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ANALYTIC CONTINUATION OF GROUP REPRESENTATIONS - V 

Robert Hermann 
Stanford Linear Accelerator Center, Stanford, California 

I. INTRODUCTION 

So far in this series we have dealt with analytic continuation at the “infini- 

tesimal” level i e , * ‘, we have considered “analytic continuation” of Lie algebra 

representations, trusting to the known relations between Lie algebra and Lie 

group representations to provide us (at least implicitly) with corresponding facts 

about continuation of group representations. Needless to say, it is at the group 

level that the most interesting application to physics are to be found: For example, 

the If special functions 7f of mathematical physics occur as matrix elements of 

various group representations. Thegeneral problem of reducing the tensor 

products of representations into irreducible components and generalized “Wigner- 

Eckart” theorems is of prime importance for the application of grGUp theory to 

elementary particle physics. 

The interesting problems concerning analytic continuation of group representa- 

tions and their matrix elements lead to additional degrees of complexity beyond 

those we have encountered, since questions of analysis and geometry as well as 

algebra appear. For example, one of our central problems can be described as 

follows: Suppose for each value of the parameter h, t -+Uh(t) is a one-parameter 

group of unitary transformations of a Hilbert space H. Consider two elements 

G, $* of H, and the matrix element. 

f(h h> = < tipA( +I’ ’ 
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One can ask various questions about the analyticity of this function of t and h , 

and its asymptotic behavior as t and/or A go to infinity. For example, as we 

will show, the asymptotic formula: 

P (2) H constant xz 1 
1 as z--rco 

that plays such an important role in high-ener,T behavior of the scattering 

amplitude is a typical case. (See [ 111 , Chapter 14 for work on this problem 

from a slightly different point of view from that presented here.) 

The ideas of Dashen and Gell-Mann [ 2 ] concerning the “infinite momentum” 

limit also are of this nature, although we shall not be explicitly con;idering this 

case in this paper. The formula 

lim 7?)j (cos $) = Jj(t) 
1-m 

of Inonu and Wigner 1131 is also in this pattern. 

In addition to these concrete problems there is also much work to be done in 

developing the relation between analytic continuation of group representations and 

group cohomolo,q, a subject pioneered by Nijenhuis and Richardson [ 161 . (Note 

that the relation between group cohomolo,y and Lie algebra cohomolo,y has been 

developed by W. van Est [ 41). Again, there is an interesting and useful inter- 

relation between various abstract questions and concrete problems that appear 

in physics. In fact, there is a situation here that is almost unparalleled since 

the nineteenth century: interesting physical questions suggest interesting mathe- 

matical ones;, and conversely. We shall present topics in this paper that proceed 

in the direction of elucidating these connections. 
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II. GENERAL FACTS ABOUT MATRIX ELEMENTS 

Let G be a group, H a Hilbert space, and p a representation of G by 

operators on H. Denote elements of H by @,, $I’, etc. , the Hermitian inner 

product by < $J/@’ > . (We use the physicist’s rule: 

for each complex number A. A* denotes the complex conjugate.) 

For fixed elements $, $J’ of H, the function g--t< $11 p(g)@ > = f(g) is the 

matrix element corresponding to @ and $J’ . In [ 111, Chapter 9, one will find 

a short discussion from a slightly different point of view of the relation between 

the matrix elements as functions on G and the representations themselves. 

(This, in essence, is the theory of “induced representations. ‘0 Let p(g)” be 

the adjoint operator to p(g) 

< $qPkw = < PM” @‘/l+b > 

Since (AB)” = $A * for operators A, B, we must define the lYdual” representation 

p’ by G by operators on H via the formula: 

P*(g) = pdl* , 
Then 

f(g) =<qp&9$-= <pk?J*$+b ’ 

= ‘@p(g)*+‘> * 

= <II, p*(g-l) p >* 
I 
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This formula provides the connection between the matrix elements of p and 

those of p*. 

Let K be a subgroup of G. Suppose fi, . . . , Z+!JJ are elements of H that 

transform among themselves by p’(K), i. e., 

(l<i,j,..., n; summation convention in force.) 

k is an n x n matrix representatipn of K that we will denote 

by c . Let oT be the transposed representation, i. e. , 

Let L(g) = (f,(g), . . . , fn(g)) , with fi(g) = c $‘/ p(g);) > . . . 

Regard i as a map. G-+ Cn . 

For k E K 

= ajirx) ‘+‘~P@)$j 

= nT(k-l)ij fj(g) 

i.e., f is a cross section of the vector bundle on the homogeneous space G/K 

determined by the linear representation k -, 7 (k) of K. (See [ll] for background 

on vector bundles.) We shall denote the space of cross sections of this vector 

bundle, i. e. , the space of mappings G -+ Cn satisfying (2.1), by r(gT). Note 

in particular, that if n = 1 and ql(k) = 1, then 

i.e., f determines a function on G/K. .V0% 

- 4- 



Now, hold $ 1, . . . , zJn fixed, and consider z,6 1 *A as a mapping H -+r(oT). 

