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I. INTRODUCTION 

The studies of the past years have yielded many insights into the foundations 

and the dynamics of quantum field theory. Two main avenues have been followed 

in discovering these results. On the one hand, people have done many calculations, 

such as the perturbation theory study of the magnetic moment of the electron, or 

such as the current commutator derivations of sum rules. On the other hand, 

some people have followed Wightman to look at the basic structure of quantum 

field theory. 

These people who study the foundations of quantum field theory have always 

made two simplifying assumptions, the first at low energy, the second at high 

energy. At low energy, it was always assumed that no zero mass particles enter 

the theory; photons and neutrinos must be given a small mass. At high energies, 

it was always assumed that the off-mass-shell amplitudes remain polynomially 

bounded. 

There are many reasons to believe that the assumption about polynomial high 

energy behavior rules out from the start any consistent theory of weak interactions, 

many models of strong interactions, or any field theory involving a non-renormalizable 

coupling. 

On the other hand, only on the basis of these two simplifying assumptions did 

people get through to the construction of an S-matrix, and to the proof of dispersion 

relations for two particle scattering. 

The work which I shall describe fills the second gap in technique. It shows how 

to deal with quantum field theories that have singular high-energy behavior. 

We shall define the notion of a strictly localizable field, l-5 and show that it is 

possible to work out the general principles of field theory for any field which is 

localizable in that sense. In other words we put these fields on an equal footing 

with the ones usually studied. 
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Furthermore we derive a useful high-energy bound from strict localizability. 

In general, the off-mass-shell amplitudes corresponding to a strictly localizable 

field, need not be polynomially bounded. However it is possible that the on-mass- 

shell scattering amplitudes have analytic continuations which do have the property 

of polynomial boundedness . 
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II. BASIC REQUIREMENTS ON A FIELD 

Let us start with a review of five basic, physically motivated requirements on 

a field theory. 697 The first three of these are: 

(1) The State Space is a Hilbert Space. 

(2) The Fields are Covariant under Lorentz Transformations and 

under Space-Time Translations. For a scalar field, the transformation 

law has the simple form 

U (a& A(x) U(a,A)-’ = A(Ax+a) 

where U(a,A) is a unitary representation of the inhomogeneous Lorentz 

group . 

(3) TheEnergy Spectrum is Positive 

iPp a 
U(a, 1) = e I-1 , 

where the spectrum of the energy-momentum operator Pp lies in the forward 

light cone 0 There is a unique ground state Go, the vacuum vector, which 

has zero energy-momentum 

PP!+!Jo = 0 . 
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III. A(x) IS NOT AN OPERATOR 

Let us pause at this point to remark that such a field A(x) can not be a field 

of operators. That fact, which was first noticed by Wightman, 
8 is an easy 

consequence of the Kalldn-Lehmann spectral representation for the vacuum 

expectation value of the product of two fields. 9-11 This spectral representation 

in turn rests on these three assumptions. 

Assuming that + 
0’ 

A(x) eo) = 0, we have 

(eo, A(X) A(Y) (Lo,) = /mdhl’/ d4p p(M’) 6(p2-M2) @p,) e-ip(x-y) . 

0 

Here 

p(M2) is positive. 

On the other hand, let us compute the length of the vector got by applying A(x) 

to the vacuum, 

IIA(x) fi, II 2 = ($o9 A(x) A(x) Go) - 

By the spectral representation this equals 

Since the volume of each mass hyperboloid is infinite, A(x) Go can be a vector 

only in the trivial case that p(M2) = 0. 

In other words, a field can not assign an operator to each space-time point. 

Rather it must be averaged over some space-time region with a smooth function 

in order to yield an operator. 
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IV. STRICT LOCALIZABILITY 

We now want to talk about the notion of a localizable field. Suppose that a 

field can be averaged over an arbitrarily small region in the neighborhood of 

each point x. Then we can recover all the information about the field at the 

point x. It then makes sense to write A(x) as a local function of x, and, for 

instance, to write a local equation of motion for A(x). 

We will always require that a field can be localized to the neighborhood of 

any point, and we call such fields strictly localizable fields, or SLF’s. Let 

us now continue to list the basic requirements for fields: 

(4) Strict Localizability and Locality. 

We assume that A(x) is an SL F , so it can be averaged over an 

arbitrarily small region around any point. Furthermore it is local, so that 

[A(x), A(Y)] = 0, if (x-Y)~< 0 . 

(5) Particle Interpretation. 

The field theory can be connected to physical experiments. 
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V. HIGH ENERGY BOUNDS 

The simplest consequence of strict localizability is that strict localizability 

imposes a high energy bound on the growth of the momentum space amplitudes of 

the field. 
3 Let us first recall the usual polynomial bound and compare that bound 

with the bound arising from strict localizability. 

