Feynman 

graphs, a nonlinear propagator equation is formulated which 

approximates Dyson’s equation. It is shown that this equation can 

be solved for any coupling strength and that the resulting propa- 

gators exhibit the structure of a Lehmann spectral representation 

without ghost poles. 
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I. INTRODUCTION 

The BetheSalpeter equation offers a simplified mathematical treatment of 

two-body interactions within the framework of quantum field theory.I However, 

formidable difficulties in solving the equation result from the fact that its inter- 

action kernel is an infinite sum over irreducible kernels and, similarly, the 

Green9s function, which describes the travel of the two particles between inter- 

actions, contains all the self-energy graphs of each particle separately. A 

standard approach to these infinite sums is to “approximate” them by their first 

terms. One then writes an integral equation in which the interaction kernel, de- 

noted by V below, is represented by the exchange of one bare quantum of mass P, 

and in which the Green’s function, denoted by l/D, is the product of two bare 

propagators. We will refer to this as the “bare ladder-exchange equation” (see 

Eq. (2.1) below). 

Recent work has shown that numerical values can be obtained for the elastic 

scattering amplitudes given by this simplified equation in the center-of-mass 

kinetic energy range,2KE < ~1, and even in the range of one quantum production,3 

P < KE < 2~. In this limited inelastic range a new difficulty has been treated by 

M. Levine, J. Wright and J. Tjon: the scattering amplitude given by the bare 

ladder-exchange equation does not satisfy unitarity. By %.nitarityt’ we mean 

specifically the relationship of the optical theorem: 

47r 
k Imf(0) = Ototal = Oelastic + Oinelastic (1.1) 

All these quantities are “predicted” separately by the equation. 

In this paper we shall be concerned with the mathematical problem of 

unitarity in the bare ladder-exchange equation and several more complete lad- 

der -exchange equations. The essential difference between our treatment and 
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the treatment of Levine, Wright, and Tjon is that we shall not use a perturbation 

analysis to verify unitarity. As a result, we can treat some consequences of 

self-energy which are not so easily deduced from a perturbation expansion 

alone. But before entering into a detailed analysis of these matters, it will be 

helpful to discuss in diagrammatic terms now unitarity relates to the various 

simplified forms of the BetheSalpeter equation which we shall consider. 

The bare ladder-exchange equation corresponds to summing all bare ladder - 

diagram Feynman graphs for the two-body amplitude II, (x1,x2) which describes 

the scattering of incident particles *‘l” and 1’2” (see Fig. la). These graphs are 

“bare” in the sense that the lines of particles 1 and 2 are represented by bare 

propagators. 

Since I+!I(x,,x~) is only a function of two points, it cannot directly describe 

final states in which a quantum of mass /J is produced. However, within the con- 

text of the BetheSalpeter equation, it is natural to take the view that such radi- 

ated quanta can be absorbed by one of the scattering particles at some point in 

the very distant future, combining with that real particle to form a virtual par- 

ticle (see Fig. lb). Thus, for KE > p, we can have an inelastic production proc- 

ess inside a ladder diagram and such processes will effect Im f(o). 

The topology of ladder diagrams automatically limits the sort of inelastic 

graphs which can be contained within them. For example, the one quantum pro- 

duction graph in Fig. lc cannot occur inside a ladder diagram since, if the radi- 

ated quantum in Fig. lc is absorbed by either scattering particle, a graph results 

which is not of the ladder-diagram topology. Only one-quantum production graphs 

of the sort shown in Fig. lb (with radiation by either particle 1 or 2) can occur 

inside ladder diagrams. But it is clear that the free quantum in Fig. lb can also 

be absorbed by the same particle which radiated it. If so absorbed, ‘the 
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quantum forms a self-energy graph of particle 1. Since this possibility is not 

included within the bare ladder diagrams, it is natural to expect that FImf(O), 

calculated from bare ladder diagrams, will not fully represent the inelastic 

processes which can occur within these graphs. 

One has here an intuitive criterion for judging whether a given set of elastic 

and inelastic scattering graphs will satisfy a unitarity relationship in a given 

energy range : the inelastic production graphs must be just those which can 

occur, subject to energy restrictions, if quanta absorbed last in any graph 

escape , and all graphs must be included which can occur when quanta produced 

in any of the inelastic graphs are re-absorbed. The system of bare ladder dia- 

grams and those one-quantum production graphs (Fig. lb) which occur within 

them for KE > /A does not meet this criterion. However, for KE > 2~, there is 

the important simplification that no more than one exchanged quantum can escape. 

Thus, for 2~ > KE > ~1, a simple remedy for the failing of bare ladder diagrams 

is suggested: one should include for each scattering particle (1 or 2) a bubble 

self-energy graph (see Fig. 2). 

To incorporate such self-energy graphs into the bare ladder-exchange 

equation one merely replaces the bare propagator of each scattering particle 

by the sum of that bare propagator and whatever self-energy graphs one chooses. 

The BetheSalpeter Greenvs function then becomes the product of two (partially) 

dressed propagators. (Note that we retain the ladder exchange interaction 

kernel. ) But by including a bubble self-energy graph for each particle in the 

Greenvs function, we are including interaction graphs such as the graph in Fig. 3a. 

Now if the last exchanged quantum in Fig. 3a is radiated by particle 1 (Fig. 3b), 

we should also include the graph in which this quantum is absorbed again by 

particle 1, as shown in Fig. 3c. In this way, we are forced to include all 

finite iterations of bubble graphs. 
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But even when these iterated bubble propagators are used in the ladder-ex- 

change equation, an obstacle to unitarity in the range of one quantum production 

remains : If now a quantum of mass p escapes from a dressed ladder diagram 

graph and is finally absorbed at infinity by the particle from which it was radi- 

ated, the graph shown in Fig.4bcan be formed. In Fig.4b one finds a self-energy 

graph of particle 1 that is not an iterated bubble graph and is not included in the 

augmented equation we just suggested. Therefore, one is required to include not - 

only iterated self-energy bubbles, but also all possible finite arrangements of 

iterated bubbles within iterated bubbles, within iterated bubbles, . . . , etc. We 

will refer to these as “nested bubble graphs.” They are characterized by the 

property that in such self-energy graphs any two bubbles are either disjoint or 

one contains the other (see Fig. 4~). 

