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ABSTRACT 

Assuming that all I = 2 meson Regge trajectories have a(O) < 0 

we derive a new set of sum rules for Compton scattering on I > 1 

hadrons. We compare our results with experiment and with other 

theoretical ideas. 
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tude 

pole 

idea 

1. Assuming that the high energy behavior of the forward ampli- 

for Compton scattering on hadrons is correctly described by Regge 

theory, we have derived a new family of sum rules. Our basic simple 

is to consider certain combinations of non-spin-flip Compton 

tudes which are predicted to decrease rapidly with energy, and to 

that they obey unsubtracted dispersion relations. Using the well 

ampli- 

assume 

known 

Thomson limit for the amplitude at zero frequency, we can then derive a 

set of sum rules which, as far as we can tell, is not inconsistent with 

experiment. In addition, we find some interesting relations between our 

sum rules and previously derived results of current algebras and quark 

models. 

It is well known that the forward, non-spin-flip amplitude for Comp- 

ton scattering of real photons on any given hadron cannot satisfy an 

unsubtracted dispersion relation. Such 

zero photon energy, would read: 
co 

a2 -- 
mQ = f(0) = ; / Im f(V) 

0 

a relation, when evaluated for 

(1) 

1 Where Q = - 
137 

, m is the hadron mass, Q 

of electron charge), V - the laboratory 

photoabsorption cross-section. For any 

- its electric charge (in units 

photon energy and a - the total 

single hadron, Eq. (1) cannot be 

true since it implies that a positive definite integral is equal to a 

non-positive constant. Furthermore, if the total cross-section a is con- 

stant at high energies (or even if it falls off like $) th e integral in 

Eq. (1) will diverge. On the other hand, if f(V) is the difference bet- 

ween two forward non-spin-flip Compton amplitudes on two different hadrons, 

it may obey Eq. (l), provided that at high energies irn f(V) -to. Both 
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Regge theory and the experimental meson-baryon and baryon-baryon total 

cross-sections suggest the convenient parametrization f(V) = v a(o) where, 

in Regge theory, CX(0) is the t = 0 intercept of the leading trajectory 

having the quantum numbers of the t-channel. Using this form we conclude 

that Eq. (1) will be satisfied whenever a(O) < 0. 

It was recently suggested by de-Alfaro, Fubini, Furlan and Rossetti 0) 

that all I = 2 meson trajectories have a(O) < 0. This assumption has 

already yielded a number of interesting results (2) and no contradiction 

with experiment. By applying it to Compton scattering we now find that 

the relation (1) will be obeyed by all I = 2 t-channel amplitudes. In 

particular, we obtain the following interesting new sum rule for yn scat- 

tering: Co 
a --=- dV m +(V) - u 

5[ Yfl YXO 
(V) 

I 
(2) 

The convergence of the integral is guaranteed if aIr2(0) < 0. It is 

extremely plausible to assume that the sum rule (2) converges rapidly 

and that it is dominated by s-channel resonances up to, say, 2 BeV. 

will be the case if the couplings of the I = 2 trajectory are small 

t = 0 intercept is actually far below zero. (2) (3) 

This. 

and the 

2. Since we do not have any direct data on yn scattering we can only 

try to estimate the various contributions to the sum.rule (2). It is easy 

to see(4) that the only s-channel resonances contributing to Eq. (2) are 

the G = - 1 states. The most important of these is the CD which is the 

lowest lying G = - 1 state and which has a relatively large partial width 

to Try. Other candidates are the cp (which has a very small decay rate into 

n-p and presumably even a smaller rate to ny) (5) , the Al (if it exists) 

and the A2. The 'I, P, X0, f", f* and u do not contribute to (2). A rough 
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estimate for the sign and magnitude of.the dispersion integral in (2) can 

be obtained by assuming that it is dominated by the contribution of the cc). 