Note that it is antilinear, i. e. , sums go into sums, but 

A+’ goes i&o A*$ 

There is a representation of G by linear transormations on r(oT): The 

transform of f : G -Cn by an element go E G is the function ‘p 

If fj(g) =<1c) ’ /p(g) $ j>., then 

=< p(g,1 

)*~‘JP(g) ~j > 

=’ P*(gO) li)‘ip(g) 4 > I 

i.e., the vector p*(g,) +bf goes over into the transform of f by go. Summing 

up, we have proved: 

Theorem 2.1 Suppose I#~, . . . ) +n are elements of H transforming under 

the subgroup K by an n x n matrix representation 0. Then the correspond- 

ence 

zp+,f : g- < ( $'I P&9 $1') 

defines an antilinear map H-+T(aT) that is an intertwining map with respect 

to the given linear action of G on H and the left translation action Gf G on 

m*) * 

Theorem 2.1 sums up many of the special properties of “‘matrix elementsff 

of representations that are useful in physics. Often it is further possible to ex- 

press the matrix-element functions f : G -Cn as products corresponding to 
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certain product-subgroup decompositions of G. As an example, let us consider 

the case where K is a compact, symmetric subqoup of G, with G semisimple 

and connected, i. e., ,G = “BP, with e- 

Let ,A be & maximal abelian subalgebra of ,P, and let A be the connected 

abelian subgroup of G generated by A. Then, it is a general theorem [9] that: 

G=KAK . 

( This means that every element g E G can be written (not necessarily uniquely) 

as a product kl ak2, with kl, k2 E K, a E A 
> 

. In case G = SO (3,R), this is just 

the Euler angle description of rotations, so it may be regarded as a generaliza- 

tion of the Euler angle construction for an arbitrary semisimple Lie group. 

Then, 

Now, we can decompose the action of p*(K) on H. For example, suppose (VP ) 

are elements transforming as follows: 

(1 h I-l, v, * * * L m; summation convention on these indices). Put: 

Then, 



Thus, we see that the matrix elements are determined by: 

(a) The decomposition of p(K) and p*(K) into irreducible representations. 

(b) The matrix elements restricted to the subgroup A, which may be ex- 

pected to satisfy certain differential equations. 

Since this sort of straightforward description of the matrix elements should 

be familiar to the reader who has studied special representations of special 

groups, i. e. , G = SU(3,R) or G = SO(2,l) or SL(2, C), we will leave it at 

this point. 

III. INTEGRAL REPRESENTATIONS FOR MATRIX ELEMENTS 

We will continue to review certain general facts about matrix elements that 

are merely general versions of calculations well known in special cases. Let 

us continue with a representation P of a group G on a Hilbert space H. In the 

last section, we supposed that I-1 was given abstractly. Let us now suppose that 

it is determined as a space of cross sections of a vector bundle on which G acts. 

Consider a vector bundle 

‘Tr: E-+M. 

(IvI is a manifold, n(E) = M . For each p e M, the fibre n-‘(p) is a complex 

vector space). Suppose G acts linearly on E. (This means: G acts as a trans- 

formation group on E and M; with gflv) = rrg(v) for g E G, Y E E. Transforma- 

tion by g maps the vector space r-l(p) linearly ontd i’l(-gp), for each p E M.) 

Let r(E) be the space of cross sections. The action of G on M, together with 

a multiplier system m(g,p) determines a representation p of G in r(E). 

For tier(E), g EG, p EM, 

~(9 0)) Cp) = Ws P) glcl(g-lp) (3.1) 
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For g E G, p c M, m(g,p) is a linear map of the fibre n-‘(p) into itself. It 

satisfies the functional equation 

m(gogly PI = m(go7 P) gem (g17 ff,lP) gil (3.2) 

for go,..g 6 G, T E M . 

(In fact this is just the relation necessary to have p(gogl) =p(go Ip(gl)), i. e., 

p is a representation.) 

Let us make r(E) into a Hilbert space in the following way: Suppose given, 

for each p E M, a Hermitian inner product (,) on the fibre rr -l(p), For 

$I,$’ cr(E), p -(G(p), tit@)) is then a function on M. Let dp be a volume 

element for the manifold M. Define: 

(3.3) 

The conditions that the representation p be unitary are worked out in [IO], 

Chapter 9. 

It is now obviously a routine matter to work out an integral representation 

for the matrix elements: 

(3.4) 

M 
As a simple illustration, suppose G is semisimple, non-compa.ct, M = G/H, 

where H is one of the “boundary homogeneous spaces 7’ of Furstenberg [a, 8,111, 

r(E) is the space of complex-valued functions on 31, i. e. , the vector bundle E 
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is just the product M x C. Choose m(g,p) as follows: 

m(g,p) = J g-l d 

where Jg’p) is the Jacobian of the transformation p -+ gp . with respect to the 

volume element dp, ?, is a fixed complex number. Then 

< pmq@‘> = 
/ 

J-x 

M g 
-1 @W(g-IP)*$43 dP . 