If all these nested graphs are included in the propagators for the ladder- 

exchange equation, an appealing property results: re-absorption, such as that 

shown in Figs. 3 and 4, can no longer produce a graph which is not already in- 

cluded. The system of graphs consisting of all the resulting dressed ladder dia- 

grams and all the one-quantum production graphs contained within them (graphs in 

which a quantum absorbed last by either particle “escapes”) satisfies our crite- 

rion for unitarity when KE < 211 O 

It should be emphasized that one only expects unitarity to be satisfied in a 

restrictive sense. Inclusion of production graphs, such as Fig. lc in ainelastic, 

would require crossed diagrams in the interaction kernel, over-lapping self- 

energy bubbles, and vertex corrections, in order to achieve a closed system. 

In fact, for KE > 2/~, our scheme for achieving a unitary system leads to the in- 

clusion of all Feynman graphs for two-body scattering; no subset will suffice. 

It is possible for KE > 2F-1 that the last two absorbed quanta of an elastic diagram 
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be radiated. Then, in order to close the system, one must allow all possible 

absorptions of the two radiated quanta (in any order) by either scattered particle. 

The net effect of including such possibilities is that for any two quanta absorbed 

successively by one of the scattering particles in any elastic graph, it is nec- 

essary to include the corresponding graph in which those quanta are absorbed 

successively in the reverse order. But by such interchanges of order, all elas- 

tic graphs for the scattering of particles 1 and 2 can be formed from ladder 

graphs O 

The indication of our graphical analysis is that unitarity requires one to 

consider progressively more complex approximations to the full Bethe- 

Salpeter equation. However, it appears that in the range KE < 2~1, we can spec- 

ify partial forms of the equation which do satisfy a restricted form of unitarity. 

The main part of this paper will consist of giving more rigorous form to these 

arguments as they apply to the ladder-exchange equation. 

It should be commented in advance that the necessity of including all nested 

bubble self-energy graphs to treat this case is not a handicap but an advantage. 

These nested graphs can be handled by established techniques of propagator re- 

normalization. It is possible to sum them by a non-linear equation which ap- 

proximates DysonOs equation and can be solved precisely. 
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II. THE UNITARITY RELATIONSHIP IN THE UDDER EXCHANGE EQUATION 

In this section we shall derive expressions for 
4n k Im f( 0) given by the 

various ladder-exchange equations described above. 

First consider the bare ladder exchange equation for two spin zero particles, 

“1” and “2”, of equal mass ml = m2 = m, scattering via the exchange of a spin- 

less quantum of mass p: 

(2.1) 

where : 

q = (q, qo) is the relative c. m. 4-momentum 
I*I 

l/D (cl) = A,ts,) - A,&,) 

q1 = (~9 E/2 fq,); q2 = (-4, E/2 - 4,) 

E is the total c. m. energy. The propogators are bare, 

A,(q,) = l/(qf - mf) , 

and the ladder-exchange kernel is 

P 
v (9 - Y’) = 

‘p, - $J2 + P2 - tqo - $)J2 

Conventionally, p = A /7r2. In order to maintain a closer correspondence to the 

Feynman-diagram formalism, we will set p = elo e2/(27r)4. 

One can deform the q. and qh contours in Eq. (2. 1) from the real axis to 

the contours Cl2 and Cq12 which depend on q2 and q ‘2 , respectively . 4 For m.‘L .A. 

q2 > k2 - (E/2)?; - in2 , 
..Y 

Fq2 is just the imaginary axis. For q2 c k2, Cq2 
*w u .4 

detours around the poles in l/D(q). (See Fig. 5. ) 

In order to more clearly identify real and imaginary quantities, we will 

often use rotated coordinates p = (p, p,) = (2: qoi ) and consider the 
,w 
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equation for e(p) = i q(q) 

e(p) = Go(p) + l/D(p) JJ cl2 V(P -P’)$‘@‘) 

P 
with 

+,tP, = S3(P -2m) 6 (PO) 0 MA 

(2.2) 

Symbolically, 

where 

$’ = Q. +l/DV$’ (2.3) 

w cp) = V(P -P’) @ (P’) = T(P) (2.4) 

P’2 
N 

To construct an expression for 47r k Imf(0) we will need an analytic function 

of PO which yields the complex conjugate of T. For this purpose we define 

so that 

TV’ = T(% q) * (2.5) 

&) = (‘($9 -P;s) )* 

iJJ * ZZ 
C 

V(P -P” -P;S -P;)@(P’ , p;)dp;d3p’ 
P’2 

r* .*. ry ,i 

setting pi = - Pi* G p:, t 

T’(P) = - pi*, v* (p - p” , p1;” p;, 
* ** (2.6) 

It is a great simplification to be able to say that CL2 is the same path as 

Cp2, but followed in the opposite direction, This is clea?ly the case for p2 > k2 , 
* 4 

since the path Cp2 then has no detours. To arrange the same relation for p2< k2 
Ir* N 

one can put the poles in l/D(p , p,) precisely on the imaginary p, axis as shown 
3-h 

in Fig. 5. (This construction will not be entirely adequate for KE > 2~ when cuts 

in T cross the real p, axis. We therefore are assuming KE 5 21.1. ) 
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Then l/D is real on the imaginary p, axis away from its poles and away 

from p2 = k2. One handles the special case p2 = k2 via the prescription 
VXL m 

1 
l/D (P > P,) = * d (p2 > P,) 

p2 -k2 * 

= 
1 

-- 
’ p2 - k2 

d ( p , 
PO) 

c i7rd (p2 I\ -k2) d (k2, P,) 

1 2 
=P 

,p2 -k2 
d (_p2, P,) + s S(p2 c - k2) 6(po) t2* 7, 

All further singularities involving V can be located by the prescription 

P -P - ie. Returning to Eq. (2.6) we now have 

T?(p) = Jl- $J* ,E” 9 -P) 
Q'2 

= [fit 71 (P) P-8) 

where 

“v (p” -p) 3 v*(p-p” , p;* -P;:) 
- I-% 

Note that V is even, V(q) = V (-q), so 

IIv(P’-P) = V’(P’ -,E , -(P:, -PO)*) 

= VQ,’ -p) (2.9) 

Formally multiplying Eq. (2.3) on the left by [ fi ‘?] (p) and integrating p 

over p and p, on C 2 , u E 

or, 

= Tt b T - 
0 

(2.10) 

- (2.11) 
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But T evaluated at p2 = k2, P, = 0 yields a simple multiple of the elastic 
*r 

scattering amplitude, f , 3 
fWout) = + T (,P,,y 0) 3 

so that 

& 
0 = T* (,gin ) 0 ) = E/27r3 f* (0) (2,12) 

Then, taking the complex conjugate of Eq. (2.11) and subtracting, 

s iImf(0) = 
7r C 

(T’$T) -(T?iT)* ] 

Analyzing the terms in Eq. (2.13), one finds 

(Tt b T)” = 11 T* (P ’ P;) 
1 

cp2 * 
T(P ’ P;) 

