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Introduction 

The introduction of hardware multilevel interrupts has made the 

small computer a suitable device for on line analysis and control of 

experiments in physics 11-l , and such systems have been developed in the 

past.r21 However , until recently little attention has been given to 

the man-machine interface, that part of the system referred to as the 

command post. 131 This paper describes an operational system at the 

Stanford Linear Accelerator Center (SLAC) where this area has been 

more fully explored. 

A small on-line computer system has been developed at SLAC to 

monitor and control magnets and other equipment leading from the end 

of the accelerator to the experimental areas. The compact user language, 

easily grasped by the operators of the control room, provides a high 

degree of interaction with the environment. Internal computer time 

has been correlated with time of day so that the user has the capability 

in the language to synchronize events to a resolution of i/360 set over 

a 6 hour time interval. All input output including signals to and 

responses from the environment are completely multiprocessed, and two 

users may gain access on a time sharing basis. 

Machine 

The computer is an SDS 925, a 24 bit machine with a 1.75 psec 

memory cycle time, and 4K memory. There is a typewriter (teletype Model 351, 

card reader and punch, all on a single channel, and 16 levels of priority 

interrupts. [63 

System Configuration 

The system is shown schematically in Fig. 1. At present there 

are 25 A/D channels, (rate - 1 per 200 msec), which read magnet currents. 

Another input is the direct magnetic field (flip coil) measurement of 

the bending magnets leading to e-qerimental area A. Outputs include 

24 D/A channels (rate - 1 per 3 msec.) These provide the magnet power 

supplies with a reference voltage. For scme magnets, the computer 
produces a number, which is counted do;ln by a stepping motor (SLOSYN), 
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each step creating a fixed current change. 

The tune box allows the operator to make a fine adjustment on -- 
magnet settings much as he would with a potentiometer. This box is 

shown in Fig. 2. Using the typewriter, he can specify the sensitivity 

of the lever ('TUNE ALL BY .Ol ;' gives one percent of value sensitivity, 

see Table 1 below.).Then by pushin g the desired magnet buttons and the 

lever, he can change the magnets independently or in concert. The RAm 

dial provides single step mode or 3 nominal rates of change. 

The link with the experimental area A computer (SDS 9300) consists 

of two 24 bit buffers (one for each dire&i&) along with two interrupt 

signals to each computer indicatin g change of state of the registers 

(full to empty or vice versa). The experimental area A computer system 

is described in reference [4]. 

The status monitor interface packs status signals (1 for fault 

condition 0 otherwise) into 63 16 bit words. These arrj read into the 

computer 360 times/set and checked for change of state. Any such change 

is logged (with the time) on the Node1 10110 Monroe Printer (a 20 line/set, 

digits only, 12 char/line device). . This independent activity is multi- 

processed with the other functions, and takes about 'JC$ of the CPU time. 

User Language 

The instructions available to the user are in Table 1 and their 

full description is given in reference [5]. The table is in a kind of 

Backus Normal Form, although the language is not formally expressible 

this way because of the existence of noise words (see below). Language 

input may come from the typewriter, cards, or over the link from 

experimental area A. The typewriter/card channel and the link may be 

operating simultaneously. 

The entities considered in this discussion of the language are: 

character;? words, clauses, instructions, and blocks. Universal de- 

limiting characters are blanks and carriage returns. These two are 

f'unctionally equivalent and may be used interchangeably to format the 

input copy. Words are then strings which contain no delimiters. A 

clause is a group of consecutive words, one of which identifies the clause. 
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Repeatable Instructions - clauses may be added 

STEP <elt> BY <no.> ; 
STZP FLC ; 
CARDS - 
0uTm '<cW ; 
RECORD <elt> ; 
SEND.<string> '; 
TIl& ; ’ ’ 
CLOCK ; ,' 
DATE <string> ; 

Clauses 

EVERY <time> 
.AT <time>. - time clauses 
UHTIL <time> 
TO <destination> - destination clause 
<label> : - label clause 

'Once only' instructions - clauses are ignored 

KILL <label> * 
SET ,<elt> BY &o.> ; 
!lXJNE <ele BY <no.> ; 
TUNE !i.LLB’i(no.> ; 

<time> format examples 

(SW 
(g :0014m) 
(g:00:00SEC) I 

refers to 9 o'clock, or 9 hours 

(T+5ldIN) 
(T+5 :OOSEC) refers to current ttie plus 5 minutes 

<destination> list 

2 - Typewriter output 
3 - Card output 
4 - Link output 

any-thing else - typewriter output 
no destination clause - typewriter output, 

<string> definition - any sequence of characters, not spaces or.carriage 
returns, the first of which is a letter or the character '*' 

<label> definition - any string 

<no.> definition - any sequence of digits with one decimal point somewhere 
in it. The sequence may be preceded by a minus sign '-' 

<el0 list -- 
R4lA 

g: 
621 ABEN cov ClOV 

m2A PDTUM FLC ClH TlOH 
PM3A 

gi 

Bl SLlO CUR TlOV 
R14A =9 SlOR ClV SL30 
lX>A Q400 SLll ClVR S-3OR 
Pi.?? 620 Q401 COH ClOH SL31 
,4; j.' 



