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ABSTRACT 

It is shown, directly from proper Lorentz-invariance and a 

positive Hilbert-space metric, that the vacuum expectation value 

< 0) [joFL ji Fl] / 0 > cannot vanish unless jp(x)iO>= jt (x)/O > G 0. 

Neither local.ity nor K$ill&-Lehmann type representations are needed. 

The same is demonstrated for < 0 I[ s;,($ Simt3] 10 > -? for aw 

antisymmetric tensor S 
PV l 

The explicit dependence of j and 
P 

S 
PV 

on the fields with which they interact is an immediate conse- 

quence in our approach. Similarly, it is immediate to show that 

X(x), X(x) = 3,f(x), d oes not commute with ji (y) for y, = x0 , 

unless X(x)10>= xt(x) 10 >sO. 

* 
Work supported by the U. S. Atomic Energy Commission. 



I. INTRODUCTION 

Schwinger’ demonstrated that the equal time commutator j,(z), j,(y) 1 Q 
of the time and space components of a conserved current jP(x) cannot vanish. L 

It was afterwards realized that the above commutator does not vanish also for 

the case of a non-conserved j 3-7 
l-J’ 

In those derivations, the assumptions of 

a local theory and the existence of 1<2le’ns- Lehmann’ type representations 

were made by the authors, We show that the non-vanishing of < 01 [j. (3, jLF)l 1 O> 

(we consider polar or axial vector currents, not necessarily hermitian) is inde- 

pendent of the laiker assumptions, 10 provided we do not have j/Jo > = 0 and 

j;f IO>=0 simultaneously. Only proper Loreiitz invariance, no massless 

particles and a positive Hilbert -space metric are assumed. In the same ap- 

proach, the non-vanishing of the vacuum exyeclation value < 0 
lb 

d&j ) Q&J jo > 

for any antisymmetric tensor S 
W 

, is dem.onstrated. This fact was pointed out 

via spectral representations in a local theory, by Boulware and Deser. 
11 The 

explicit dependence of j and c on the fields with which they interact 
4,11,12 

P “W 
is an immediate consequence in our approach. This is demonstrated for a scalar 

field gradient coupled to a vector current and for a massive vector field with 

vector and tensor sources. In the same approach, the non-vanishing of 

< 0 
IC 

j: (G), x(F)] / 0 > :1 where X(x) =a” jP(x), is also immeciiate, provided 

not both X and Xt annihilate the vacuum I OS. 

It. THE VECTOR CASE 

Let us decompose the vector jP(x) into 



where G(x) is defined by 13 

m = 0 -1 P a jp(x) 

consequently 

It follows that 

aPJP(x) = 0 !3) 

where F(x - y) is invariant under proper Lorentz transformations. Thus 

SO 1 lo>=0 

and hence 

(4) 

(5) 

Suppose that 

< 0 1 [j. 63, ji (3] / 0 > = 0 

then, from (3) and (7)) taking the three-divergence of the latter, 

< 0 Jo(T), aoJJ (3 ]I 0 > -t <olk(zj, ao akak$&;)il ’ > =’ 

. 

Using also 

(6) 

(7) 

(8) 

(9) 
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where P 
P 

are the generators of space-time translations, we obtain 

< 0 Jo(;) HJ,t (7) 1 I 0 >+ SO Ji($ HJo(q 0> + 
I 

from which, using positive definiteness, 

Jo(x) O>A J; (x) 0>=0 
I I 

0 > = $I+ (A) 0 > = 0 

these entail 

jp(x) 1 0 > = j:(x) 1 0 > = 0 

Thus we have shown that the assumption 

< 0 1 [j,G , ji (31 1 0 
-- 

>=o 

leads to (11~). In a local theory, (11~) implies jp(x) z 0 for a local j 
14 

. 
P 

Consider now a scalar field Q(x) gradient coupled to a vector current 

j,(x). The field canonically conjugate to e+(x) is 

q,p = a,+(x) - jo(x> 

Suppose that 

(W 

(W 

WC) 

(12) 

It then followsI 

< 0 I[ j:(G), ak Q(T) - j, (3- o>= 0 II (1% 

and assuming that < 0 
I[ 

J, (x), e(y) ’ 0 > vanishes leads to a contradiction. .i- - 
I I 

- Thus it is impossible to assume that < 0 > and 
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0 > vanish simultaneously. This was obtained by Boulware 

and Deser4’ I.1 from detailed spectral representation arguments. 