Now, one basic property of these boundary homogeneous spaces is that K, the 

maximal compact subgroup of G, acts transitively on them. Thus, we can sup- 

pose dp chosen as the unique (up to a scaler multiple) volume element which is 

invariant under K, i. e. , 

Jk@) = 1 for k E K, r E M. 

In particular, if G(p) = 1, then 

p(k) (@) = @for all k E K 

and the matrix element 

g-< Pmq $1 >= f&9 

is a function on the symmetric space G/K, i. e., 

<p(&)(&V > = <pjg)+b’> for k E K, g EG. 

Then, we have: 

f(g) = J ,-h -1 (PPP (PI dP l 

M g 

This explains why the spaces of the type M are called “boundary homo- 

geneous spaces” for the symmetric space G/K. An important class of functions 
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on G/K, namely the matrix elements of the llclass 1” representations of G, 

i. e., these in which K has an invariant vector [9], are ‘exhibited in a natural 

way as integral transforms of.functions on M. (Of course, there is also a 

geometric motivation: They appear as parts of the boundary when the spaces 

G/K are compactified [4, lo]). These remarks take on a special importance for 

physics when one understands that most of the special functions of mathematical 

physics appear as matrix elements with respect to representations of a relatively 

small number of groups. 

It is important to notice also that these considerations are not restricted to 

unitary representations of G. Thus, we may start off with a representation Ph 

of a real Lie group G on a Hilbert space H, with the representation depending 

on a parameter set A. The matrix elements are then functions on G, depending 

also on the parameter h . Let Gc be the complexification of G, i. e. , the real 

parameters of .the group are considered as complex, and G is a subgroup of Gc. 

(Technically, one proceeds as follows: 

SC = 2 + i F* be its complexification as 

real Lie algebra of twice the dimension 

complexification of G is a Lie group Gc 

Let 2 be the Lie algebra of G. Let 

a Lie algebra. Consider sGc also as a 

of G, and with G as a subalgebra. A 4.V.” 

whose Lie algebra is SC, containing G 

as a subgroup in such a way as to give use to the given imbedding of ,G in M5c . 

An arbitrary Lie group may not have a complexification in this technical sense 

although of course all the ‘!classicalr’ groups do, i. e., SO(n, R) + SO(n, C), 

SU(n) + SL(n, C), SO(p, q) - SO@+q, C), etc. Let us suppose that the repre- 

sentation p may be eJxtended to a representation p of Gc on the same Hilbert 

space . Then, the matrix elements g-+-< $qP&LJ > will be complex-anal@ic 

with respect to the complex analytic parameters for Gc if the following condition 

is satisfied. 

p(iX) = ip @) for X E G tic (3.5) 
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Of course, this condition implies that the representation cannot be extended to 

be unitary on Gc. Conversely, 3.5 can be used to extend p from 2 to G . *C 

Even though p may be “integrated” to give a global representation of G, the 

extended representation of Gc may not necessarily give such a global representa- 

tion of Gc: This is a group-theoretical reflection of the fact that the matrix 

elements may have singularities when an attempt is made to analytically continue 

them to all of Gc , At any rate, Nelson’s theory of “analytic vectors” [15] 

does guarantee that p can be e.xtended to a neighborhood of the identity in 

Gc, which means that the matrix element 

< $h’ p(g)@ > 
I 

may be defined when g is sufficiently near the identity in G c, Unfortunately, 

there seem to be very few examples of this phenomenon worked out explicitly 

in the literature to serve as a guide to a thorough analysis. We will work out 

the case G = SL(2, R) in Section 10. 

IV. LEGENDRE FUNCTIONS AND THE GELL-MANN FORMULA 

It is well-known that the Legendre functions appear as matrix elements of 

representations of SO(3, R) and its noncompact real form SO(2,l). The “Gell- 

Mann formula” works particularly well for these groups; we will now show how 

it gives information about their matrix elements: 

Let $ be the Lie algebra of SO(3, R) . It is generated by elements X, Y, Z, 

, satisfying 

[z,x]= Y; [Z,Y]= x [X,Y] = z 
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(For example, in the .physicist’s notation, 

Z = Jz, X=Jx, Y=J 
Y 

where ‘5’= (J J J ) is the angular x’ y’ z 

momentum vector.) The Casimir operator is 

Consider a finite dimensional representation pa where A has the value 

-Q(Q + 1). Then, p(Z) has the eigenvalues - ie, . . . , ie, with corresponding 

eigenvectors @-A’ , . . , +A. 