Using the narrow resonance approximation and neglecting terms of order 
ill 2 

(f) we find: (6) 
(u 

g = r(w -Y) 
m (3) 

0) 

leading to T‘(o +5[y) = 0.9 MeV. Experimentally (7): Iyul -+ny) = 1.2 +- 0.3. 

This remarkable result is probably accidental to a certain extent, since 

the vector meson dominance assumption for s-channel dispersion relations 

does not work so well, in most other cases. (8) We do consider it, however, 

as an indication that the sum rule (2) may be true, and as a convenient 

rough approximation. We also notice that the contribution of the next 

important state, the % will shift r((~ +ny) in the right direction. The 

% and Al contributions can be very crudely estimated by using the experi- 

mental Al 2 +T[ + p decay rates and the p-dominance model for the isovector 
3 

part of the electromagnetic current. This model predicts l?(A: -+n+y) = 

0.4 2 0.2 MeV, T'(AG +x+y) = 1 + 0.4 MeV, where the quoted errors reflect 

the uncertainties in the masses and widths of the resonances (7) and the 

p coupling constant(') but not the error introduced by the p-dominance 

assumption. The same model predicts r(Cp +~ry) N 0.01 MeV. It is impos- 

sible to draw any decisive conclusions from such estimates. If we insert 

our values for the cp, Al and A2 contributions in Eq. (2) we obtain: 

I-("' -+J[Y) = 2 k 0.5 MeV. Only a direct experimental determination of 

T‘(A2 -'fly) will enable us to reach stronger conclusions, since the A2 

contribution is the most important after that of the (I). (10) 

3. The only other sum rule which has been derived, so far, for 

Compton scattering on pions, is that of Cabibbo and Radicati who found (11): 
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co 
1 z<e>=- 

3 /I 21T2a 0 
aV(y+rr"+I=O)+(JV(y+x++I=l)- $ rJV(yQ+~=2 

11 

)]F l (4) 

Where rfl is the charge radius of the pion and CJ" is the total absorption 

cross-section for isovector photons in a given s-channel isospin. The 

resonances which contribute to (4) are the same as those contributing to 

our sum rule (2). In both cases, the CD and A2 are, presumably, the most 

important states. Approximating the integrals in both (2) and (4) by cu 

and A2 alone we can solve for the A 2 width and the pion radius. We find: 

‘?A2 -Y) = 0.3 * 0.3 MeV (5) 

r = 0.55 + 0.1 f (6) n 

Equation (6) should be compared with rx = 0.63 f (predicted by p 

dominance), rsI = 0.7 -I 0.2 f (the only available experimental 02) number) 

and r = 0.82 f (the experimental charge radius of the proton). If we 
P 

include the Al contribution as an additional unknown quantity in Eqs. (2) 

and (4) we can still derive (6) but not (5). 

A surprising relation is obtained when we assume m-dominance for the 

sum rules (2) and (4), and eliminate p(W +ny). We find: 

< r2 > 
-+- =i? 

(7) 
(I) 

This result differs by a factor 2 from the prediction of the vector meson 

dominance model for the pion form factor, which gives: 

< r2 > 
.+=+ 

mP 

(8) 

We suspect, although we have not been able to prove it, that this factor 
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of 2 is related to the similar factor which we find when we compare the 

Cabibbo-Radicati sum rule to the Dashen-Gell-Mann-Lee (13) sun rule. (14) 

4. Another interesting relation follows when we relate Eq. (3) to 

the well known relation: 

CX m3 u2 
r(W -+fly) = UP 

24.mij 
(9) 

where p and m 
P N are, respectively, the total magnetic moment and the mass 

05) 
of the proton. Eq. (9) was first derived on the basis of the quark model 

and was recently rederived 06) using saturation and pole dominance assump- 

tions on sum rules obtained from the algebra of currents at infinite mom- 

entum. Eqs. (3) and (9) lead to a familiar relation which was previously 

derived either from ;(12)-type theories or from the nonchiral ~(6) x ~(6) 

current algebra between states at rest 03) : 