D*‘,p 2 -P;) *’ 
\r 

(2,13) 

dh9* = ff ff @(PI, 
C cp2 hlr 

-P2)V (P’ -P 9 P; -P,)$(P , PO) 
2’2 

*. M w. 
* 

= l&b - 

Thus from Eq. (2.13) we have the simple formula 

s i Imf(0) = T f 1 (- - L 
.t 

T-f- $(V-?)ti 
T \D 

or, using G = .t , 

s i Im f(0) = T t T + @‘(V-V’)@ 
7r 

(2.15) 

(2.16) 

(2.17) 

Now, since V(pl - p) is real for all imaginary p:, - p, away from its 

poles, the term V - Vt vanishes except near poles in V (p’ - p). Specifically, 

for elastic scattering, E < 2m +p, V - V’ vanishes for all p, and po on 

Cp2 alId Cp Q , respectively. Thus, for elastic energies, KE c 1-1, 
W ,%I! 
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Eqs. (2.17) and (2.7) give 

where 

E- i Im f(0) = 
a3 

$ j,--,-TTt~)[6 g2 - k2)S (p,)] T @I 

2i7r2 2k = -- 
E 2 eel 

u = el 
JI 

f ‘8’ 
,r 

2 
dS-Z . 

l&I p=k g 

(2.18) 

4f Im f(0) = oel , 

verifying elastic unitarity. 

For inelastic energies, E > 2m + p, there will be a new contribution to 

Eq. (2.1’7) from (V - VT), but, if we retain the bare Green’s function, no new 

contribution from 
(i- 5). 

Now, for ~‘0 , p, imaginary 

V@’ -p)-V&p) = 
P P 

(PA -po)2+( p’ -~)~+y~ - ie - 
* “c 

(PA -Po)2+ (,E’-P)2+p2+iE 44 

= 27ri p 6 
C 
(p: -p)2 c (p -p’)2 +p2 

Mm rrcl 1 (2.19) 

The occurrence of non-zero contributions from this term for p, , PI, on 

Cp2 ’ Cp2 (see Fig. 6 ) is restricted to opposite imaginary loops of C p’2 ’ Cp2 ’ 

‘* For” KE < 21.1, there are only poles of $ ‘&I’) , I,LJ ( p) contained yn thesk 

loops (branch cuts do not enter until KE > u). These poles are associated with 

zeros in D*(P’ , ( 
2 l/2 

t-9 , 
-2 

-pz) at * E/2 - (p12 1 ) 
and zeros in D(p , p,) ma 

( 
2 l/2 at i: E/2 - (p + m ) > 

, respectively. Thus the new contribution to .I 
Ey. (2.17) can be found for KE< 2p simply by taking the residues in 

$ ‘(PI) ( V - Vt) $J (p) at these poles. The residues in the p -0 
integral 
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come from in ti=tio + ; T, 

where 
1 -i 1 1 

= 
WP > P,> 

2 l/2 -(p2+ml) I) R E _ (p2 6.. '* Jh 
+ 

2. F-P) ( 
’ 

h 
2)1/2 (po+ i [E/2 -;(r,‘-3’“1, h-m: +m2 

+ terms with poles not contained inside the loops of Cp2 . 
dm 

(2.20) 

(Although ml = m2 = m the terms here are associated with one particle or the 

other, so it is helpful to note the possible distinction in masses. ) The poles in 

Gf(pf) from (l/D f f T ) can be similarly analyzed. Remembering that only 

opposite poles enter, we then get 

l&v - Vf) $J = 

p+’ ,-i [E/2 - ( ( -p1)2+ mi !“2 I) 

[(E - ((-_P”’ +mi)‘S’2)2-z’2 mm;] 

+ , (after switching p - ,p’ ) , 

T*(.p , i [E/2 - cp,” +mtf’2 I) T(E’, -i[E/2 - ((pl’?+mir’2])\ 

[(E -(_p2+m~)“2)2-(-~~ -mi)] [(E-((-z’?+mi)“2)2 -11~ -mt] ) 

6 
( 

(E2 + mt)“2 + 
( 

( -E’)~ + mi)“2 -t ( (,P - p1)2 + P2)“2 - E 

( (P - P’I2 + c1 
2 l/2 

‘) 
(2.21) 

. . . . . > 
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Calling 
=E/2+q == (p, E/2 + ipo) = P 

2 l/2 
w8 

, (p2 + ml) 
-.T I** 

= E/2 - q’ = (-p’ , E/2 - iph) = 

0 ( 
93 f = !’ -,E ’ .-> ((PI - p;2 + 1”2)1’2 ) 

(-P’)~ 
*u 

we note that the terms in Eq. (2.21) correspond to terms occurring in two sums 

of Feynman diagrams for inelastic production of one quantum of mass p (see Fig. 6). 

In fact, these are the very production graphs which were mentioned in Section I; 

they represent a sum over simple ladder diagrams in which the last quantum ab- 

sorbed by particle 1 (Fig. 7a ) or by particle 2 (Fig. 7b ) “escapes. I’ (The sum over 

all ladder exchanges preceding radiation is contained in the function T. ) Thus some 

elements of the restricted inelastic cross section discus.sed in Section I do 

enter our expression for 4n k Im f(0) when Zy, > KE > p. However, although 

the interference between Figs. 7 a and 7b appears in Eq. (2.21)) the square of 

each figure alone is missing. Thus unitarity is not satisfied.5 

One now can consider how the expression obtained above for 4n k Im f(0) will 

change if dressed propagators are substituted for bare propagators in the ladder 

diagram equation. First consider propagators which only include iterated bubble 

graphs : 

A(i)(qi) - q2 _ m2 
1 

i 0 - Tiil(i)(q$ 

where . 2 

c,i)(Sfl = ‘ei J( 1 d4q; 

(24 
C 

,2 
> 

(2.22) 
qi - m?(i) ] [(9i - qua -IL’] 

(The subscript i = 1, 2 refers to one of the scattering particles. Subscripts in 

parenthesis are only necessary if ef + ei and will often be deleted below. ) 

Deforming the qio contour to the imaginary axis (see Fig. 8 ), one can impose 

a cut-off A on 1 q; 1 in Eq. (2.22) in order to avoid the ultraviolet divergence 
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in c . Then A(qt) will have a pole associated with the “dressed mass” at 

4; 
2 where m 2 =m = rni + C (m2) , (We will use m = ml = m2 to denote 

this dressed mass and m 
o(i) 

to denote the bare masses which need not be the same 

if ef f e g. ) The self-energy c (m2) is negative for our spinless case, but, at 

least if the couplings e: are weak, m2 will be positive, as we shall assume. 