The usual assumption is that there is an integer M such that 

( Go, ii X(P2) * l l X(Pn)$o) 

(1 + ,\P?) 
Mn 

is bounded in the momenta. Here x(p) is the Fourier transform of 

A(x) and 

n 

liPN2 = 
=i 

(PjoJ2 + ‘i;j)2 , 

j=l i 

is the sum of the squares of all the energy-momentum components. The energy- 

momentum vectors range over all space, and are not necessarily restricted to 

the mass shell. 

In contrast with this set-up, the requirement of strict localizability allows 

for a much wider class of high energy behavior. The polynomial growth can be 

2 replaced by an entire function of II p II . Now we only ask that 

( Go, %P1) . l l %P,) Go/) 

[g(IIPl12) 1 n 
L J 

is bounded in the momenta, where g is an entire function with positive power 

series coefficients, 
co g(t2) = c cc& P , c-&o. 

r=O 
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The requirement of strict localizability is exactly equivalent to the fact that 

g(t2) satisfies the bound 
co 

/ 
log dt <ao. 

1 t2 

What does this bound mean? Some examples of acceptable high energy behavior 

are 

2 M 
g(llPl12) = (It- IlPll ) , (the usual case), 

and 

g( lIPl12) - 

i 

1+-E 
exp II p II /(log Ii p Ii) 

i 
, 

g( IIP H2) - 
i 

l+E 
exp II p 11 /log 11 p II (log log II p II) 1 

I’ 

However a growth as fast as 

g( Ilp s2) h exp ii pll/log ilp iI 
I 1 

is not strictly localizable. 

The question now arises whether it is possible to carry through the general 

investigation of strictly localizable fields, and the answer is yes. Mathematically, 

they may appear difficult to handle, since such fields need not be distributions in 

the sense of Schwartz. However, they can be given a precise mathematical 

meaning as generalized functions D Let us now describe some results of this 

investigation to show that SLF’s are on an equal footing with the usual fields. 
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VI. VAC WM EXPECTATION VALUES 

First we mention that instead of characterizing the SLF’s by their behavior 

in momentum space, one can look in configuration space. The configuration space 

vacuum expectation values are boundary values of analytic functions, and these 

functions are analytic in the usual domain of the difference variables. 795 From 

this analyticity we conclude that the TCP theorem and the spin and statistics 

theorem hold for the strictly local field theories. Furthermore it is possible to 

look at the local singularities which can occur in the configuration space analytic 

functions as you approach real points. A special feature of strictly localizable 

fields is that essential singularities can occur in the vacuum expectation values. 

The possible essential singularities can be classified in terms of the indicator 

function g(apll 2), which we introduced to characterize the momentum space growth 

of the vacuum expectation values. 4 
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VII.. SCATTERING MATRIX 

The second point of interest is that we can start from a strictly localizable 

field and construct the S-matrix. There are two methods, namely the Haag-Ruelle 

scheme which allows the construction directly from the vacuum expectation values, 
12 

or the L. S. Z. reduction formulae which works in terms of time-ordered or 

retarded products. These L. S. Z. reduction formulae can be proved so long as no 

two asymptotic velocities associated with the scattered particles are equal. 13 The 

constructions are based on two results which were already known in the case of 

polynomial high energy behavior, and these results have now been proved for strictly 

localizable fields. The first property is the space-like cluster property of the 

configuration space vacuum expectation values. The cluster property makes precise 

the short range nature of the forces which arise from a theory which involves no 

zero mass particles. The second feature used in the proofs are some time-like 

cluster properties which can be proved when the fields are averaged with wave 

packets associated with non-overlapping regions of velocity space. The final 

formula for the S-matrix is a familiar one in form: 

-bout * 
<q 0 *P, CIl”’ m qlIn > = (-i)n+m fl(pF - m12/ ~J”-m12j<T(pl,...,Pn,-qly.g.,-q~> 

Pie= wi 

‘jozO’ I 

However, <T p 
i 1 , . . . ,p, > is not the Fourier transform of the time-ordered vacuum 

expectation value of n-fields, and in general it is unknown how to define the time- 

ordered product starting from the vacuum expectation values. The reason is that 

the 8 functions which do the time ordering are ill-defined at exactly those points 

where the vacuum expectation values they multiply are singular. It is here that one 

would expect trouble from an “infinite number of subtractions. ” 

-9- 



On the other hand it is unnecessary to define sharp time-ordered products. 

