
SLAGPUB- 248
October 1966

A Concise On Line Control System*

Sam Howry

Stanford Linear Accelerator Center
Stanford University, Stanford, California

*
Work supported by U.S. Atomic Energy Commission.

.(Submitted to 1967 Spring Joint Computer Conference, Atlantic City,
New Jersey, April 1967)

, I

Introduction

The introduction of hardware multilevel interrupts has made the

small computer a suitable device for on line analysis and control of

experiments in physics 11-l , and such systems have been developed in the

past.r21 However , until recently little attention has been given to

the man-machine interface, that part of the system referred to as the

command post. 131 This paper describes an operational system at the

Stanford Linear Accelerator Center (SLAC) where this area has been

more fully explored.

A small on-line computer system has been developed at SLAC to

monitor and control magnets and other equipment leading from the end

of the accelerator to the experimental areas. The compact user language,

easily grasped by the operators of the control room, provides a high

degree of interaction with the environment. Internal computer time

has been correlated with time of day so that the user has the capability

in the language to synchronize events to a resolution of i/360 set over

a 6 hour time interval. All input output including signals to and

responses from the environment are completely multiprocessed, and two

users may gain access on a time sharing basis.

Machine

The computer is an SDS 925, a 24 bit machine with a 1.75 psec

memory cycle time, and 4K memory. There is a typewriter (teletype Model 351,

card reader and punch, all on a single channel, and 16 levels of priority

interrupts. [63

System Configuration

The system is shown schematically in Fig. 1. At present there

are 25 A/D channels, (rate - 1 per 200 msec), which read magnet currents.

Another input is the direct magnetic field (flip coil) measurement of

the bending magnets leading to e-qerimental area A. Outputs include

24 D/A channels (rate - 1 per 3 msec.) These provide the magnet power

supplies with a reference voltage. For scme magnets, the computer
produces a number, which is counted do;ln by a stepping motor (SLOSYN),

-2-

OPERATOR

-

POSITION
MONITORS

PHYSICS

A/D CONVERTERS
D/A CONVERTFRS

FLIP COIL
FLIP COIL CONTROL

TYPEWRITER

I-- CAR0 READER

LINK FROY
SDS 9300

SDS
925

\ TYPEWRITER

-7 CARD PUlJCH

\LINK TO
SDS 9300

FIG. 1 -- BEAM SWITCHYARD COMPUTER SYSTEM

632-l-A

INCREASE

NEUTRAL

DECREASE

0
RELEASE

RATE

632-2-A

FIG. 2 --FRONT PANEL OF TUNE BOX

each step creating a fixed current change.

The tune box allows the operator to make a fine adjustment on --
magnet settings much as he would with a potentiometer. This box is

shown in Fig. 2. Using the typewriter, he can specify the sensitivity

of the lever ('TUNE ALL BY .Ol ;' gives one percent of value sensitivity,

see Table 1 below.).Then by pushin g the desired magnet buttons and the

lever, he can change the magnets independently or in concert. The RAm

dial provides single step mode or 3 nominal rates of change.

The link with the experimental area A computer (SDS 9300) consists

of two 24 bit buffers (one for each dire&i&) along with two interrupt

signals to each computer indicatin g change of state of the registers

(full to empty or vice versa). The experimental area A computer system

is described in reference [4].

The status monitor interface packs status signals (1 for fault

condition 0 otherwise) into 63 16 bit words. These arrj read into the

computer 360 times/set and checked for change of state. Any such change

is logged (with the time) on the Node1 10110 Monroe Printer (a 20 line/set,

digits only, 12 char/line device). . This independent activity is multi-

processed with the other functions, and takes about 'JC$ of the CPU time.

User Language

The instructions available to the user are in Table 1 and their

full description is given in reference [5]. The table is in a kind of

Backus Normal Form, although the language is not formally expressible

this way because of the existence of noise words (see below). Language

input may come from the typewriter, cards, or over the link from

experimental area A. The typewriter/card channel and the link may be

operating simultaneously.

The entities considered in this discussion of the language are:

character;? words, clauses, instructions, and blocks. Universal de-

limiting characters are blanks and carriage returns. These two are

f'unctionally equivalent and may be used interchangeably to format the

input copy. Words are then strings which contain no delimiters. A

clause is a group of consecutive words, one of which identifies the clause.