Further analysis of the structure of c (q3 s h ows it to be an analytic function of 

cl 
2 l/2 i. except for two branch cuts starting at * q: + (m. +p) ‘F 1 E and extending 

along the real qio axis to * du t ie. On the real axis, between these cuts, x is 

real. However, along its cuts c has a (noninfinitesimal) imaginary part. 

We now propose a simple mechanism for getting new contributions to Eq.(2.17). 

Since c (qy) has an imaginary part along its cuts, there will be new contributions 

to l/D - l/D’ whenever points along these cuts enter the transformed equation. 

But so long as these cuts are not encountered along C 2 
s 

for any p , our expres- 
UJ 

47r sion for - k Im f(0) will remain essentially the same as for the bare case. The 

largest detour in C 2 
J?J 

(see Fig. 9 ) has extension E/2 - m, while the lowest ex- 

cursion of the upper cut in c (qi) is m. + p - E/2. Thus, in order to “see” this 

cut in the transformed equation we must have E > m + m + p. However, we want 
0 

to see the cuts for E > 2m + p where the preceding analysis indicates the need 

for a new contribution to Eq. (2.17). One would require then that m. be equal to 

m. But this equality is impossible since the self-energy, C (m2), will not vanish. 

As explained in Section I, iterated bubble graphs alone are not expected to produce 

unitarity. Already the fundamental failing of these graphs is clear. We could take 

the view that et is small so that m. is nearly equal to m. A more precise way 

of proceeding will be to adopt the approach of first order renormalization , treat 

m as given, and set m 
0 

= m in calculating C (qf ), but, in forming 

A = l/(qt --mt - c(qf)), readjust m2 o so that the poles in A do lie at qf 2 =m . 
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It should be noted, however, that the propagator so formed is not strictly equal 

to the sum of iterated bubble graphs. Any finite sum of iterated bubble graphs 

has a pole at qf = rnz with residue 1. 

Consider how the previous analysis is affected by this change in propagators. 

At its poles A (q2J no longer has a residue of 1, but rather looks like 

Z. 
1 

2 2 

where (2.23) 

. 

Then the elastic scattering amplitude given by the asymptotic form of @ (; , 0)6 is 

2n3 
f( Qout) = ZlZ2 E t ) T $ouv p, 

and the imaginary part of & is given by (2.24) 

1 1 --- 
.t = z1z2 - k2) 6 (PO) + terms not seen for E< 2m+p. 

D 

If one uses these expressions to recalculate 2 Im f(0) for E < 2m + p, one finds 

that the new factors zi precisely cancel so that elastic unitarity is again verified. 

Turning to the range of one quantum production, 2m + p < E 2m + 2~) we 

first reinvestigate the contribution of @ ’ [V - V’] $’ to Eq. (2.17). Since in the 

calculation of this contribution one collects opposite residues in @‘(p’) and 

ti (p), the final answer, Eq. (2.21), is now multiplied by the factor zI* z2. Also 

the off mass shell propagators in Eq. (2.21) associated with residues in G’ , i.e., 

terms appearing with T” , are replaced by their complex conjugates, so that the 

interpretation of Eq. (2.21) as the interference of Figs. 7a and 7b remains valid. 

Now consider the new contribution to 
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For E < 2m + 21.1 the cuts in l/D only touch the detour loops of C 
ii2 

but do not 

cross the real p, axis(see Fig. 9 with m. = minx). ThenfOr E<2m+2p 

the only singularities of l/D - l/Dt inside these loops lie at & E/2 - (p2 + m 2 l/2 ) . 

Also for E < 2m + 2~ no singularity in T or Tt will enter the loops. Thus all 

we need consider for E< 2m + 21.1 are the residues at the poles in l/D. Near 

the poles of interest we now have 

-i 
1 1 z1 

D(P , P,) - D.(P, -P;) = 2(p2 + m2)1/2 - p 2 l/2 - i E/2-(p2+m ) ,.. ,I ( [ 0 I) 

[ 
2” 2 

M2 - M2 . 
(F.&Z + i PO)’ - ( -z,~ - Mi I p =i[E/2-(p2+m ) 2 l/2] 

0 

i z2 + 
2 (-~)~+rn ( % 

2)1’2 (p. + i [E/2 - ((-?)2 + m2)1’2] ) 

2” 2 
M1 - M1 

(E/2 -ipo)2 -p2 - $l I 

I 

PO=-i[E/Z -( (-p)2 + m 
2 l/2 

) ] 

where 

M; = m2 +C(q$ -C(m2) 

Setting m. = m in C , one finds for real qio 

d3q; 

6 (q!2+ m ) ( 
2 l/2 

.Sl 
+ ((~I -.~)’ + ~ )1’2 - clio I I) 

( 
Cs; -9i) 2‘ +m 2 l/2 

> 

(2.25) 

(2.26) 

(2.27) 
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Now using Eqs. (2.25) and (2.27) to collect residues we get the following 

inelastic contribution to Tt (l/D - l/D?) T , after relabeling ,gi , cjf, etc. : 

- (2 f m 2 l/2 
3) 

2 
) 

z1 E - (p2 + m2)1’2)2 -=,E-(E2+m 
2 l/2 

) 
VW. )). 

p’, m 
( -_p’J2 + m2)1’2)2- pt2 

2 l/2 ) I) 
2 

’ ,E - ( ( -$)z+_s)ljz)) 1 

(2.28) 

We have here very nearly the term needed to complete the square of the sum of 

Figs. 7a and 7b. However, a fault remains: the factors z1 and z2 appear in (2.28) 

separately, whereas et [V -v?] ILJ f rom Eq. (2,21) now contains the factor z l z 1 2’ 
But this difficulty disappears if the propagator used in calculating C(qF ) is not the 

bare propagator, 1/ (q,’ - mt) , but rather the dressed propagator A(qi2) itself. 

To achieve this effect we propose use of a propagator A(qf) which satisfies the non- 

linear equation 1 
=A(q”) 

where (2.29) 
2 ie. 

CA($)= -$f 
(2=) 
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Assuming this propagator has the same poles and cuts found for first order re- 

normalization, the above analysis is easily adapted to treat it. The mass entering 

2 (q2’ -x*,(qt) is now automatically m, not mo. Furthermore, in calculating A i) 

xAcg;) 3; (9;) one picks up a residue from the dressed propagator itself, thus 

yielding a new factor of zi so that the product zl. z2 now appears in (2.28). It 

is now easy to combine (2.21) and (2.28) to give the following contribution to (2..17) 

for E<2m+2p: 

E ( ’ -1 -1 
7, z1 z2 I mf(0) = E -’ zil & ~~1 

( ) ” z1 

+ 

- c 
2 l/2 

p,i E/2 -Q2+m ) 
. 