. 

c. 

c 
Thus 

Ll : SET Bl = 7.02 

consists of the clauses 

Ll : 

SET Bl 
= 7.02 _ 

The order of the clauses is irrelevent but within a clause position is 

important. Instructions consist of certain combinations of clauses. 

The above three clauses make up a legal instruction where the SET and = 

clauses are necessary but the other one is optional. However, the final 

nature of the instruction is not decided until the terminating semicolon 

word. On receiving this the computer searches backwards (i.e., from right 

to left) for a meaningful instruction. If there is none, the indication 

is typed and the accumulated words are cleared out. If there are several, 

the computer takes the last one. For example, a bad typist might create 

TIME Ll 5 Ll : SE STEP QlO BY .l BY .Ol ; 

and the computer picks out 

Ll : STEP QlO BY .Ol ; 

as the instruction to process. In this way special 'word delete' and 

'line delete' characters are unnecessary. When educating users, the 

exact level of permissiveness of the language need not be spelled out 

as they discover this as they become more experienced. 

As Table 1 indicates there are several optional clauses which 

give the instructions flexibility. For example consider the two instructions 

SET1 : AT (9:0514IN) EVERY (15SEC) UDlTIL (9:203UiV) STEP Bl BY .05 PC ; 

PUN1 : AT (9:05:10 SEC) EVERY (15SEC) UNTIL (9:20:10SEC) OUTPUT Bl to 3 ; 

SET1 causes the current in magnet Bl to be increased (by 5% of its value) every 

15 seconds starting at 9:05 until 9:20. PUNI causes the value of the current 

in Bl to be punched on cards every 15 seconds but 10 seconds behind the 

execution of SETI, thus allowing the magnet to arrive at a steady state value. 

Because of limited memory space there is at present no provision for 

cliches i.e. - tieing to a label a block of (possibly modifiable) 
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instructions, thereby coining a new instruction. However, the same 

effect may be achieved by using card decks for memory as the next 

example shows. The following instructions, on cards, are placed in 

the reader. 

Lo : EVERY (5MIN) CARDS ; 
1 

L (Block #l) 

v r (Block #2) 

v 
l . 

. . 

.i 
. 

(Block j/N) 

I 
KILL LO ; v 

The user types 'CARDS' this shifts control from the typewriter 

to the card reader and the instructions LC plus those in block #-1 

are loaded. The ‘V’ returns control to the typepiriter. At the end 

of 5 minutes Lo is again executed and control passes to the reader 

for block #2. This continues until the last block, along with the 

'KILT, IO ; ' is read in. This last instruction terminates the activity. 

The language may be expanded, (g iven additional memory space) 

by merely adding procedures which recognize new clauses (compile procedures) 

and corresponding ones which treat the new function at execution time 

(execute procedures). 

Channel Scheduling 

As mentioned earlier the typewriter/card input-output pass through 

a single data channel and in addition the'typewriter input-output must 

share the same device. To overcome this difficulty the computer scans 

the status of all input-output 360 times a second using the following 

scheduling algorithm. 
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if 

else 

else 

else 

else 

else 

else 

if - 

if - 
if - 
if - 
if - 

if - 

{in middle of card read or punch cycle) then (continue] 

{RED BUTTON HOLD) then begin -- 
if {channel clear} then {switch to TI) - 
else if [channel not on TI) then (clear channel at end of its cycle] -- 
end 

(in TO] then {continue] 

{exists backlog of typewriter output] then {switch to TO} 

[exists backlog of card punch output) then {switch to CO} 

{input control is at card reader and it is ready} then 

(switch to CI) 

(in TI) then {continue] else {switch to TI} 

where TI = typewriter input mode 

TO = typewriter output mode 

CI = card reader mode 

co = card punch mode 

As a result, this is what the user sees: the typewriter light 

is normally on (TI mode). It occasionally goes off (with no warning, 

for about l/2 set) when a card is being punched (or read). When cards 

are being punched at the maximum rate it flickers. When there are large 

amounts of typewriter output it goes off steady. By pushing a red. 

button (along side of the keyboard) the output is inhibited (although 

it still ques up internally), the light comes on, and the operator 

is free to type one instruction. The hold is released when the ';' 

word is received and the output continues. More may be loaded by 

pushing it do+m again, or by simply holding it do+m. Instructions like 

Lo : EVERY ( 1 PUL) TIME ; 

very quickly swamp the output buffer and the means of recovery is to use 

the red button to insert 

KILL I.0 ; 

Finally, if the operator is keying in (without first pushing red button) 

and at that instant the computer decides to type, the input character 

may or may not be garbled. So to be safe (when the output subsides) 

he retypes the clause he was working on and continues. 
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Implementation 

The implementation is characterized by extensive use of two 

relatively simple list structures. The structure shown in Fig. 3 

is a circular, one-directional loop, with two markers A, B pointing 

to the last free node and last active node respectively. The number 

of nodes in a given loop is its length and is fixed. 