The functions 

are essentially the Legendre polynomials. (At least after taking account of 

normalization,, tind putting z = cos t,) 

In [12 part I] , we have indicated a way of exhibiting these representations 

by starting with a representation of one of its contractions, namely the group of 

rigid motions in the plane. Its Lie algebra is generated by elements Z, X’, Y’, 

with structure relations: 

[Z,Xl] = Y’ ; [Z,Y’]= -X’ [X?,Y;I = 0 

Let $(Z), 4(X’), @(IT’) be an irreducible realization of these structure relations 

by skew-Hermitian operators on a Hilbert space H. XT2 + Yf2 is a CF3imir 

operator; we will normalize the representation Q so that 

Put 

$ (XI2 f YV2, = -1 

Pp’ = $G> 

Pp = $(z2, X’J t-AX’) 

qY) = l/2 Q ([Z2,YfJ + AY’) 
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Then, these operators satisfy the structure relations for SO(3,R), [12], Part I, 

page 260. Let us compute the value of the Casimir operator: 

c 1 Z2,X' = ZY’ + Y’Z 

= 2Y’Z -X’, 

or 

PAM = Q(WA- 1/q + Y’Z) , 

Ph(x7’ $pQ2 (A- m2 + Y’zY’z.+ (A- 1/2)(x’Y’Z + Y’ZX’ 
) 

ZZ cp(x’2(A- 1/2)2 + Y12Z2 - Y’X’Z + (A- 1/2)(2X’Y’Z + Y’T) 

[ 1 Z2,Yl = - ZX' - X'Z 
= - 2 X’Z - Y’ , 

p*(q = $b(y’(h- l/2) - X’Z) 

p,(Yy= Q(Y’2(A- 1/2)2 + X’ZX z - (A- 1/2)(-Y’X’Z + X’ZY’)) 

= $(Y12(A- 1/2)2 -!- x f2Z2+- X’Y’Z - (A- 1/2)(2Y’X’Z - X’z;) 

Then, 

PA@ 2 +x2+y 2, = - (A- l/2)2 - (A- l/2) 

= - (h- 1/2)(h+ l/2), or Q= A- l/2 

(4. 2) 

Let Gj, j = 0, + 1 , 5 2, . . . , be a basis of H such that 

‘$ (Z) ~j = ij ~j 

Define: 

f; (t) =< $5 0 1 p (4.3) 
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This formula extends the “Legendre functionsrr defined by (4.1) to integral 

values of j and arbitrary values of Q. (To extend the definition to non-integral 

j, one must consider representation of the algebra Xl, Y’, Z in which 4(Z) has 

a non-discrete spectrum, a refinement we will not consider here.) 

We get an asymptotic theorem for the Legendre function by transforming 

from the ?‘Inonu-Wigner picture” (in which there is a singularity at A = 00 ) to 

the ??Kodaira-Spencer picture?’ (in which a family of Lie algebras deforms as 

A-+CCI into the Lie algebra generated by Z, Xl, Yr) . In fact, define: 

As we already have verified [11-J, +A is a representation of the following Lie 

algebra: 

[ZJ]*=Y, [Z,YJ*=-X[X,Y]=? , 

which is a deformation of the Kodaira-Spencer sense of the Lie algebra generated 

by z,x’,y’ . 

In particular, everything is smooth as A-co, and 

The right hand side is just the matrix element for the given representation 4 

of the group of rigid motions of the plane. In fact, this is known to be Jj(t), 
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the Bessel function. The left hand side is 

Hence 

lim 
f; (t/Q) = Jj(t) . 

Q+cO 

This is the asymptotic formula proved by Inonu and Wigner [13] by contracting 

(in their sense) a series of finite dimensional representations of SO(3, R) . Note 

that our method, besides being more systematic, extends the formula auto- 

matically to nonintegral values of Q and j and, if one is careful (as we have not 

been) to at least certain complex values of t. Another virtue of our method is 

that it extends routinely to representations of other groups to which the Gell- 

Mann formula applies. hlany such examples for semisimple groups are given 

in [ll] . 

We shall now turn to the physically more irkeresting case of the contraction 

of the Poincarg group to the Galilean group. 

V. CONTRACTION OF REPRESENTATIONS OF 

THE POINCARE’TO THE GALILEAN G-ROUJ? 

The topic of the title OF this section is one of the standard examples illustrating 

the Inonu-Wigner ideas [12] . However, the interesting feature that “true” repre- 

sentations of the Poincar<group contract to ray representations of the Galilean 

- 15 - 



group suggests that the physicist!s way of looking at this be rephrased (for 

maximal. clarity, if nothing else) in terms of our basic “analytic continuation?? 

program. We have done this in [12], Part IlI,for the simplest sort of situation. 

However, we will now present it in simpler form that as a bonus, completely 

covers the general case! ,This way of looking at the problem is due to 

L. L. Foldy [4J, and in this section we shall only be adapting his work to our 

point of view. 

First, we must describe the deformation of the Poincare’into the Galilean 

algebra. Let G be a vector space spanned by elements 

Pi, H, Ji’ Ki 

(< Lj,... , 5 3 summ.ation convention in force). Put A = l/c (c = velocity of 

light). Define a one-parameter family of Lie algebra structures on G as follows: 

- E ijk’k, [I 1 Ji, Pj h= - ~ijkPk 

[ 1 H,K. = P. 
JA J 

[ 1 Ki,Kj = h2<.. J 
A 

qk k 

[ 1 Pi, Kj = ?aijH 
A 

(5 - 1) 

(E.. Ilk is the usual skew-symmetric tensor). 
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For h $ 0, this is the Lie algebra of the Poincare’group, for A = Cl that of 

the Galilean group. Notice that it is perfectly analytic in A . 