E - ( p2 + m ) 2 l/2 2 
-.* 

- t-p)” -Mi (-p, E-(p2+m2)‘j2 
+ 

.A+ . . ..A 

2 

(2.30) 

Multiplying Eq. (2.30) on both sides by ( 7r3/E) z1 z2 (4n/k) we get 

(4nlk)I.m f(O) = uelastic + uinelasti., where ainelastic can be shown to be pre- 

cisely the result given by a (dressed propagator) Feynman diagram calculation of 

the sum of Figs. 7a and 7b. We have now realized the restricted form of unitarity 

described in Section I. Furthermore, the nonlinear propagator Eq. (2.29) just in- 

eludes the “nested bubble” self-energy graphs discussed in Section I. To see 
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this, one can rewrite Eq. (2.29) as 

1 1 
Ah11 = + ’ A(qi) A (qi) (2.31) 

and expand in a formal Born series. In this sense the propagator formed here, 

unlike the renormalized iterated bubble propagator formed above, does maintain 

equality to a sum of simple Feynman graphs. Note that Eq. (2.31) is just a simpli- 

fied form of Dyson’s equation for the fully dressed propagator. 

Equation (2.29) has the special advantage that it can be renormalized before 

being solved. In the manner of renormalization theory we can treat rnt as a 

nonessential parameter, requiringonly that rn20 = m2 - C (m2) even if C (m2) 

is infinite in the limit of infinite cut-off. We may then write the renormalized 

equation 

where 

A&$ = 
1 

qf - m2 - J K tqi’ $1 A tq ) d4Si ,2 

1 1 
~ - 
tcli - (If)’ -P2 $5 - qi,2 - /J2 I 

(2.33) 

G being any qi such that q; = m2, e.g., m = (z, m) . 
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III. SOLUTION OF PROPAGATOR EQUATION 

Approximate solution 

The first order renormalization discussed above suggests a method for solv- 

ing Eq. (2.29). One may view the propagator formed there as being an approx- 

imate solution to Eq. (2.29). In effect, one “guessed” A GAO = l/(qf- m2), 

inserted this function on the right of Eq. (2.29) and used the equation to calcu- 

late a “better” solution. This new solution was almost good enough to produce 

a unitary ladder diagram Bethe-Salpeter equation, failing only because of the 

factors zi 0 

Now suppose we make a better guess:7 A Zs= 2 z 2 , anduse Eq. 

(2.29) to calculate A. 
qi -m 

We then have a free parameter, Z, which we can adjust 

so that a” and A both have the same residue at qf 2 =m. Specifically, we require 

1 

l-- ‘. A 
?z 

-1 

2 =m 

is finite without cut-off. (A closer inspection shows A < 0.) From Eq. (3.1) 

one has the quadratic equation 

(3.1) 

(‘+f - (Z-l) + A = 0 

In the limit e: - 0, we expect z -1 -1, so we take 

(3.2) 

%--l Z 1+&Z- 
2 (3.3) 
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But now since A has not only the same poles as x, but also the same residue at 

these poles, we will get the required factors zi in ci - CT , and we may use 

this A to form l/D (p, p,), thereby obtaining a unitary ladder exchange Bethe- w 
Salpeter equation in the range KE < 2~.~ 

Since A c 0, Eq. (3.3) always yields ‘?? positive and Z < 1, a result pre- 

dicted by field theory for the residue of a physical spin zero propagator. 

Precise solution for Ai 

One may conjecture that if the process of using an approximate A on the 

right of Eq. (2.29) to calculate a “better” A is iterated many times, each time 

using the preceding result to calculate a yet better A, the propagators so cal- 

culated will converge the proper solution of Eq. (2.29). As a first step toward 

a formal analysis of this idea, one can use the fact that the propagator is only 

dependent on q: to eliminate all variables except -qf = s from Eq. (2.29). The 

easiest way to go from the integral over q; in Eq. (2.29) to an integral over s’ 

is to rotate the qio contour to the imaginary axis and take 

-id4 qi -+$- dfii s’ds’ . 

However, as shown in Fig. 8 , the ability to make a complete rotation in 

/ 
A (9;) 

(qi _ q1)2 _ p2 dqlod38; 

depends on what qi is. Taking qi = (T &q, non-obstructed rotation is pos - 

sible only if s > -p2 e But the only reason for considering negative values of s 

is to renormalize A at s = -m20 Thus if m2 < ~1 2 , one need never consider val- 

ues of s for which complete rotation of qlo is impossible. It will be very con- 

venient, therefore, to assume m < p o (Although the case m > p is more com- 

plicated, it submits to the same type of analysis. ) 
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With m < ~1 we have the simple equation 

$W = 
1 

s + m2 +zK(s, s’).$(s’)ds’ 
(3.4) 

for all s > 0, where ,e (s) - -A (qi), and 

9 
with 

K(s, s’) = H(s, s’) - H(-m2, s’) 

P-5) 

2 -ei s’ 

/ 

d fi; -27T2e2 i 
S’ 

H(s,s’) = = 
2(2?Q4 -(qi - qi)2+p2 (2n)4 s+s’+p2+((s -s’+p2)2+4s’jJ231’2 

so that H(s, s’) < 0. (The “self-energy” is negative.) 

However, 

2 

27r2e2 l+ 
S -s’+p 

+sH(s,s’) = -+ 
s - s’+p 212 +4s’/.J 2 l/2 

’ 
P=) s’+p2 +((s -s’+p2)2 +4s’/J 

for s’ > 0 and any s. 

Thus K(s, s’) = H(s, s’) - H(-m2, s’) > 0 for s > 0, s’ > 0, which is the range 

of s, s’ being considered. (Note $ H(s, s’) > 0 is essentially equivalent to the 

assertion that in Eq. (3.1) A is negative. ) 

To simplify the discussion further, one can introduce a finite mesh of points 

s, on the interval 0 < s < A < 00 and consider the restriction of Eq. (3.4) to the 

set sy , replacing ds by d, and K(s, s’) by KVw = K(s, , s, )d, . Defining 

U(s) = s + m2, u, = W,) > 0, ,av = A(sy), Eq. (3.4) becomes 

For physical reasons (consider the Lehmann representation for ,&), one is only 

interested in solutions to Eq. (3.4), (3.7) which are positive, AV > 0 for all U. 
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(1) We now show that starting with any choice of 2 > 0, iteration of Eq. (3.7) con- 

verges to a positive solution of Eq. (3.7) and that the resulting solution is the 

only positive solution of Eq. (3.7). 