Six such structures are used to completely multiprocess all of 

the input-output. For these buffers the pointers around the loop 

are implied by sequential locations in the machine. Advancing the 

markers amounts to adding 1 modulo n where- n is the length of the 

loop. The nodes represent one computer word: a coded address-plus- 

value for the D/A channel, and BCD characters for the others. When 

information is to be output to the typewriter, for example the 

internal program dumps it into the loop using marker B. When the 

typewriter is ready it triggers an interrupt procedure which takes 

a character out using marker A. If there are no free nodes left, the 

data to be output is lost and the computer continues. When this 

happens the channel is "overloaded", but will recover automatically 

when the data burst subsides. The lengths of the individual buffers 

are chosen to handle reasonable data bursts through their respective 

channels without overloading. 

A single such circular loop is used to dispatch the system 

corrmalds at the precise time desired. In this case the nodes represent 

blocks of information: a pointer to next node, the entry of a particular 

procedure, its execution time, its frequency (if it is to be executed 

more than once), its parameter list, etc. Such blocks are compiled 

from source language instructions by backgrcund procedures and inserted 

among the active nodes, ordered as to increasing execution time. When 

a clock pulse interrupts the computer, current time is increased by 1. 

Then active nodes are lapsed into the free list (using marker A) until 

one is found whose execution ti.me is greater than current time. As each 

node passes into the free list its procedure is executed. Since the 

nodes are onlarecl in time, no further interrogation is necessary at 
level. this tin: and the computer leaves the CLOCK PULSE interrupt 

l 

9 
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In this manner a 360 cps external pulse is the only hardware clock 

required to effect all the real time commands to the system. In the 

case of overload, i.e., no free nodes, the new command cannot be 

inserted and the computer ignores it and prints an indication. 

The other data structure is that of the word stack. It is a 

linear bidirectional list with a variable number of nodes and a 

marker at the bottom. Each node represents a single input language 

word, as indicated in Fig. 4, containing such information as type, value, 

etc. In the case of a clause identifier such as STEP, it also contains 

the corresponding compile procedure entry location. The structure 

continues to grow downward as input language comes in until the termin- 

ating seinicolon. Then the structure is complete and ready for various 

procedures to convert it into the block of information mentioned in 

the previous paragraph. There are two such word stacks, one for the 

card/typewriter input channel and one for the computer link from the 

SDS 9300. A single background program alternates character by character, 

between the two, building up the structures. When one is completed, 

no further building is done until the complete structure has been 

converted to a block and destroyed. 

The program block diagram is shown in Fig. 5. The dashed brackets 

indicate different levels of interrupt with the higher priority on concave 

side. Note there are only two main levels of interrupt: PULSE (the 360 cps 

clock), and the background. The others merely take data into or out of 

buffers and return, freeing the channel. The tune box word contains the 

state of the magnet buttons, and is used by an execution procedure to 

address D/A values when called for. Continuously refreshed values in the 

analog arrays are available when needed by any of the execution procedures. 

Example 

This section contains an example showing how the system was used 

in its O?:TC! development. The strength of the magnetic field in the large 

bending magnets leading to experimental area A determines the momentum 

of those electrons which pass through a narrow slit, and continue to ESA. 

(See Fig. 6). 
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Some experiments call for a very accurate estimate of this 

momentum. Others require that a given momentum achieved on Monday, 

say, can be accurately reproduced on Friday. The operator has at his 
disposal a current control, but because of hysteresis effects, current 

does not define the magnetic field (hence the beam momentum) uniquely. 

A slowly turning flip coil positioned in a reference magnet measures 

the field directly to 6 significant digits.. When a single flip is 

completed the flip coil interface interrupts the computer with this 

number and, using calibration data the.beam momentum is determined. 

The computer then can adjust the current to achieve the desired value. 

The response of the bendin g magnets to several momentum change 
requests is shobm in Fig. 7. Notice that when going from 7.020 to 6.990 
Ge'J/C, the control algorithm sets it too low. By such tests, a 

satisfactory algorithm is arrived at empirically. The above calculation 
takes very little of the computer's time and other activities may go 

on simultaneously. 
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INSTRUCTIONS Ll: L2: 

EXECUTED 
I = ,+ k--4 l-2 l-s-4 

USER LANGUAGE INSTffU~lO/VS 
FL’ : EVERY (ZOSEC) STEP FLC i 
CD : EVERY (ZOSEC) OUTPUT EF TO 3 i 
EVERY (20SEC) OUTbUT EF i 
Ll : AT (12:10MIN> SET EF = 7.01 ; 
L2 : AT (12:20M!H).SET EF q 7.02 i 
L3 : AT (12:40MIN’) SET EF = 6.99 j 
L4 : AT (13HR.S) SET EF = 7.08 i 

,I 

fl 
6.980 1 I 1 I I I I 1 I I I I I I ! I 1 I I I I 

0 1000 2000 3000 4000 

EF = BEAM MOMENTUM TIME (SECONDS) - 632-7-A 
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FIG. 7-- MAGNET RESPONSE TO SET INSTRUCTIONS 
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