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Summary: We introduce the notion of a field which is strictly localizable 

within a region of space-time. We investigate what restrictions strict 

localizability imposes on high energy behavior of fields, and we find 

that it leads to an upper bound on the growth of a field in momentum space, 

This bound allows the off-mass-shell vacuum expectation values to grow in 

momentum space faster than any polynomial. Furthermore, it turns out that 

no maximum rate of growth exactly saturates our bound. In addition, 

strictly localizable fields need not be Schwartz distributions. However, 

the usual distribution fields are a special type of strictly localizable 

fields. We formulate a strictly local field theory in precise mathemati- 

cal terms. Finally we discuss simple examples of strictly localizable 

fields that are not distributions. 
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I. INTRODUCTION 

In this paper we introduce the notion of a strictly localizable 

field (or SLF). It is the first of a series of works on the proper- 

ties of strictly local field theory (SLFT). 

We shall study quantum field theories in which it is possible to 

incorporate the physically motivated requirements of 

a) A Hilbert Space of States, 

b) Covariance of the Fields Under Lorentz Transformations 
and Space-Time Translations, 

c) Postitive Energy, 

d) Locality (as Local Commutativity of Fields), 

and e) A Particle Interpretation. 

On the basis of the Hilbert space and covariance alone, it is known 

that a field A(x) will not be a field of operators; rather it must be 

smoothly averaged over some space-time region in order to yield an opera- 

tor [l-2]. In fact, using covariance one can write down a spectral repre- 

sentation for the two-point vacuum expectation value of a field, which 

for a scalar field has the form [3-61 

(q,, A*(x) A(Y) 'Y,) = e-ip(x-y)p(p)dp . (1) 

Here p(p) is Lorentz invariant: 

P(flP) = P(P) . 

From the positive metric in Hilbert space, it follows that p(p) is a 

positive measure. If we assume that A(x) is an operator applicable to 
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the vacuum state $o, then 

j(A(x) 80112 = h',, A*(x) A(x) qo) = P(P) dp <C.Q . (3) 

Combining the facts that p(p) is positive, Lorentz invariant, and inte- 

grable, would lead to 

P(P) = c S4(p). (4) 

Hence, we conclude that the field A(x) can be a field of operators only 

in the trivial case that the two-point function is a constant: 

@‘,, A*(x) A(Y) ‘ko) = c. 

A similar result holds for fields with higher spin. 

In other words, we are forced to formulate a field as an 

valued generalized function. A field must be averaged with a 

function in order to yield an operator 

A(f) = f(x) dx. 

(5) 

operator- 

smooth test 

(6) 

Let us introduce the idea of strict localizability. Suppose that 

a field A(x) can be averaged with some test function f(x) which vanishes 

outside a certain region of space-time, Then we say that the field A 

is strictly localizable in that region. Such a notion is convenient 

for the statement of local commutativity, so we shall insist that our 

fields are strictly localizable within bounded open regions of space- 

time. Then locality of the field A will be expressed by the fact that 

A(f) commutes, or anticommutes, with A(g) whenever the test functions 

f(x) and g(x) vanish outside space-like separated regions. (Later we 
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shall specify more precisely exactly which test functions are allowed, 

and on what set of states the field operators can be applied and are 

expected to commute.) 

In this series of papers we show that it is possible to fit strictly 

localizable fields into the framework of a local quantum field theory. 

We introduce new classes of test functions for fields. We show that 

these lead to fields which need not be Schwartz distributions; rather 

they are operator-valued generalized functions which include the tempered 

fields as a special case. 

We derive for our more general class of fields, certain results 

obtained previously for tempered fields. These include the connection 

between spin and statistics [7-81, the existence of PCT symmetry [g-lo], 

crossing symmetry [11-121, the asymptotic condition [U-15], and the 

proof of dispersion relations [16-191. 

The wider class of fields studied here is physically relevant, 

since it allows for the possibility that the off-mass-shell amplitudes 

can grow at large energies faster than any polynomial. Such behavior 

is ruled out by assumption in the study of tempered (Wightman) fields. 