To show uniqueness, suppose+k, is a positive solution of Eq. (3.7). Since 

U and K are also positive, Eq. (3.8) indicates ,,AV < Vi1 . But then K A < VW hmw 

K U;l, VW so that 

u;'>$/ (Uv + CKvWU;' 

-1 
' o 

W ) (3.8) 

It is thus established that .e can be neither too large nor too small. Now sup- 

pose we have a second positive solution A’ , i.e. , both w 

&/ = +v +Kvw ‘&) (3.9a) 

and 

/$l = quv +Icvw kl, ) 
(3.9b) 

Subtracting, combining denominators, and using Eq. (3.9a), one finds 

(3.10) 

Let C > 0 be the minimum number such that I,& -/I 1 d ~~4; for all Y, 

C = My ( I,Gv -&,aZ 1 /J$;). Since L& obeys Eq. (3.4, nok; can be zero; 

therefore, C exists. Furthermore, 

cl+& + xKyW II;’ 
-1 

w )I 
=2+U;’ tiKvO U;l 

W 

and hence one has a bound on C involving only U and K: 

C<2+M 
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where 

ME Max 
V 

U,l 

Now using Ii!:, - ,pwlqxJ on the right in Eq. (3. lo), one finds 

where 

(3.11) 

(3.12) 

U,’ ;KvwgJ U;$Kyw U;’ M 
= 

uv +CKvIJ $J l+U,l cKvw,a:,’ l+U,l GK U-l 
c--y< 1. 

l+M 
(3.13) 

W W 
VW w 

M is given in Eq. (3.11). Thus I,A, -,klI < y C ,Av. But now switchingA++&’ 

and repeating the argument, one finds I+$,, -,$ 1 < y2 C&L < CA!:, , which 

contradicts the assumption that C is a minimum greater than zero. Therefore, 

A and $’ cannot be distinct. ,,: (Note nothing has been said to exclude the possible 

existence of a distinct non-positive solution. ) 
(1) Now to prove convergence. Starting with any,&! v > 0, inductively define 

p+U = 
1 

,+.A! v 
uv + CKvW An' 

W ‘.‘ i w 

(3.14) 

Note that due to the positive nature of fit (l), K and U:,$z < U,’ for alln >1, and 

hence 

u,l ’ <.g? 
-1 

’ Uv + CKvw ( u;‘) (3.15) 
w 

(1) for all n > 2. Thus it causes no loss of generality to assumeFeV , and hence 

all An) , satisfy Eq. (3.14), as we shall now do. 
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Borrowing from the approach outlined above and using Eq. (3.14), one has 

p-l-1) - &= &” 
;KY o (&-l)-,) 

lV.4V 
(3.16a) 

up + CK p-1) 
w VLJ hzho 

and also 

(3.16b) 

For any n, define Cz 

I 
&*l’ -421 for all V, 

to be the minimum number such that c’, e 3 

,%, 8 

Using Eq. (3.16a), (3.14) and the previous line of analysis, one finds 

(3.17a) 

and from (3.16b) with (3.14)) 

where Y = M/l +‘M, as defined above. Thus 

c; < yc; < rzc; 2 4 _ <Y c +& . . . 

and, therefore, for n ,) 0, 

i.e., 

+ 
c2n+2’y 1 

2n c+ 

I 
d2n+2) 
.A” v 

-~,~~l~ < $n c; p$n-f-l) < Y2n C+ u-l 
I m 1 u 

Also, 

+ 
‘2n+l < YC2n-l < ’ 

2n-1 + 
‘1 

(3.17b) 

(3.18a) 

(3.18b) 

(3.19) 
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for n 2 1, so that 

I A2n+l) 
b”f u 

-,,y < y2n-l c; u,’ 
I 

and hence for any j 3 1 

I 
&+I)- &I 
hi v 8 v I 

< yj-l c+u-l 
1 v 

(3.20) 

(3.21) 

(Further, because Eq. (3.15) holds for A!” 
<‘fin‘ v ’ there is a bound on C: just like 

the bound on C found above: CI < 2 + M). 

(n) Because Y is distinctly less than 1, successive differences in.AV decrease 

geometrically as n -+ ~0. Therefore, the iteration procedure does converge. 

(n) Also, from the properties of geometric convergence, setting ,Ay = Lima n+co’“‘v ’ 

Eq. (3.21) gives a bound on the discrepancy between &‘and AV : 

Ifi v. y _ p) P-l vl <-i-q- c;%, , (3.22) 

and so 

I &) -,+; I 
A C; (1 +M). (3.23) 
hh’ L’ 

(Note (hv > being the limit of &‘, must obey Eq. (3.9) since all ,A;’ obey (3.15)). 

Thus in the manner established above, 

I 
1 1 

v+CK An) 
< Yn-l 

w vu ,‘,‘,yLJ 
)I 

1-Y C;(l +M) A;+’ 

< yn-l 
l Ty C;(l+WU;l ----, 0 in the limit n + 43, so that we have 

Therefore, Ayis a unique positive solution of the finite point equation (3.7). 
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The above analysis can be applied immediately to the full integral equation 

(3.4 ) with little elaboration. The only questions which arise concern infinities 

which could develop from terms which are obviously finite for a finite set, but 

not obviously finite for an infinite set. (4 For example, JK(s,s’)lf? (s’) might 

diverge; one is clearly constrained to start the iteration with a&L$s) such that 

sK(s,s’) &s’)ds’ converges for all s, e.g. , 8)~ 0. Once this constraint is 

observed, however, all &L for n > 1 will satisfy 4,$(s) d h U %) 9 and since 

sK(s,s’)U-‘(s’)ds’ converges for all s, so, too, will sK(s,s’),& (s’) for all n>l. (n) 

The only remaining point to discuss concerns 

M = o ~F<~U-’ (s) JK(s,s’) U-‘(s’)ds’. 