-3-

Repeatable Instructions - clauses may be added

STEP <elt> BY <no.> ;
STZP FLC ;
CARDS -
0uTm '<cW ;
RECORD <elt> ;
SEND.<string> ';
TIl& ; ’ ’
CLOCK ; ,'
DATE <string> ;

Clauses

EVERY <time>
.AT <time>. - time clauses
UHTIL <time>
TO <destination> - destination clause
<label> : - label clause

'Once only' instructions - clauses are ignored

KILL <label> *
SET ,<elt> BY &o.> ;
!lXJNE <ele BY <no.> ;
TUNE !i.LLB’i(no.> ;

<time> format examples

(SW
(g :0014m)
(g:00:00SEC) I

refers to 9 o'clock, or 9 hours

(T+5ldIN)
(T+5 :OOSEC) refers to current ttie plus 5 minutes

<destination> list

2 - Typewriter output
3 - Card output
4 - Link output

any-thing else - typewriter output
no destination clause - typewriter output,

<string> definition - any sequence of characters, not spaces or.carriage
returns, the first of which is a letter or the character '*'

<label> definition - any string

<no.> definition - any sequence of digits with one decimal point somewhere
in it. The sequence may be preceded by a minus sign '-'

<el0 list --
R4lA

g:
621 ABEN cov ClOV

m2A PDTUM FLC ClH TlOH
PM3A

gi

Bl SLlO CUR TlOV
R14A =9 SlOR ClV SL30
lX>A Q400 SLll ClVR S-3OR
Pi.?? 620 Q401 COH ClOH SL31
,4; j.'

.

c.

c
Thus

Ll : SET Bl = 7.02

consists of the clauses

Ll :

SET Bl
= 7.02 _

The order of the clauses is irrelevent but within a clause position is

important. Instructions consist of certain combinations of clauses.

The above three clauses make up a legal instruction where the SET and =

clauses are necessary but the other one is optional. However, the final

nature of the instruction is not decided until the terminating semicolon

word. On receiving this the computer searches backwards (i.e., from right

to left) for a meaningful instruction. If there is none, the indication

is typed and the accumulated words are cleared out. If there are several,

the computer takes the last one. For example, a bad typist might create

TIME Ll 5 Ll : SE STEP QlO BY .l BY .Ol ;

and the computer picks out

Ll : STEP QlO BY .Ol ;

as the instruction to process. In this way special 'word delete' and

'line delete' characters are unnecessary. When educating users, the

exact level of permissiveness of the language need not be spelled out

as they discover this as they become more experienced.

As Table 1 indicates there are several optional clauses which

give the instructions flexibility. For example consider the two instructions

SET1 : AT (9:0514IN) EVERY (15SEC) UDlTIL (9:203UiV) STEP Bl BY .05 PC ;

PUN1 : AT (9:05:10 SEC) EVERY (15SEC) UNTIL (9:20:10SEC) OUTPUT Bl to 3 ;

SET1 causes the current in magnet Bl to be increased (by 5% of its value) every

15 seconds starting at 9:05 until 9:20. PUNI causes the value of the current

in Bl to be punched on cards every 15 seconds but 10 seconds behind the

execution of SETI, thus allowing the magnet to arrive at a steady state value.

Because of limited memory space there is at present no provision for

cliches i.e. - tieing to a label a block of (possibly modifiable)

-5-

instructions, thereby coining a new instruction. However, the same

effect may be achieved by using card decks for memory as the next

example shows. The following instructions, on cards, are placed in

the reader.

Lo : EVERY (5MIN) CARDS ;
1

L (Block #l)

v r (Block #2)

v
l .

. .

.i
.

(Block j/N)

I
KILL LO ; v

The user types 'CARDS' this shifts control from the typewriter

to the card reader and the instructions LC plus those in block #-1

are loaded. The ‘V’ returns control to the typepiriter. At the end

of 5 minutes Lo is again executed and control passes to the reader

for block #2. This continues until the last block, along with the

'KILT, IO ; ' is read in. This last instruction terminates the activity.

The language may be expanded, (g iven additional memory space)

by merely adding procedures which recognize new clauses (compile procedures)

and corresponding ones which treat the new function at execution time

(execute procedures).

Channel Scheduling

As mentioned earlier the typewriter/card input-output pass through

a single data channel and in addition the'typewriter input-output must

share the same device. To overcome this difficulty the computer scans

the status of all input-output 360 times a second using the following

scheduling algorithm.