Nevertheless, one believes that faster than polynomial growth at high 

energies is associated with fields which describe weak interactions, 

and possibly also strong interactions. 
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II. DISCUSSION 

In the usual Wightman framework, one assumes that a field is an 

operator-valued tempered distribution [20-221. Occasionally it was 

found convenient to relax that assumption and to only assume that fields 

are operator-valued Schwartz distributions [23]. Let us see why even 

this wider framework is inadequate for relevent field theories. Since 

the state space is a Hilbert space, vectors have a positive length: 

[[A(f) *o(r =( - b,> A*(x) A(Y) ‘ko) f(x) f(y) tidy 2 0. (7) 

If A is a scalar field, this norm can be written in terms of the spectral 

representation (1) which gives 

IIAcf) JoI/ =(i-(P+(p)I2 dp > 0. (8) 

Since (8) must be true for every f(p) whose Fourier transform f(x) e&(k), 

the space of infinitely differentiable functions with compact support 

r241, we infer that p(p) is a positive, tempered measure [25-261. In 

other words, there is a finite integer N such that 

I P(P) 
2N 

dp < M) , 

P- + llpll ) 

(9) 

II II 
2 

where p = PO2 + G2 is the square of the Euclidean length of p, In 

particular, (9) shows that only a finite number of subtractions are 

necessary to define the time-ordered two point function, or propagator 

[271. 
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There are many indications that (9) is not true in relevant theories, 

and hence that some relevant fields cannot be operator-valued Schwartz 

distributions. For instance, in the study of Lagrangian field theory 

described by a non-renormalizable interaction , perturbation calculations 

lead one to expect an infinte number of subtractions in defining the 

time ordered two point function [28]. Secondly, certain exactly soluble 

models which come from non-renormalizable Lagrangians have two-point 

functions in which p(p) is not tempered [29-311. For instance, if cp (x) 

is a free, neutral scalar field, and q(x) is a free spin $ field, then 

A(x) = : exp cp (x) : q(x) has a two-point vacuum expectation value 

Here 

and 

(co, A*(x) A(Y) Qo) = $ S(+)(x-y) exp [4(+)(x-y)/ . 

No7 *+w \li(Y) qo) = $ &+)(x-y) , 

(10) 

Expression (10) is not a Schwartz distribution, but it can be defined 

as a generalized function [32-331 on all test functions which are Fourier 

transforms of functions in 5&IR4). Further evidence for the singular 

behavior of the two-point function comes from an approximate, but non- 

perturbative, calculation by Bardakci and Schroer [34] on vector 

mesons interacting with scalar mesons by a 2 XA'Jalio coupling. 

In all the cases described above, it is possible to use momentum 

space test functions in&, In other words, it seems consistent to 

describe a field as an operator valued distribution in momentum space, 
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and this was proposed by Giittinger [29] and by Schroer [30]. However, 

the Fourier transform of&contains no functions with compact support, 

so that fields defined on only those test functions may not be strictly 

localizable. Thus it is not clear how to formulate locality for such 

fields, and all the major results of local quantum field theory would 

not naturally carry over. A suggestion was made by Van Hieu [35] and 

also by Gzttinger [36] that a new class of test functions might be used 

to make a statement about locality. 

We show here that it is possible to carry through the field theory 

program for strictly localizable fields. In this work we shall assume 

that our fields are operator-valued Schwartz distributions in momentum 

space. While that considerably simplifies our analysis, and there is 

no known reason to believe that it is false, we shall remove that re- 

striction in a later work. 

III. TEST FUNCTIONS AND HIGH ENERGY BOUNDS 

A. Requirements on the Test Function Spaces 

T.F.l. We denote the configuration space test functions byg(fR4) and 

their Fourier transform, the momentum space test functions,by~(~4). 

Both c and mshould be countably normed, complete, linear spaces in 

which the nuclear theorem holds [37]. They should be invariant under 

linear transformations and translations of the coordinates. 