Such a maximum may not exist; one needs to know that U-l(s)JK(s,s’)U-l(s’)ds’ 

is a bounded function of s for s 3 0.” From Eq. (3.5) we can find a bound on K: 

K(s,s’) d S’ 
s + m2 

(27Q4 (S-!-s’+p2)(s1+(p2-m2)) 

(3.25) 

(We already know K(s, s’) > 0). Thus U-l(s)~K(s,sl)U-l(sl)ds’ is bounded by 

2(27r2eF) ffi 

J 

s’ds9 
(277j4 

0 
fs + s’ + p”) (sf + (p2 - m2)) (sf + m2) 

(3.26) 

which is a convergent integral in s’ and, by inspection, a bounded function of 

s 20. Therefore, M is finite and the convergence factor, y, is distinctly less 

than 1. Further, since the bounds C and CT used above are themselves bounded 

by 2 + M, their existence now is established by the finiteness of M. Thus the 

proofs of uniqueness and convergence are valid for the full integral equation 

* 
The simplicity of this condition makes it a natural one to use here although 

M/(1 + M) is only an upper bound on the convergence factor. Convergence can 
occur in cases where M is not finite. 
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(3.4) as well as Eq. (3.7). Also the above proof that the limit of convergence 

is a solution of the equation has been specially constructed to maintain validity 

so long as M is finite. Therefore, A(s) = Lim An’(s) is a unique positive so- 
n-+m- 

lution of Eq. (3.4). 

Since Eq. (3.26) gives a bound on M which is proportional to ef , convergence 

being governed by y = M/l + M: one should expect that convergence will be slow 

for large values of eP . To illustrate the application of this method a finite mesh 

was used to compute the values of g’(s) shown in Fig. 10. 

It is interesting that the propagators formed here cannot develop “ghost” 

poles--i. e. , poles other than the pole at s = -m2* For real s < -p2 such poles 

are excluded by Eq. (3.6) which shows -& (K(s,s’)) is positive. Hence, ,4-l (s) “7.‘ 
n 

is an increasing function of real s > -p’, and can have only one zero there. The 

same observation can be made for all real s > -(m + ~1)~ by considering the extra 

part of K which enters if s < +2 (see Appendix A). Again one finds $ K > 0 

so that A -1 is increasing. More generally, as outlined in Appendix B, one can 

show that, starting iteration of Eq. (3.4) with A(‘)(s) = l/(s + m2), all d”)(s) and rrr 

i(s) have a Lehmann spectral representation and that no ghost poles appear for 

real or complex s. 
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IV. CONC LUSION 

In treating inelastic unitarity and self-energy in the Bethe-Salpeter equation 

we have developed a procedure that maintains a precise formal correspondence 

to a set of Feynman graphs, but deals directly with the amplitudes that appear in 

the equation. As a result, it has been possible to include a large class of self- 

energy graphs and also maintain the physical properties of the Lehmann spectral 

representation. However, there are many, many more complex graphs which 

have not been included here, and a better understanding of the significance of 

such graphs must be obtained before the Bethe-Salpeter equation for strong inter- 

actions can be fully understood or effectively used. 
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APPENDIX A 

KERNAL FOR s < -p2 

For s < -p2 we get an addition to JKA in Eq. (3.4) of the form -4h 

JK2(s, s’) A (s’) ds’ V (we will now refer to the K of Eq. (3.5) as Kl) 

Where 

K2 (s,s’) = H2(s,s*) - H2( -m2, s’) = H2(s,s’) if m<p, 

H2(s,s’) = 47r2e2 
----& 8 (-s’) e (s’ + (J-s -J) l ks +s’+py - 

4 ssw2 c 0 (Al) 

for s< 0, e(x) = 1, X>O;=O, XC 0; 

while 

$ H2(s, s’) = O(- s')B(s' +( J-s -p)2).(-2s~2 -2Sl.L 
2 

-s 
12 + ss’) 

s2[(s +s’ +/,t2)2 -4ss’-j1’2 
> 0 (A2) 

for s< s’<O. 

Eqs. (A2) and (3.6) insure that A-‘(s) calculated from Eq. (3.4) will be an Yu‘ 

increasing function of real s > -(m +P)~~ If mw, the K in Eq. (3.4) becomes 

K1(s,sl) + K2(s, s’) and the integral equation involves all s, s’ > - (m -P)~. 

However, Eqs. (A2) and (3.6) insure that K will still be positive. The proof 

that iteration of Eq. (3.4) converges can then be generalized to include m > p. 

The case ~1 = 0 is special in that U(s)-’ IK(s,s’) U(s’) is then unbounded 

as s- -(m -p)2 = -m2. However, convergence can still be verified by 

separating 2 s’ > -m + E from s’ < 2 -m + E , and showing that the error in 

i(s) for s> 2 -m + E vanishes as E - 0. 
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APPENDLX B 

SPECTRAL REPRESENTATION FOR A 

Starting iteration of Eq. (3.4) with & (1) (s’) = l/(s’ + m2) one can perform 

the qio integration exactly , obtaining 

, I 
F-1 

1 -- 
2 da 

-m +a 

1 
ZI Wb) 

with 

where 

f(2)(a) = (a-m2)gt2)(u) = aF(o, m) 

e27r2 i a =- F(o, m) = [ U- (Ill +p~]1’2[a- (m -p)2]1/2 

(27# ’ u 

Note: l>F (0, m) > 0, a (2) ‘pg (N>O* 
u-m 

From g (2) (o-->O, it follows for Re(s) > -(m +-pJ2 that ($(2)(s))-1 is only 
zero at s = -m , since the integral in Eq. (Blb) then has positive real part. Also 
from Eq. (Bla) one has 

I g2)( s)-l 12 IIm(*(2)(s)-l)( = (Imsl+ r f(2)(.) 

(m+v j2 

X 
I I 

Re(s) +T2’+ iIms12 da (B2) 
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Since f (2) (a) > 0, ghost poles are excluded for 1 Im(s)l > 0 and they are 

also excluded for Im (s) = * ie,Re (s) < -(m +p)2 where Eq. (B2) gives 

Re (s ) ) > 0. Thus the only singularities in k t2)(s) 

areapoleat s = -m2 andacutfrom -(m+p)2 to -00. To write a Lehmann 

spectral representation for A _(2)t s ) we need to know that @ ,a (2) (+“(s’-s) ds’ 

vanishes over a large circle with detours around the pole and cut in i A (2)( s’)) of 

radius R-P co. Along any ray away from the cut, Eq. (Blb) with g (2) - ( CJ) _< a/( u - m2) 

gives b(2)( ‘) s -+ l/( s’ + m2) so that the integral over this part of the circle is 

easily seen to vanish as R--*ao. Near the cut we may use Eq. (B2) and the fact 

that f(2)(C) is greater than a step function of the form <y( cr) = be (u- c) with 

b > 0, c > (m+p)2, e.g., f (2) (u)? F(U) 

to find a lower bound on 1 a_(2)(s)-ll for 

I ht2)( s )-l 

so that 

2 aF(m +2~)~, ( , 

Re(s) < 

1 
I L$2)(s) 5 I IIm(s)J+ 2 

-c: 

+ bn 
2 

. 