Now, we want to construct a Lie algebra ,L,, and a one-parameter family 

4~ of linear maps G _ -_L_ which, for A # 0, is a homomorphism of the A -th 

structure into L -. For this, construct two Lie algebras 2 and ,S. H is an v- 

84imensional Lie algebra, with basic elements (pi, xi, 1, t) subject to the 

following commutation relations: 

o=~i,Pj]=[xi’xj]=[Pi,l] =~i, ;1 

= [Pi, t] = pi, t] 

I 1 

Pi’ xj 
= dijl 

,S- is a simple three-dimensional Lie algebra (whose Lie group is then SO(3, R) 

or SU(2) ) generated by elements (si ) with 

c 1 si,s. = 3 - ‘ijksk 

Now, let L = U(H f ET), i. e., ,J + ,S. is the direct sum Lie algebra, and 

U(H + S) is its universal enveloping algebra considered as a Lie algebra via 

the commutator. (CV e will in fact assume that U(H + S) is the “complete7T 

enveloping algebra, i. e. , including arbitrary “functions” of the generators.) 

Now, define #A : g- & as follows: 

@APi) = Pi 

J=- p2=pp +#4 = E m c f P , i i 
(5. 2) 

c$~(J~) = E.. 
1~k “j*k + ‘i 
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One must now verify that qh is a homomorphism of the A-th Lie algebra 

defined by (5.1) into E-J Let us take it for granted that this is done. 

Of course, (5.2) is not analytic about A = 0, i. e., c = 60. Let us see if 

the group theoretic trick introduced in [12], Part III, for “resolving the 

singularity, It i. e. , making a central extension, which is “trivial” for A # 0 

but nontrivial for h = 0 , works again. 

The trick to introduce an element 1 to s* that commutes with all the 

generators of ,G_ ; for h f 0 , $A is also extended by mapping this element 

into the element 1 of H . u.M 

Consider: 

HfA = H-mc2. l=H-- rn20 1 
A2 

Then, all the relations (5.1) are unchanged by this substitution of HIA for H , 

except possibly the last: 

[ 1 Pi, Kj = A2 dijH = A2 dij (HA + y, = dij( h2H, + me 1) 

Notice now that the l!luckyrt accident mentioned in [12] , Part ‘III, repeats 

itself: The commutation relations do not pick up a singularity as h- 0 . How- 

ever, again this is at the expense of not getting the Galilean algebra itself as 

A --+O but a central extension of it. 

Finally, we must check that the homomorphism @IA also is analytic at 

A=o. Let us look at (5. 2). The only terms that are effected are the second 
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and the fourth: 

2 2 

d-- 
1++ 2 = mc - mc 

mc 

2 
=mc2+ 1 - 2 g +... - mc 

= 1 P2 ‘z jg- +... 

- ‘ijk ‘jPk 

Again, we see that there is no trouble at h = 0 : The representation @A is 

now analytic at h = 0 . We conclude that Foldy’s formalism gives an excellent 

description of the simultaneous “deformation” or “analytic continuation” of the 

Poinca& algebra and its representations into those of the Galilean algebra. 
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VI. ANALYTIC CONTINUATION OF THE PtiNCHEREL 

FORMULA FOR SO(2, R) * 

Before studying “analytic continuation” of matrix elements in generality, 

it will be useful to examine some simple examples. SO (2, R) seems to be the 

simplest case that gives some insight into the general case. 

Consider two complex variables x and y, and the quadric M defined in 

this space by 

x2 + y2 = 1 

M is, of course, just the group manifold of SO(2, C). Let MO be the points 

of M for which x and y are real, and let M’ be the points for which x is 

real, while y is pure imaginary. RI0 is the group manifold of S0(2,R), M’ 

the group manifold of SO(1,l). Both M” and M’ are “real forms” of M, with 

MO compact (i.e., a circle) while M’ is non-compact (i.e., a hyperbola). 

Suppose f(x,y) is a function defined on M alone, analytic in a suitable 

domain, continuous when restricted to MO, with boundary values (possibly in 

a generalized sense) on M’. Now, f restricted to MO can be expanded in a 

Fourier series (which is then the Peter-Weyl expansion for SO(2, R)) while the 

boundary values of f(x,yj on M can be expanded in a Fourier integral ( which is 

the Plancherel expansion for the group SO(1,l) 
J 

. 

Our main task is to examine how the two expressions may be related to one 

another. Specifically, we have in mind developing a group-theoretic version bf 

the Sommerfeld-Watson transform, i. e., some procedure for “analytically 

continuing” an expansion over a compact group into an expansion over a non- 

compact real form. 

* 
I would like to tha;nl; A. Kihlberg u-ho discovered an error in the first version 
of this section. 
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Introduce a new variable z = x + iy. Then the z-plane minus the point 

z = 0 represents M as a complex manifold. MO is the set of z of the form 

i6 e , 0 i 8 5 27r, while M’ is the real axis. 