T.F.2. (St rict Localizability) Definex(0) to be those configuration 

space test functions, localized in the open space-time region 0. 

(11) 
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We assume that$(R4) contains some function which is not identically 

zero. 

T.F.3. (Momentum Space Distributions) We assume that 

T.F.4. (Topology) We assume that convergence inj'7j(R4) is defined 

by the following family of norms: 

II II f n,m,A = sup g(A(b[i2)(l +IIP~~~)~ 1 D" f(p)1 . 
PER4 

Here n and A are integers, 

and g(t) is an entire function which will characterize the momentum 

space growth of the off-mass-shell amplitudes: 

g(t2) = 2 c2rt2rJ Cpr 
r=O 

> 0, co f O* 

Then 

n(Iq4) = 1 fb) : (If\ln,m,A < O3 7 for all n,m,A . 
i 

02) 

03) 

(14) 

05) 

When we consider all the various test function spaces which meet 

these requirements, there is no one smallest space contained in all the 

others. Hence there is no one test function class suitable for all 

strictly localizable fields. Each field will dictate which test function 



space is appropriate for that field, and the relevant test functions 

will vary from problem to problem. 

B. Test Functions over 

It is possible to define analagous test function spaces over R 45 , 

namely&(&),@(m'), orx(R'). Merely replace R4 by R ,-I!/ in each 

definition. Note that the norms defined in (12) automatically entail 

T.F.3, the fact that the fields are Schwartz distributions in momentum 

space. 

C. A High Energy Bound Imposed by Strict Localizability. 

The property of strict localizability can be translated into a 

property of the growth indicator function g(t). In particular, strict 

localizability puts a high energy bound on the growth of fields. It 

will be used in later works to give bounds on matrix elements. 

Theorem 1. (High Energy Bound) The spacex(n') is non-trivial (that 

is there exists one local test function not identically zero), if and 

only if 

s 
a 1% dt2) dt < w . (16) 

0 B-t2 

In terms of the power series coefficients of g(t2) defined in (lb), 

the function g(t2) satisfies (15) if and only if 

co 
c sup (c 1 2rl-2n ) l/P-+24 < o. 1 . 
r=O n>O- 

(17) 

We next see that whenever there exists one strictly local test function, 
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a sufficiently large class must automatically exist. 

Theorem 2. If 2 CR5 is a non-trivial, then for any open region 0 in 

d, the spacex(0) = c(R')naO) is dense in the space&(O). 

Remarks 

1. If g(t) is a polynomial, then $(R') =&!(TR!) 45 =y(R ), the Schwartz 

space, andx(#$) =8(d). 

2. Theorem 1 gives a high energy bound on strictly localizable fields. 

For example, while growth of g( p ') as 
II II 

or as (18) 

is acceptable, a growth as fast as 

is not strictly localizable. In a later paper, we translate this bound 

into a bound on the growth of the momentum-space vacuum expectation 

values. 

3. Theorem 1 provides the substance for the remarks made above that 

there is no one test function class suitable for all strictly localiz- 

able fields. If we are given g(t2) for which (15) is finite, then there 

is a function f(t') for which (16) is finite and such that for any A, 

lim g(At2)/f(t2) = 0 , (19) 
t --+~ 

4. We postpone the proof of Theorems 1 and 2, and first define a strictly 

local field theory. 

5. In [38] we apply the bound of Theorem 1 to derive a bound on the decay 

of form factors at large momentum transfer. 
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IV. A STRICTLY LOCAL FIELD THEORY 

We define an SLFT as a local field theory of an SLF. We adopt the 

usual Wightman assumptions listed in the introduction [20-221 and we 

now give them in a form applicable to our fields. 

Al. A Hilbert Space of States 

The state space is a (separable) Hilbert space H. There is a uni- 

tary representation of the Lorentz transformations on H. More precisely, 

there is a strongly continuous unitary representation U(a,M) of the 

covering group of the Poincar6 group, namely the inhomogeneous SL(2;C) group. 