(10) 

Eq. (10) gives p = 2.4. 
P 

.?* Using the model suggested by Gell-Mann, Sharp and Wagner (17) for 

the CD +II + y decay we can write: 

cd f2 
rb -flrO = -$ 7 

P 

where fp is the direct y-p coupling constant. Assuming f = f and 
P Pflfi 

inserting Eq. (11) into (3) we find: 

m2 f2 
wpwrr 

= 4 fEnll 

(11) 

(12) 

This result is identical (apart from replacing mu, by mp) to the prediction 

derived by Fubini and Segre WJ) while saturating their sup&convergent 
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dispersion relation for n-p scattering by the R and w.intermediate states. 

Notice, however, that their result is derived from a spin-flip, I = 1 

t-channel amplitude which has nothing to do with our non-spin-slip I = 2 

amplitude. 

6. In addition to the sum rule (2) for Compton scattering on pions, 

we can derive similar relations for any I 2 1 hadron. The simplest of 

these'is a relation for yC scattering: 

+ u (V) - 20 (V) dV 
Yf YCO- 1 (13) 

where, again, the integral converges if cx Iz2(0) < 0. We find it very 

hard to compare (13) with experiment in view of our ignorance about Y*Zy 
* 

or even Y Co vertices. In particular, we cannot use SU(3) for calculating 

the $(1405) and Yz(l52O) contributions since both are, presumably, in 

SU(3) singlets and are not related to any N*. We notice,,however, that 

the largest single contributor to (13) is probably the A and that its 

contribution has the right sign. The next states are the YE's at 1405, 

1520, 1670(~~), 1700, 1815 . . . and the Y;'s at 135, 1660, 1765 . . . 

Since all YE’s have negative contributions to (13) while the YI's con- 

tribute positively, we believe that the sign, at least, does not change 

and that the sum rule may be satisfied. This will be tested, of course, 

only when the Co lifetime and the Y* radiative decay widths are measured. 

7. We can generalize our approach to SU(3) and assume that meson 

trajectories in the 27 representation have Q 27(O) < O* Th - is immediately 

leads to many new sum rules which we can now write not only for I = 2 

t-channel amplitudes but also for I = 0 and I = 1, provided that they 

belong to the 27. - From a long list of sum rules which can be derived in 
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this way, we mention here only two examples which deal with the I = 0 

part of the 27: 

0 

P3cll --= 3u(p)+3u(n)+3~~')+3u(~-)-gu(A)-u(~')-u(~')-U(~-)]dV (14) 

m 

6a 2c~ 1 -a+-=- 
"K "Yt 2X2 

6u(K+ (T)-2u(n+)-o(n')]dV 05) 

where u(x) E uyx(V). If cY27(0) < 0 for e components of the 27, the 

integrals will converge and the sum rules may be obeyed. One should 

remember, however, that small deviations ,from SU(3) symmetry may follow 

a pattern that will prevent (14) and (15) from converging. We should, 

therefore, regard these sum rules as highly speculative. Needless to 

say, we cannot do too much about comparing these sum rules with experiment. 

8. Our new sum rules may be regarded as complementary to those 

derived from current commutation relations, PCAC and the superconvergent 

dispersion relations. Taken together, they may lead to a better under- 

standing of the algebraic structure of the complete set of sum rules with 

or without saturation. They may also enable us to determine various strong 

and electromagnetic coupling strengths, by solving large sets of coupling 

constant equations which are derived from a combination of principles such 

as the ones mentioned here. A particularly good illustration of this 

point is provided by the or-p system for which we now have $I independent 

sum rules(") for forward n-p scattering alone. It would be extremely 

interesting to study the self-consistency of these sum rules and the 

interrelations among them. 
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After deriving the sum rule (2) we have learned from Dr. H. Pagels 

that he had independently derived the same relation as well as other 

relations by using quark model assumptions for high energy scattering. 
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