Co;lsider tde Fourier expansion of f restricted to MO, i.e., 

f(ei’)-Cf, eine , 

n 

-in6 de 6.1 

We must somehow take into account the fact that f(z) is analytically 

continuable off the circle IzI = 1, leading to “boundary values” on M’. The 
* 

simplest way of doing this can be described as follows: 

Suppose f(z) satisfies a “dispersion relation, If in the form of a Cauchy 

integral representation: 

f(z) = & 
/ 

$$ dt 6.2 

l+E 

for some E > 0 . 

Use 6.2 and 6.1, assuming that the integrals can be interchanged: 

f(t) t-n-1 dt for n 1 0 

* 
= 0 for n < 0. 

I owe this suggestion to A. Martin. 

6.3 
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Suppose g(z) is a similar function, admitting a dispersion relation of the 

form: . 

Similarly, 

gn 
=& l[r$d0) g(t)dt 

0 

= 0,if n?O 

1-E 
1 

/ 
t -n-l 

= 2ni g(t) dt for n < 0 . 
6 

Now, let t = es in each of these integrals: 

f 1 
co 

=- 
n 2xi J 

f(es) emns ds 

log( 1+q 

J 
log (1-E) 

1 
gn =yg g(eS) emns ds 

log E 

As c--+0, we obtain, in formal way at least, 

@*cc), = & 
a 

/ 

(f+g) (es) ewns ds 

-03 

6.4 

6.5 

6.6 

(Regard the function (f-t-g) (es), defined as follows on the “boundary values” of 

the function (f-kg) (els) on the non-compact set M’ : 
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(f+g) (es) = f(e’) for s > 0 

(f+g) (es) = g(eS) for s < 0.) 

So far, n has been real; however, 6.6 suggests that we use the formula for 

n pure imaginary as well, obtaining in this formal way, essentially the “Fourier 

transform” of the function s -+(f+g) (es), i.e. , the “Plancherel expansion” of 

this function when it is considered as a function on-SO(l, 1). 

This simple explicit calculation immediately suggests a general framework. 

Suppose G is a non-compact semisimple Lie group. Let Gc be its complexifica- 

tion, GP a compact subgroup of Gc whose compactification is also Gc. (G is 
P 

the “compact real form” of Cc). GP can be chosen so that GP r7 G = K is a 

maximal compact subgroup of G, and a symmetric subgroup of G . 
I-1 

of examples to keep in mind might be: 

G = SO(n, l), Gc = SO(n+l, C) 

G 
P 

= SO(n-I-l,R), K = SO(n,R) 

Let Kc be the complexification of K, considered as a complex subgroup of 

GC. 
Define the following coset spaces. 

M = Gc/Kc; MO = GP/K; M’ = G/K 

Then, both M” and MI’ are “real” submanifolds of the comples manifold M, 

i.e., complex analytic coordinate systems can be found for M for which, 
. 

locally, each of R/I0 and M’ are defined by real values of the coordinates. 

Denote points of M, MO, M’ by p, p”, p’,respectively o Suppose f(p) is a 

function which is complex analytic on at least some domain of M, atid defined 
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and continuous of MO. Then, f(p”) can be e<panded in a “Fourier series” using 

the spherical functions [lo] of the symmetric space GCL/K. Let if,1 denote the 

coefficient in such an expansion (n is a descrete, multiparameter index). Then 

f = 
n / f(p”) hn(po) dp” 

MO 
6.7 

where hn (p’) is the spherical function parameterized by n, and dp” denotes a 

volume element on M ’ invariant under G 
P’ 

Now, MO will intersect M’. Suppose, as E -+ 0, M’ - MO can be written 

as the union of connected submanifolds M: U Mz U . . . of the same dimension 

as M’. (Precisely, we mean that, as E -+ 0, this union fills up M’-MO.) 

Suppose B(p’,p’) is a Cauchy (i.e., Bergman-Weil) integral kernel which 

converts a function f(p’) on M’ into a holomorphic function f(p) by the formula: 

f(P) = J B(P’, P’) f(p’) dp’, 
M’ 

where dp’ is a volume element on M’ which is invariant under G’. (We would 

also suppose that the operator f(p’) -f(p) is an intertwining operator for the 

action of G’ on these functions.) Suppose that, for f’(p’) defined and continuous 

on MJ E’ j = 1,2,... the formula: 

fj(pO) = 
/ B(P’,P’) fj(p’) dp’ 
ML 

6.8 

gives a continuous function on MO. We can now obviously combine 6.8 with 6.7 

to obtain: 

$ = 
n B(P’,P’) g&p’) 
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which should be the generalization of 6.6. In particular, the functions: 

g,(p) = ‘/ 
B(P’,P’) g,(p’) dP” 

MO 

should be the generalization of the “Legendre functions of the second kind,” 

i.e., the functions that are, in the classical notation, p, (cos 0). 