A2. Fields as Operator-Valued Generalized Functions 

To each test function f(x) ec(j$) , a field A assigns an operator 

A(f). All such field operators are defined on a common, dense, invariant 

domain D C H. The domain D is invariant under Lorentz transformations, 

under space-time translations, and under application of the field opera- 

tors. 

U(a,M) D C D , 

A(f) D C D ., 

and A*(f) D CD 

For each 9, @ in D, the form 

is continuous in f in the topology of6 

generalized function in e'(R!). 

(lR4)* That is, ('!',A q is a 

(20) 
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B. Covariance of the Fields 

The field A with components A 
j 

transforms under the Poincare*group 

as 

U(a,M) Aj(f) U(a,Mj-% = 5 S (M-l) Ak (fia M ) + , 
k=l jk t ' ! 

where $ is any vector in D, 

(f(a,M 1 >(x> = f(Ahh+a,j , (22) 

(21) 

and Sjk(M-') is a finite dimensional representation of SL(Z;C!), the 

covering group of the Lorentz group. 

C. Positive Energy 

By Stone's theorem, and the SNAG theorem, 

U(a,l) = exp(iPliali) , (23) 

where P' is interpreted as the energy-momentum operator. The spectrum 

of the energy-momentum is assumed to lie in the closure of the forward light 

cone. In other words, for any vector q in the domain of ?, the num- 

bers 

form a vector + in V . We assume that there exis ts a unique vector q. 

in H,invariant under Poincare/ transformations, and denote $' o the physi- 

cal vacuum. 

Ub,M) q. = q. ,' 
P-4) 

Pi-l q. = 0 . 

The vacuum q. is assumed to be cyclic for the smeared fields. 
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D. Strict Localizability and Locality 

We assume that the field A is strictly localizable; in other words, 

64YR4) is assumed non-trivial. Then A is local if whenever f and g in 
4 x(R) have space-like separated supports, 

Aj (t> Ak (g> ~ = ’ Ak (g) Aj (f) ~ , (25 > 

Here $ is any vector in D. 

E. Particle Interpretation 

We wish to ensure a particle interpretation and a connection with 

an S-matrix. This will be discussed in a later work. 

v. QUASI-ANALYTIC CLASSES AND THE PROOF OF THFORFMS 1 AND 2 

In this section we shall prove Theorems 1 and 2. Since we shall 

use the theory of quasi-analytic classes of functions [39-421, we review 

some definitions. 

A. Quasi-Analytic Classes 

An important property of analytic functions is the fact that they 

are uniquely determined by their derivatives at a point. Taking this 

property as basic, a class of functions is called quasi-analytic if any 

function in the class in uniquely determined by giving all its deriva- 

tives at a point. Thus analytic functions form a quasi-analytic class, 

but there may be other quasi-analytic classes which contain functions 

that do not have everywhere convergent power series. 

Let IM I n I 
be a sequence of non-negative numbers, and consider the 

class of infinitely differentiable functions C IM 1 defined by the 
I nl 
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following: A function f(x) of one real variable belongs to C IM 
\ njif 

and only if there exist constants A 
1 and A 2 such that the derivatives 

of f(x) satisfy 

suPi Dnf(x) < Al(A2)" Mn * 
XE 7p I I 

The class C 
1 

M 1 is a quasi-analytic class, 
nl if and only if any function 

f(x) E C !M 
I n i which vanishes along with all its derivatives at one point, 

(Dnf)(xo) = 0 , 

must vanish identically: 

f(x) 3 0, for all x. 

Thus no quasi-analytic class of functions will contain a non-trivial 

function with compact support. Conversely, the following is known. 

(See Mandelbrojt [40-lil].) 

Lemma 3. Every class C 
1 M 1 which is not quasi-analytic, contains a nl 

non-trivial, positive function with compact support. 

The classical theorem of Denjoy and Carleman gives the condition 

on the coefficients Mn which is necessary and sufficient for the class 

' Mn 1 I 
to be quasi-analytic. A related condition was given by 

Ostrowski [39-421. 