A set of smooth time-ordered products are both well-defined and yield the correct 

S-matrix on the mass shell. The smooth, time-ordered, vacuum expectation values, 

the < T pl,. . . , 
( ‘n) 

>‘s which appear in the reduction formulae, are got by replacing 

each product of theta functions such as wl-t2) * * - w,-1 - tn), by a regularized 

product: 

1-q * 
/ 

0 (tl-sl-t2+s2) . . . tg (tnml-Sn-tn+Sn) f (y2 l l * 9 Sri--- -sn> d(s 

Here f((19.. - ,tnel) is a suitable, smooth, symmetric, positive function of (n-l) 

variables with total integral equal to one. Such an f does not affect the on-mass- 

shell S-matrix, but only influences its off-mass-shell extrapolations. 
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VIII. SHARP TIME ORDERING 

However, since these formulae do not arise from sharp time-ordered functions, 

we can not expect that they will lead to the desired momentum space analyticity 

properties . This problem can be overcome for the propagator, for the vertex, 

and for the absorptive part of the two-particle scattering amplitude. The method 

for the vertex and absorptive part is to prove a Jost-Lehmann-Dyson representation 

for a strictly local field theory. The explicit repre-sentation allows the insertion of 

a convergence factor,which allows a mathematically precise definition of the 

necessary retarded functions, and this results in the analyticity. Again this is 

a method known in the case of tempered fields. 
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IX. CONVERGENCE FACTOR IN THE PROPAGATOR 

Before proceeding to the vertex, let us see how exactly the same procedure 

can be used to put in a convergence factor into the propagator. 14 Using the Kallen- 

Lehmann representation, we can write the Fourier transform of the vacuum 

expectation value of the unordered commutator of an SLF in the form 

f(q) = fiiqx PO, k($), A(-;)] %) dx 00 =: s dM2 HM2) b (q2-M2) Wo), 
0 

where 

dM2< 00. 

Here g( M2) is the square of an acceptable indicator function for the field A(x). 

Using the K&en-Lehmann spectral representation, we can give a definition 

of the expectation value of the retarded commutator, fRet (q), by replacing 

6(q2-M2) E (qo) with [(q. + i6)2 -c2 - M2] 
-1 

and by inserting a convergence 

factor in the resulting integral. This yields 

ccl 
Pet (9) = c1Fo / 

(j&q2 !iT.dl 
g( M2) 

NM2) 
1 

. 

0 (q. -t i6)2 -<2 - M2 

This definition is acceptable for the following reasons:5 

(1) The Fourier transform of fRet (q) vanishes outside the forward light 

cone, as every retarded commutator should. In order to ensure that result, it is 

essential to define fRet (‘4 with the aid of a convergence factor g(q2)/g(&12) such 
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that g(M2) has the following properties: 

(a) g(M2) is an entire function of M2, 

(b) g(M2) has no zeros for M2 L 0, and 

(c) g(M2) grows for large M2 no faster than an acceptable 

growth indicator function for an SLF. 

However we have originally required the growth-indicator function g to have 

these properties; it is an entire function with positive power series coefficients, 

and an appropriate high energy growth. Therefore we have made the convenient, 

and perfectly acceptable choice of using a power of the growth indicator function 

itself to make the subtractions in Pet@). 

(2) Inside the forward light cone, the Fourier transform of Pet (9) agrees 

with the Fourier transform of f(q), the unordered commutator. 

(3) In fact, the only way in which the Fourier transform of fRet(q) depends 

on the indicator function g(M2) is at the point x = 0. We can see that by looking 

at the difference between two possible choices of the indicator function g. The 

difference between the two corresponding fRet(q 

fRet 
1 (9) - cet (4 = 

g2W2) gl(s2) - g1(s2) g2W2) 

g,(lvr2) p,(M’) (s2-M2) 
I 

= m(s2) , 

is an entire function of q2, which we call m(q2). Thus the ambiguity in the 

configuration space propagator has the form 

m(-0) b(x), 

and this generalized function can be shown to be localized at x = 0. 

(4) The retarded function fRet (q) is analytic in the cut q2 plane, as it should 

be. This property again results from the fact that g(q2) is entire. - 
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(5) Furthermore, since the ambiguity, m(q2), is an entire function, every 

definition of pet(q) will have the same residue at the one particle pole. 

The last fact is the key to using the Jost-Lehmann-Dyson representation to 

define form factors and scattering amplitudes. The off-mass-shell vertex or 

absorptive part will depend on the convergence factor used; however, the physical, 

on-mass-shell amplitudes are unambiguous. 
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X. JOST-LEHMANN-DYSON REPRESENTATION 

Let us now proceed to the Jo&-Lehmann-Dyson representation. 
15-18 

Consider the matrix elements of the commutator of an SLF between two eigenstates 

of the energy-momentum. _ 

y(P,H,x) = <P 
IC 

A(;), A(-;) 
3 I- 

H>. 

For this generalization of the Kallen-Lehmann representationwe must expect a somewhat 

more complicated integral representation. However it is quite similar in form to 

the case in which /P > and (H > are the vacuum $o. The Fourier transform of 

?(P, H, x) can be written as 

f(P,H,q) = wo) d (qi - (y-$)2 - “15 

where 

oj = Qj (P,H,z, M2). 