Consider now a vector-meson field AP(x), coupled to vector j and tensor 
P 

S sources. 
PV 

The field equations are 

tw 

where m 
0 

is the bare mass of the vector meson. Assuming 

Wb) 

and 

< 0 
IC 

ji (2)) Ak (F) II 0 > = 0 (161~) 
-- 

we immediately obtain that jP 1 0 > G j: 
I 
0 > = 0. This is so because Eq. (16a) 

implies 

O= <O 
I[ 

jl (s, aeF,(3 II 
-m ,” <O j$,Ao@ II (17) o> 

and (16b) impli’es that < 0 / [j: ($ , Ao(3] I 0 > = 0 (by arguments simil.ar to 

those in Footnote 15). 

In case that only (16b) holds we get * 

> = < 0 II 0 > $ 0 (18) * 

which may serve to determine the form of the dependence of j,($ on Ai@. ” 
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Another application is to theories where a relation of the type 

11 
. 

apjp(x) = X(x) 

holds. Using Eq. (6) we get 

119) 
=-i(s OlmMP2Hdt01/O>+<Ol~tOi)P2Hm(~~~~ A 

< 0 X(3, jt, (7) 
IC II 0 > = 0 

implies 

X(x> 1 0 > = xt (x) IO > = 0 

In a local theory this also implies X(x) = 0. 14 

_ . 
III. THE TENSOR CASE 

Consider the antisymmetric tensor S = - S Let us define 
PV V/l * 

vv (x) = 0-l $ spv (x) 

Then 

spv (4 = gpv (x) + (a, vv (4 - a, vpt4) 

where 

i? E pv=- v/A 

and 

a+yxj = 0 ap$, (4 = 0 

(21) 

(22) 

(23) 

t24a) 

ww 
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Now, 

<o 
m 

- < 0 
I[ 

gk, (q , a,v*t(s) - av v: (y) II i[ 0 > - < 0 akvv (4 - av v,(x) 3jjv (Y) II 0 > 

where we have used < 0 ‘-s I[ ,,(x), V”t(y)]lO > = 0 .16 From 

5 oI[vp (x), V; (~41 O> = gvl, - %) G(x-y) 
L 

we obtain 

(25) 

(26) 

(27) . 



and thus, combined with (25), 

= tx), a0 EoL (31) 0 > 
m 

(x) H gin (y) 0 > + < 0 %, (y) H gem x 0 > 
4 ] 

+ 

Vo(x)P2HVot(y) IO>+ <O/V~(y)P2HVo(x))O> 
I I (28) 

Thus 

implies 

S TV 10 > = SLY 0 >= 0 I (30) 

by arguments similar to those following Eq. (10). Again, locality implies also 

Returning now to the vector meson field A 
P 

of the former section, we can 

immediately show that it is impossible to have 

co $-&,Am(3 10 ;=O 1 
and 

St&, FoQ(T;) /O >=O 1 

(39 

w4 
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simultaneously. For if it were so, then we would get 

(3 p So&3 1 10 > = < 0 3, aoAn(?j - apo(?j 1 / 0 > (32) 
However, since 

< 0 
I[ 

SLv (4, AA (54 1 10 > = tgpA a, - gv h aJ R1 (X-Y) Ji- 5vh$~2(x-~) 

we get from (31a), 

[ 1 a, ~~ (XI x =o= 0 0 
$R2G=0 

Eqs. (33) and (34) together imply that the right hand side of (32) is zero, thus 

obtaining a contradiction, unless (30) holds. 
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