Theorem 4. (Denjoy-Carlemsn) The class C iMnl is quasi-analytic if and 

only if 

co 
c sup 
r=O n > 0 -(“,+n ) -l/(r+n) 1 = m . (27) 
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Theorem 5. (Ostrowski) Let 

H(t) = rsyO [tr Mr-'] n 

Then the condition (27) is valid if and only if 

s 7 
my dt= co. P8> 

B. Some Useful Results 

Recall thatx(lf2;l) =>I?(&$)@(R'), where 3 stands for Fourier 

transformation. We start with 

Lemma 6. The spacex(nl) is non-trivial if and only if 

00 

c sup (c 
- i 

2r-t2n 
pr+*4 

1 

< 00 , 
r=O n>O 

(29) 

where c 2r is defined in (14). 

Proof Suppose that f(x) is a non-trivial element ofz(R"), with 

Fourier transform F(p) CM(&), normalized so that J g(p')l?(p)ldp = 1. 

Then 

r=O 
r ,;y / D2' f'(x) / i($o C2r P2r[&+p a 

By the monotone convergence theorem, (30) remains bounded as N --f ~0 and 

therefore 

‘2r supl 
=-l-k 

D2r 
,I I 

f(x) < 1 Y 
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SUP cc 
-[ 

2r-k2n 1 
1/(2r+2n) I sup1 D 

I 
2r+2mf (x) 

n>O XEJQ 

Use 

2r+2m f(x) 
-1/(2r+2m) 

sum (31) over r, and add the odd terms to the right hand side in order 

to get 

w 
c SUP (c 

[ 2r+2n Y’ 
r=O n>O 

'(2732n) 1 
as < - c 

r=O 
sup 

n>O ( 1 
-l/(r+n 

sup 
=lR 

lD r+nf (x) 
1) 

> 
I ’ (32) 

Since f(x) f: 0, and f has compact support, it does not belong to any 

quasi-analytic class. Therefore by defining Mn = x~~~~n f'(x)I J we 
? 

infer from Theorem 4 that the sum on the right side of (32) is finite, 

which is the desired result. 

Conversely, let us suppose that the sum (29) is finite; we then 

construct a non-trivial function in Gt?R1). The first step is to note 

that any infinitely differentiable function f(x) is an element of 

if it has the following property: 

exists a constant M(n,m,B) such that 

supI (1 + x2) 
I 

D 2r*n 
X&R 

[xm f(x)\ 

For each n, m, and B, there 

< MbO) 
d2r Br 

? (33) 
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where 

I- i 1/(2r+2n) , 

il 

2r 
d2r = sup 

n>O '2r-F2n (34) 

We now verify that z(p); the Fourier transform of f(x), is an element 

ofM(&), which means that F 
I/ II n,m,A 

< ~0 for all the norms defined in 

02). Clearly 

II II ‘i < 2n go '2r Ar n,m,A - li.12r,m + li12r+2n,mj ' 

where 

I I Ynm= 
I supllpn D" f(p)1 . 

p+? 

However, 

I I Ii < a sup1 n,m - 
X&R 

(1 + x2) Dn Ix" f(x)/ , 
I 

where 
-1 

a=/dx (1+x2) l 

Combining (37) with the assumption (33) leads to 

II II ? n,m,A 5 2n {M(O,m,B) -t M(2n,m,B)l 2 
r=O 

(35) 

(36) 

(37) 

(38) 

Since by definition c2r 5 d2 r, the series on the right hand side of (3) 

converges whenever we choose the arbitrary constant B greater than A. 

Thus F(p) is an element ofm(&), and f(x) an element ofg(i@). We 

now need to show it possible to construct such an f(x) with compact 
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support. If g(t2) is a polynomial,g(&) =y(R1)3 d), so we can 

assume that not to be the case. 