In this case, the Gj are not necessarily distributions, but they are strictly- 

localizable generalized functions, in an appropriate sense. Furthermore, they 

have the property that if g(ll p 11~) is the square of an indicator function character- 

izing the growth of the momentum space field, then 

~j (P,H,ii’ M2) 

[ 1 g W2) 
is a strictly-localizable generalized function which has compact support in i? and 

is bounded in M2. Therefore we can define a matrix element of a retarded commutator 

exactly as we defined the propagator. 
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Pet (P,H,q) = dT; dM2 JJ g ;4: i -(Z-i;,“> pl+qo G2/ 

g (M2) (qo+ie) 2-($-q 2-M2 

This formula not only defines pet (P, H, q), but it also gives a high energy 

bound on its growth for large q. Namely, we see from the explicit representation 

that 

is bounded in q . 
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XI. AMBIGUITIES IN THE PHYSICAL AMPLITUDES 

Secondly, it is clear that different choices of the indicator function g give 

different convergence factors. These different choices for the subtractions will 

yield different commutators; Nevertheless, this ambiguity will disappear in the 

form factor or in the S-matrix elements that we define with fHet* The argument 

to show this is similar to the one we just made with. the propagator. In the case 

of the propagator, the residue at the one particle pole was unaffected by the 

choice of subtractions. Now, two different choices for the indicator function 

will yield retarded commutators which differ by an entire function in the components 

of q. However, the reduction formulae which relate the retarded commutators to 

the physical matrix elements are always accompanied by factors of (p2 - m2) for 

each of the particles reduced. But (p2 - m2) times an entire function vanishes on 

the mass shell, so the physical amplitudes are unambiguous. 
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XII. APPLICATIONS 

Let us consider an example of an application. lg The form factor f(q2) is 

related to the scalar vertex by 

f(q2)d(P+q-H)=<PI?(cj)IH >. 

We can derive a reduction formula which relates the vertex to the matrix element 

of the retarded commutator of two fields. Using the Jost-Lehmann-Dyson repre- 

sentation, we can show that f(q2) is analytic in the region of the q2 plane shown 

in Fig. 1, namely the cut q2 plane with some possible complex singularities con- 

fined to a finite circle. Furthermore, the representation shows that f(q2) is 

bounded in its analyticity domain by g( 11q2 /I), namely 

This analyticity and upper bound on the form factor lead to a lower bound on 

its decay. This is related to the fact that an analytic function whose envelope de- 

cays rapidly must grow rapidly in some other direction. By using precise results 

of this form, we get two lower bounds on the decay of f(q2), one for space-like 

momentum transfer, and the other for time-like momentum transfer. 

envelope 1 ! f(q2) > ceea J-2 
, q2--00 , 

and 

envelope 
I ! 

f(q2) >- M 
g(q2) ’ 

q2 -++oO. 

This type of bound was discussed by Andre/Martin on the basis of S-matrix dis- 

20-21 per sion theory. Now these bounds are proved on the basis of the fundamental 

principles of quantum field theory. 
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Another application of the Jost-Lehmann-Dyson representation is to use a 

double representation 22 to define the absorptive part of the two particle scat- 

tering amplitude as a generalized function. 

Once this has been done, it is possible to carry through the proof of dis- 

persion relations for the two particle scattering amplitude. However, instead 

of polynomial boundedness, it is necessary in general to use an infinite number 

of subtractions, as characterized by an acceptable indicator function g(llpli 2). 

This can be done, and the dispersion relation can be continued to the mass shell 

to the manner of Bogoliubov and Hepp. The final step is to capitalize on the uni- 

tarity condition and apply the methods of Martin 23 to prove that actually only a 

finite number of subtractions are necessary on the mass shell. 
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CONCLUSION 

In conclusion, we have seen that it is possible to broaden the framework of a 

general discussion of quantum field theory to include fields which are strictly 

localizable, but which have faster than polynomial growth at high energy. Approxi- 

mate calculations such as perturbation theory, the summation of ladder graphs, 

or the calculation of Bardakci and Schroer 24 lead one to expect that such behavior 

in field theories arising, for instance, from non-renormalizable Lagrangians. 

We have seen that such SLF’s can be put on an equal footing with polynomially 

bounded fields. 

There are some interesting unsolved problems associated with strictly local- 

izable fields. In spite of their bad behavior off the mass-shell, it may be possible 

that all mass shell analytic continuations of the scattering amplitudes are actually 

polynomially bounded. This question remains open. Also it may be possible to 

get bounds on other cross sections of interest. For example, it is intriguing to 

see that the form factor bound looks quite similar to the form of the Orear fit 25 

for elastic proton-proton cross sections at high transverse momentum transfer. 
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