W) 

One can then show that the integral of A( s ‘)/(s’ - s) over an arc of the circle 

touching the cut vanishes as R --P co , thus obtaining a spectral representation 
for i(‘)(s) : 

00 
(2) & (s) = 

,w 
s + m2 

+ J- 
pt2 )( u) dcr 

(m+P) 
2 SfU 

with 

(2) = ([ ( )I ) -1 
Z g 4 w-l s,-m2 ’ 0 (2) 

and 

pt2+ a) = &(a L+ ie) I 
2 (2) f (u)>O 

(B4) 

tB5) 

WI 
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Since A (2) (s)-w 1 (s +m2) as / s -+ + 00 , we can multiply Eq. (B4) on both 
w 

sides by s + m2 and taking s+ +co get the familiar relation 

1 = ,(‘) i- 
s 

O” pt2)( u) da 

W-P) 

Now we can go to the next iteration, writing A (3) ( s ) in the form of Eqs. (Bla ,b) -5 
with 

f (3) (a) 2 (3) = (u-m ) g (c) (2)F(u, m) + e(fl-(m+-QQ2) 

P(~)(u’) F(a, 6’) de’ PI 

From Eqs. (B’7), (B8), with F(a, r-n), F( u, 0) 5 1, we get 

0 < zt2)a F(a,m) I f(3)(u) < a tB9) 

so again 

0 < gt3+ u) < a 2 
u-m 

and 

f(3)(u) 2 z(2) F(u) (Bll) 

Thus we can eliminate ghost poles from A(3) , write a spectral representation H 

for A(3) , . . , etc. Equations (Bl) - (Bll) then hold inductively with 2-+ n, 

3-+n+l for an n greater than 2. 

Now from Section III and Appendix A we know the (n) 2 (s ) formed here 

converge for real 
2 

s > s min Min (0, ~1 - m) . But then, using the contour 

in Fig.8, we can show 6 (n+y s J-1 converges for real S > - cJTn+ N2. 
In this way we can move down the negative real s axis, on either side for 
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2 
s < -(m+p) , showing A /)( s )-l converges. (We can also reach any complex s 

in this way by moving parallel to the real qio axis in Fig. 8). But then ,w , the 

inverse of the slope of A(n)( s 1-l at s =-m 2 converges and g(n)(~) , the cut 

discontinuity in 11( f: 
@) -l)/(s+m2) - (s ) 1 1 , converges as n-tt co for any bounded 

range of (T. Since g (n) ( u). < a/( u - m2) for every n we can conclude 

ys) = .&q&q 
where 

A(S) = Lim k (n) (s) 
n-ho0 

g(u) = Lim g(n)( a) 
n+o0 

Thenwecanwrite Eq. (Bla) for b(s) with f(u) = (a-m2) g(u) = 

W2 ) 

Pl3) 

W4) 

Lim f(n)( u) Ezra, z= Lim ztn) > 0. Thus A (s ) has no ghost poles 
nw n+co M 

and we can write 
Z 

$:(s> = 2 + s +m J- 
cc $$du 

@-w-l ) 

W5) 

where p(u) = Ik(u* ie)12 f(u) satisfies 

cc 
1 =z+ P(U) da W6) 

In conclusion note that the approximate solution to Eq. (3.4) given first in 

Section III also has a spectral representation without ghost poles. 

ACKNOWLEDGMENTS 

The author would like to thank Professor S. D. Drell, Dr. Y. Frishman, 

Dr. J. D. Sullivan, Dr. S. J. Brodsky and Professor J. D. Bjorken for their 

informative and stimulating conversations. 

- 33 - 



LIST OF FOOTNOTES AND REFERENCES 

1. 

2. 

3. 

4. 

E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951); M. Cell-Mann 

and F. Low, Phys. Rev. 84,350 (1951); J. Schwinger, Proc. Acad. Sci. 

u. s. 37, 455 (1951). 

Charles Schwartz and Charles Zemach, Phys. Rev. 141, 1454 (1966) o 

M. Levine, J. Tjon and J. Wright, University of California, (a) “Solution of 

the Bethe-Salpeter Equation in the Inelastlic Region,” UCSD - lOPlO-12, 

September, 1966; (b) “Effect of Self-Energy Terms in the Bethe-Salpeter 

Equation, ” UCSD - lOPlO-18, December 1966. 

Robert Saenger ,“The Bethe-Salpeter Equation in Momentum Space,” 

SLAC-PUB-231, November 1966. 

5. This result confirms the analysis of Ref. 3 (b). 

6. We are taking @(z, o) = / eiP_‘%)(p) d4p as in Ref. 4. 

7. The author wishes to thank J. D. Sullivan for suggesting the possible 

usefulness of this approximation. 

8. The propagator given in Ref. 3(b) also results in a unitary equation, but 

the device of slope readjustment used there differs from our prescription 

for adjusting 2. For large couplings the resulting propagators are 

totally different. 

R. Haag and Th. A. Maris, Phys. Rev. 132, 2325 (1963); Y. Frishman 9. 

and A. Katz, Phys. Letters ll, 172(1964). 



LIST OF FIGURES 

1. (a) A typical ladder diagram for elastic scattering. The label r denotes 

escaping real particles. 

(b) A ladder diagram containing a real inelastic production. 

(c) A real inelastic process not contained in any ladder diagram. 

2. A bubble graph resulting from the absorption of a radiated quantum. 

3. An iterated bubble graph resulting from the absorption of a quantum radiated 

from a dressed ladder graph. 

4. (a), (b) A nested bubbl e graph resulting from the absorption of a quantum 

radiated from a dressed ladder graph. 

(c) A more complicated nested bubble graph. 

5. The contours C 2 
9 

and Cf2 for KE< 2~) p2< k2. 
E u 

6. Singularities in the integral @‘(V - Vt) $ . 

7. Inelastic production graphs corresponding to terms in @ ’ (V - Vt) @ 

for 2p>KE>p. 

8. Deformed zqo contour in the integral for x (q!) e 

9. The location of cuts in ‘c $) relative to the loops in C 
P2 

for 

P2 = 0, 2p.KE S/J . 
rrr 

10. Computed values of & (s )-l (dark lines) for various values of A = ef/16 n2, 

taking m2 = 1, p2 = 2. Variation with mesh size was less than e 3%. 

Broken lines indicate the first iteration after taking &(l)(s) = l/(s +- m2), 

i. e. , the result of first order renormalization. The dotted lines indicate 

those approximate propagators which result after one iteration if 

A(l)(s) = Z/ (s + m2) , ?f being given by Eq. (3.3). (For A = 1 the 

discrepancies among these lines are too small to be shown on this graph. ) 
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