Since working further would involve considerably more complicated 

machinery, we shall leave these ideas as conjectures to be worked on at a 

later point. 
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VU. GENERALIZED FUNCTIONS AND THE DIRAC NOTATIONS 

So far, in studying matrix elements g-+ < Pjp(q) > of group representa- 

tions we have assumed that $ and II/’ were elements of a Hilbert space H, 

and that p is a representation of a Lie group G by genuine operators mapping 

H into H. While this is adequate for simple problems, clearly many of the in- 

teresting applications to physics involve such objects defined when @ and $1 

are lf generaliz ed functions ” in the sense used by delfand and his coworkers. We 

will now present some of these ideas in a form that will be most useful for our 

goal of relatin g group representation theory to elementary particle physics and 

quantum field theory. 

It is interesting to note that Gelfand and Valenkin’s version of the theory [9] 

is extremely close to that originally used by Dirac in his treatment of quantum 

mechanics, although they avoid Dirac’s ingenious notations, presumably because 

of its bad reputation among mathematicians. In our brief treatment here, we 

will attempt to suggest such a direct use of Dirac’s ideas, although since it is 

only a side point, we cannot claim that all the details have been fully developed. 

Now we proceed to the description of the notations and ideas we will need. 

A Hilbert space will be, in this paper, a complex vector space, elements 

typically denoted by @,$+ , . . . , with a positive-definite Hermitian inner product 

(@,@ )--+< $lQi > , which satisfies: 

< q$ ’ > = <?plfi > * (* denotes complex conjugate) 

(C denotes the complex numbers) 

-c l$!l cl)’ > 
I 

= cqhp’> I 
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We will not assume that H is complete, as is customary in -most work in 

functional analysis. 

Let D be a complex-vector space of linear functionals on H. For in- 

tuitive purposes, we will denote elements of D and H by the same sort of 

letter, usually @. For $ E D, @’ E H, c 4 (I/‘> is the value of the linear 
I 

functional on tit . We will suppose that: 

(a) D is a topological vector space, (Details-about the topology of D will 

be made precise as they are needed. Recall that Gelfand and Valenkin 

define D as the dual space, with standard dual space topology, of a 

topology on H that is different from the topolo,y on H defined by the 

nom-n IJ4q =qG 1 

(b) For fixed Go c H , the linear form r,$‘-( < #ol$? > is in D. This serves 

to identify H with a subspace of D. When we write H C D, this is what 

we mean. D will be called the Dirac space associated with the Hilbert -- 

space H. 

(c) Any linear form in H that is continuous with respect to the Hilbert space 

topology defined by the norm Ibll is also in D. (Thus, D contains the 

completion of H as well as H itself.) 

Note that < rr/jfi 1 > does not make sense as a number if neither Cc, nor @’ 

belongs to H , However, it can be given a meaning by a limiting process, or 

regarded merely as a convenient algebraic symbol in certain specific calculations. 

To see this, we consider the idea of a “generalized orthonormal basis” of H, which 

we now define. 

Let M be an auxiliary space, whose points are denoted by p, p’, q, etc. 

Let dp be a measure on M, enabling one to form the integral 
J. 

f(p)dp of a 
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of a certain class of complex-valued functions on M. Consider a mapping 

M-, D, denoted by p-+ Gp , It is said to form an orthonormal basis for H if 

(7.1) 

This relation can be symbolized by the relation: 

< t,bpl$q> = a,, q for p,q E M . 

Now, suppose that A is a linear operator: H -+ H, 

define A*: D -+ D by the formula 

< A*+’ > = < $‘/A@ > for @ E D, $J’ E H . 

The operators A that we will consider will satisfy the following condition: 

A*(H)CH. (7.2) 

Then, we can extend A to a map: D -+ D by the formula 

A vector @6 D is then an eigenvector for A with eigenvalue h if 

H is diagonal with respect to the orthonormal basis p -, ,J, if 
P 

Atip = mNJp forall REM. 

Several examples will make the ideas clear: 

Example 1 - The Dirac Delta Function 

Suppose that M is a locally compact topological space* , and the measure 

dp* is such that all compact sets are measurable and have finite measure. 

* It would suffice to think of Euclidean space Rn as an example, with the 
Euclidean measure dp = dxn . 
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(dp is then sometimes called a Radon measure. ) For H we can take the space 

of all continuous, complex-valued functions p-+$(p) on M that vanish outside 

of a compact set with < $J e1 > = 
I f 

G(p)* @l(p) dp. For p c M, define 6, E V as 

follows: 

Then, for $~,fi’ E H, 

$ < ti/$’ < dpl@‘>dp =f< $I$‘>*-< dpl”’ > dp 

ZZ $~P,*$W~P=~‘/P ’ 
._ 

i. e. , (7. 1) is satisfied. 

Let A be the operation of multiplication by a continuous, complex valued 

function p -f(p) on M. Then, (A$) (p) = f(p) G(p). 

A*, on H, is obviously just the action of multiplication by f*, hence maps 

H into itself. Then 

<Adp+> = ‘dp A*+-= C 6 ‘f*ll)> 
PI 

i.e., 6 
P 

is an eigenvector for A. 

Example 2 - The Fourier Integral 

Let x denote a real variable, -co < x < ~0, and let H be the space of in- 

finitely differentiable functions x --+$(x) that vanish outside of a compact set. 