-6-

if

else

else

else

else

else

else

if -

if -
if -
if -
if -

if -

{in middle of card read or punch cycle) then (continue]

{RED BUTTON HOLD) then begin --
if {channel clear} then {switch to TI) -
else if [channel not on TI) then (clear channel at end of its cycle] --
end

(in TO] then {continue]

{exists backlog of typewriter output] then {switch to TO}

[exists backlog of card punch output) then {switch to CO}

{input control is at card reader and it is ready} then

(switch to CI)

(in TI) then {continue] else {switch to TI}

where TI = typewriter input mode

TO = typewriter output mode

CI = card reader mode

co = card punch mode

As a result, this is what the user sees: the typewriter light

is normally on (TI mode). It occasionally goes off (with no warning,

for about l/2 set) when a card is being punched (or read). When cards

are being punched at the maximum rate it flickers. When there are large

amounts of typewriter output it goes off steady. By pushing a red.

button (along side of the keyboard) the output is inhibited (although

it still ques up internally), the light comes on, and the operator

is free to type one instruction. The hold is released when the ';'

word is received and the output continues. More may be loaded by

pushing it do+m again, or by simply holding it do+m. Instructions like

Lo : EVERY (1 PUL) TIME ;

very quickly swamp the output buffer and the means of recovery is to use

the red button to insert

KILL I.0 ;

Finally, if the operator is keying in (without first pushing red button)

and at that instant the computer decides to type, the input character

may or may not be garbled. So to be safe (when the output subsides)

he retypes the clause he was working on and continues.

-7-

I

Implementation

The implementation is characterized by extensive use of two

relatively simple list structures. The structure shown in Fig. 3

is a circular, one-directional loop, with two markers A, B pointing

to the last free node and last active node respectively. The number

of nodes in a given loop is its length and is fixed.

Six such structures are used to completely multiprocess all of

the input-output. For these buffers the pointers around the loop

are implied by sequential locations in the machine. Advancing the

markers amounts to adding 1 modulo n where- n is the length of the

loop. The nodes represent one computer word: a coded address-plus-

value for the D/A channel, and BCD characters for the others. When

information is to be output to the typewriter, for example the

internal program dumps it into the loop using marker B. When the

typewriter is ready it triggers an interrupt procedure which takes

a character out using marker A. If there are no free nodes left, the

data to be output is lost and the computer continues. When this

happens the channel is "overloaded", but will recover automatically

when the data burst subsides. The lengths of the individual buffers

are chosen to handle reasonable data bursts through their respective

channels without overloading.

A single such circular loop is used to dispatch the system

corrmalds at the precise time desired. In this case the nodes represent

blocks of information: a pointer to next node, the entry of a particular

procedure, its execution time, its frequency (if it is to be executed

more than once), its parameter list, etc. Such blocks are compiled

from source language instructions by backgrcund procedures and inserted

among the active nodes, ordered as to increasing execution time. When

a clock pulse interrupts the computer, current time is increased by 1.

Then active nodes are lapsed into the free list (using marker A) until

one is found whose execution ti.me is greater than current time. As each

node passes into the free list its procedure is executed. Since the

nodes are onlarecl in time, no further interrogation is necessary at
level. this tin: and the computer leaves the CLOCK PULSE interrupt

l

9

-8-

- -

0 FREE NODES
0 ACTIVE NODES

FIGURE 3 -- CIRCULAR LOOP STRUCTURE

632-3-A

4
l

BUFFERS

BUFFERS
WORD
STACKS

COMMAND
DISPATCH

r
I

TYPEWRITER
OUTPUT

TWR/CARD
INPUT

c-- -I
---- LIN I:

i
~3.

INPUT
w:.- 1

cl-- I2 I 2
-w--1 -.J , II

BAC;fRzF N D;
I

I II I
PULS
LEVE- ----

---.

6X-5-.A

CARD PUNCH
OUTPUT

OUTPUT
TO LINK

OUTPUT
TO D/A
CONVERTERS

F 1G. 5 -- PROGRAM BLOCK DIAGRAM

In this manner a 360 cps external pulse is the only hardware clock

required to effect all the real time commands to the system. In the

case of overload, i.e., no free nodes, the new command cannot be

inserted and the computer ignores it and prints an indication.

The other data structure is that of the word stack. It is a

linear bidirectional list with a variable number of nodes and a

marker at the bottom. Each node represents a single input language

word, as indicated in Fig. 4, containing such information as type, value,

etc. In the case of a clause identifier such as STEP, it also contains

the corresponding compile procedure entry location. The structure

continues to grow downward as input language comes in until the termin-

ating seinicolon. Then the structure is complete and ready for various

procedures to convert it into the block of information mentioned in

the previous paragraph. There are two such word stacks, one for the

card/typewriter input channel and one for the computer link from the

SDS 9300. A single background program alternates character by character,

between the two, building up the structures. When one is completed,

no further building is done until the complete structure has been

converted to a block and destroyed.