Let 
a2r = (da)1/2r , (39) 

where d2r is defined by (34). Also, let 

cc 

72r = m-r a2m ' c 

and 

‘2r = inf B 
m<r 2m' 

By hypothesis (29), we have that q. < ~0 . It is then easy to demon- 

strate that 
m 

c 
r=O 

F& < w J 

and hence that 
m 

c 
r=O 

Y2, <@J * 

It is no loss of generality to assume y2r 2 1. Note that a 2r' '2,' 
and y 2r 

2-r all decrease monotonically. 

Thus 

(43) 

for some s(r) < r. Furthermore' by (42) we see that y +Oasr-m, 2r . 
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which implies t: hat s(r) -+mas r-+a. Thus v2s(r) -+O as r -+a) and 

lim a2r - = 0. (44) 
r- '2r 

Define 

M2r = (:/g,)-2r J 

(45) 
M2r+l = (Y,,)-(“‘+“J 

and consider the class of infinitely differentiable functions C M 1 . 
rl 

From (42) we see that C \M 1 
I r is not a quasi-analytic class. Hence it 

contains a positive function h(x) with compact support. Since C Mr 
I I 

is invariant under translations and dilations, we can assume that h(x) 

vanishes outside the interval I = [-$,-$I. 

We now show that 

f(x) = (h+h)(x) = I h(x-dh(ddy (46) 

is an element ofg(&). Since f(x) is infinitely differentiable and 

vanishes outside the interval 21, it is sufficient to prove that f E e(R1). 

Keeping the support of f(x) in mind, we have 

sup1 (1+x2) D 2r+nj m 

Xf3-L 
(x f(x)] < 2 sup1 D 

I- I =TR 
2r+njxm f(x)/ 

,E? j32r-a h(x) j . 
0 < a 5 min(m,2r) 
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Recall that h(x) E C 

tonically. Thus 

and that Mr defined in (45) increases mono- 

2r+n 
sup1 (1+x*) D 

=7-i% 

<* _ 2r'n+1(m+l)! ( /Dn h(y)ldy Al (A2)2r M2r 

= C(n,m) 
1 

d2r Br 

f 

where C(n,m) is a constant independent of r. 

By relation (44), we infer that 

sup c(n,m) z M(n,m,%) < ~0 . 
r 

(47) 

Therefore we conclude that 

sup (1+x2) D2r+n /xm f(x)/ < 
I- 

Mb,m,B > 
XE& d2r % 

r ' 

which is precisely relation (33). The above argument then shows that 

f(x) ec({R'), which completes the proof of Lemma 6. 

Lemma 7. z (RI!) is non-trivial if and only ifl(@,') is non-trivial. 

& Proof If f(x) ea(m'), then fi f(xj) E$($!$ ). This follows from 
jti 

the fact that g(t,% ..+ + tt*) 5 g(&t12) + . . . -+ g(&t$*). Conversely, 

45 ) E&R.), then fixing x2,x3,.,.,x& yields a function 
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Lemma 8. ~(!‘R!‘) is non-trivial if and only if 

s 
w log dt2) dt < co . 

0 1+t* 
(49) 

Proof By Lemma 7, it is sufficient to prove the case & = 1. Suppose 

first that (49) holds, and consider the class C IM 1 r I 
, where we define 

M2r-l = M2r = (Cer)-l. (50) 

Then for t > 1, g(t*) > H(t), where H(t) is defined in Theorem 5. Hence 

(49) leads to 
cc 

s 
log H(t) dt < w 

t2 
3 

1 

which by Theorem 5 assures us that C M 1 I 
is not quasi-analytic. There- 

r 

fore Theorem 4 gives that 

ZIn>O' 
sup (c 2r+2n 

)l/@-+24 2 m 
= J ’ 

which by Lemma 6 is equivalent to a non-trivial space Pcd,. 

Conversely, suppose that f(x) is a non-trivial element ofz(@'), 

whose transform y(p) is normalized so that 1 g(p2)l?(p)ldp = 1. Then 

by (30, 

I I D 2r f(x) 5" l 

2r 

Consider the class of functions C Mr , defined by I I 

Mr 
= Ar (51) 
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where A is a given constant. S ince M2r <A 2r -1 c2r , the function H(t 1 

defined in Theorem 5 satisfies 

A 2r H(t) >, C2r t2r? for all r. 

Choosing A < 1 and summing over r yields 

H(t) > (1-A) dt*) - 

(52) 

(53) 

Since f(x) E C , the class C 1 Mr\ is not quasi-analytic. By 

Theorem 5, 
co 

which combined with (53) yields 

w 
s 0 

This completes the proof of Lemma 8. 

C. Proof of Theorems 1 and 2. 

Theorem 1 is a combination of Lemma 6-8, and hence has already 

been proved. We now proceed to Theorem 2. First note that it is suf- 

ficient to prove that ifx(&) is non-trivial, then it is dense in 

45 (fR ). Secondly, convolution by&mapJintode,&*$. C ZZ. a 

Let us suppose thatx is non-trivial, but not dense in & Then 

there exists a non-zero Schwartz distribution x e&p,khich annihilates 2, 

x&t3 = 0. In other words, for any f ex(+), h e&(R'), 

X(fich) = 0 = (h+,)(f) , (54) 



where (G)(x) = h(-x). H ere f&x is a regularized distribution, and hence 

an infinitely differentiable function. 

In the proof of Lemma 6, it was shown that if&JR') is non-trivial, 

then it contains a non-trivial, non-negative function. In the proof of 

Lemma 7 this positive function yields a non-trivial, non-negative func- 

tion f(x) in+&/&)- Furthermore, since$(R') is translation and 

dilation invariant, it is possible to choose the support of f(x) in 

an arbitrarily small neighborhood of any given point. 

We now use this fact to show that x must vanish. Suppose not; 

then for some h E 06, the regularization (?&X)(X) is not identically 

zero. Choose a point x0 where (&)(x0) $ 0, and chooses sufficiently 

small neighborhood N of x o so that the real or imaginary part of the 

infinitely differentiable function (fi+x)(x) has a constant sign. 

Choose the support of f(x), a positive element ofx(#$') to lie in N. 

This contradicts (54), unless x = 0, and therefore it completes the 

proof of Theorem 2. 

VI. EXAMPLES 

In this section we discuss some simple examples of SLF's which are 

not operator-valued distributions. While the examples given have trivial 

scattering, they give a concrete illustration of how to deal with singu- 

lar high energy behavior. The most straight-forward example of an SLF 

is obtained by exponentiating a free scalar field q(x). It was explained 

in Section II that 

A(x) = :exp 3\ q:(x) (55) 
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cannot be an operator-valued distribution. Nevertheless, if we choose 

the indicator function g for 

g(t2) = 2 c2 r t2r., 
r=O 

to have exponential order in t greater than 2/3, then A(x) is an SLF 
1 4 (R"). For instance , given any 0 < E < 1, an acceptable choice for 

g would,be given by 

(56) 

In this case, the two point function of the exponential can be written 

(‘i’o,A(x)A(~)*o) = 

IAl2 m& (m2(x-y)2) -l'*H~')((m2(x-y)'ill")) (57) 

w 

= 
f 0 

P(M') + a(+)(M2;x-y) dM* , 

where o(M 2 > is a positive measure, and 

. 

Here g is an acceptable indicator function described above. Thus at 

large values of the invariant mass M*, the spectral weight p(M2) grows 

slower than the indicator function g(M2). 

More generally, if one were interested in exponentiating any free 

field component defined over &dimensional space-time, this can be done 
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to give m SLF in g'(/?$J. The strict localizability of such functions 

of free fields was discussed in [43]. In addition, any entire function 

of a free field [44] can be realized in four-dimensional space-time as 

anSLF. It is possible even to include a wider class of functions. 

In all these cases, the discussion of convergence of infinite 

series of free fields can be dealt with by using techniques similar to 

those in [44]. The required technical tools will be developed in later 

works. In particular, there is a limit theorem [45] associated with 

lZiRt, , and this allows a discussion of convergence of fields in terms 

of their analytically continued, vacuum expectation values. 
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