The program block diagram is shown in Fig. 5. The dashed brackets

indicate different levels of interrupt with the higher priority on concave

side. Note there are only two main levels of interrupt: PULSE (the 360 cps

clock), and the background. The others merely take data into or out of

buffers and return, freeing the channel. The tune box word contains the

state of the magnet buttons, and is used by an execution procedure to

address D/A values when called for. Continuously refreshed values in the

analog arrays are available when needed by any of the execution procedures.

Example

This section contains an example showing how the system was used

in its O?:TC! development. The strength of the magnetic field in the large

bending magnets leading to experimental area A determines the momentum

of those electrons which pass through a narrow slit, and continue to ESA.

(See Fig. 6).

9-

0

.

Some experiments call for a very accurate estimate of this

momentum. Others require that a given momentum achieved on Monday,

say, can be accurately reproduced on Friday. The operator has at his
disposal a current control, but because of hysteresis effects, current

does not define the magnetic field (hence the beam momentum) uniquely.

A slowly turning flip coil positioned in a reference magnet measures

the field directly to 6 significant digits.. When a single flip is

completed the flip coil interface interrupts the computer with this

number and, using calibration data the.beam momentum is determined.

The computer then can adjust the current to achieve the desired value.

The response of the bendin g magnets to several momentum change
requests is shobm in Fig. 7. Notice that when going from 7.020 to 6.990
Ge'J/C, the control algorithm sets it too low. By such tests, a

satisfactory algorithm is arrived at empirically. The above calculation
takes very little of the computer's time and other activities may go

on simultaneously.

-lO-

I COMPUTER

CURRENT
coIfr~oL REFERENCE BDL MEASUREMENT

-a- PO1’IER

DISPERSIVE
ACCELERATOR BEfdDIIJG

MAGNETS

EXPERIMENTAL

INTENSITY

--I-
t

ELECTROrJ MOF.:ENTlJhl ELECTRON r.lOl/lENTU;n
- -

FIGURE 6 -- SCHEMATIC SHOVJIF!G METHOD OF MOivlENTUI.1
DETERMINATION,

632-G A

. . 0 .

TIME OF DAY

0
12:lO 12:20 12140

(HRS:MIN) v
113:oo
Y

INSTRUCTIONS Ll: L2:

EXECUTED
I = ,+ k--4 l-2 l-s-4

USER LANGUAGE INSTffU~lO/VS
FL’ : EVERY (ZOSEC) STEP FLC i
CD : EVERY (ZOSEC) OUTPUT EF TO 3 i
EVERY (20SEC) OUTbUT EF i
Ll : AT (12:10MIN> SET EF = 7.01 ;
L2 : AT (12:20M!H).SET EF q 7.02 i
L3 : AT (12:40MIN’) SET EF = 6.99 j
L4 : AT (13HR.S) SET EF = 7.08 i

,I

fl
6.980 1 I 1 I I I I 1 I I I I I I ! I 1 I I I I

0 1000 2000 3000 4000

EF = BEAM MOMENTUM TIME (SECONDS) - 632-7-A

PASSING CENTER .OF
SLIT, AS COMi’UTED
FROM FLIP COIL
(GcV/c)

FIG. 7-- MAGNET RESPONSE TO SET INSTRUCTIONS

Acknowledgement

The hardware interface of the computer and related

equipment is due to Dick Scholl, Ed Seppi, and Mike Hu,

and their work, including many crucial user-engineer-programmer

discussions is gratefully acknowledged.

References

[13 W. F. Miller, "The Role of Computers in Experimental
Physics: A System for On-Line Analyzers~, Proceedings
Conference on Utilization of Multiparameter Analyzers
in Nuclear Physics, November 1962.
New York, cu (m r2) - 227.

Columbia University,

[21 Proceedings EANDC Conference on Automatic Acquisition
and Reduction of Nuclear Data, July 13-16, 1964,
Gesellschaft fur Kernforschung m.b.H. Karlsruhe,
Germany, 19611. ,I

[33 W. F. Miller, "Computation and Control in Complex
Experiments", Proceedings IBM Scientific Computing
Symposium on Man-Machine Communication, May 3-5, 1965,
p. 113 ff.

[43 R. M. Broom, Mary Anne Fisherkeller, Antony E. Gromme,
John V. Levy, "The SIX! High-Energy Spectrometer Data
Processing System", (In P ress IEEE Proceedings Computer
Issue, December 1966)

153 SLAC Report, CGTM 10, "BSY Control Computer System
Language", August 1966. Author.

161 SDS 925 Computer Reference Manual. SDS gOOOg9A
scientific data systems.