Let p also be a real variable, -co<p< M , and for each p E M, define 

@p C D by the formula: 

Notice that C $p @>= &p), where $ denotes the Fourier transform of $I. 

This is usually called the “Plancherel formula, If and expresses the fact that the 

Fourier transform is a unitary operator. We see that it is equivalent to the 

statement that the II, form on orthonormal basis. 
P 

(If one requires 

where the integral on the right-hand side ,is obtained as a limit of partial sums, 

using another topology in D, then one finds equivalent statements to the Fourier 

inversion formulas. ) 

Define A as the operator G(x) -+ d/dx r,!~(x) . Then it is readily computed 

that A* = - d/dx, and maps H into itself. 

co 
1 

Qwpfp= qJpp$>= F / -e -ipx d/dx Q(x) dx . 

oc -co 

ZZ -- 
& ip J 

emipx Ic, (x) dx 

-cg 

= - ipc Gpl+ >= -c ipGp/@ 1 
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This is interpreted as saying that tip is an eigenvector for A, with eigen- 

value ip . 

We now turn from these trivial examples to a situation where in addition 

a group acts. Let H, D and M be as above. Suppose p -+Jlp defines an 

orthonormal basis for H.‘. In addition, suppose that G is a group, and that 

p:g -p(g) is a representation of G by operators on H. Suppose p(g)* maps 

H into itself, so that p(g) can be extended to an. operator: D -, D. 

Definition - The orthonormal basis p+ tip of H is compatible with the 

action of G on H if: 

(a) G acts as a transformation group on M: For p E M, g 6 G , gp denotes 

the transform of p by g, 

03 pOt+p) = m(w) Ggp for g 6 G, P,C M . _ 

The map (g, P) -+ m(g, p) is a complex-valued function on G x M that is called 

the multiplier system associated withthe orthonormal basis and the group action. 

m cannot be an arbitrary function, but must satisfy a certain functional 

equation. In fact, 

p(g,g,) ‘$$I = m(yT27 P) z+!Jglgzp 

= p (g,) (w29 P) tig2p) 

= m(g2, p)m(g17 g,~) @ glgzP2 
or 

m(glg2: P) = m(g2p PPNglt g,P> (7’ 3) 

This is called the multiplier equation. We can rephrase its basic property in 

the following way: 
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Theorem 7.1 Suppose p -+ G is an orthonormal basis for H, and that - P 
m(g, p) satisfies the multiplier Eq. (7.3). Let g-+p l(g) be a representa- 

tion of G by linear transformation on V, such that p1 (g) ($Q is a multiple 

of e &i-P’ 
For g 6 G, define p(g) as a linear transformation on D by the 

formula: 

P&9 ‘$Jpl = m&T, p)p’(g) ‘$$ ’ 

Then, pg -+p @I also is a representation of. G by linear transformations 

on V. 

Proof: 

P @$2) ‘tip) = m(glg2, P)p’ (gIg2) ( kOp) 

= m(gl, g2 P) '(0. ) (m(g.~9p)p%2)($J) P bl 

= P@l)p(g2) t$p) , Le. , 

P (g,g,) = P qp 0.Q * q. e. d. 

Theorem 7.2 If m(g,p) satisfies the multiplier equation, so does 

any power Wgl, 1.3~~ where a is a complex number. 

Proof: This is obvious from 7.3 . 

Now fix a point q E ILI , and consider the isotropy subgroup of G at q , 

that we denote by Gq 

Gq= @EG: gq=q{ 
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Theorem 7.3 If m(g, p) is a multiplier system, then the mapping 
PO g-, m(g, po) is, for g E G , a homomorphism of Gq into the complex 

numbers. 

Proof: For Gl,g2eGq, 

m(glg2, qo) = m@,, 4)Wgl, g29) 

which exhibits the homomorphism property. 

As is well-known, this formalism applies to describe the spin-zero repre- 

sentations of the connected Poincare’group, G = LT, where L is the subgroup 

of Lorentz rotations, T the invariant subgroup of translations. M is the 

“mass-shell positive energy” subset of the vector space of 4-momenta, that we 

denote by R2, i.e., 

M=peR4: pop=m2, PO > 0 

(pap denotes the Lorentz inner product) 

If 

p = (p”,p1,p2,p3) then pap= @“)2 - @I)2 - cp2J2 - @3)2 

The elements $J 
P 

for p E M, are then the b-functions in momenta. 

dQwp= $p for I EL, p EM, i.e., 

the action of L is just that of the Lorentz rotations. 

P(t) Gp = m&P) tip 
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For each p, the map t -+m(t, p) is a homomorphism of T into the complex 

numbers (since T acts on M trivially, i. e., Tc Gp for all p E MJ m(t, p) 

is determined explicitly in the following way: The Lie algebra T of T can be 

identified with the space-time vector space, the space of momenta is its dual space. 

Then, m(Exp X, p) = e “(x, for XCT peR4. -’ 

The spin representations of G require a slightly more elaborate formalism, 

that will be described later when it is needed. 

Let H continue to be a Hilbert space, p+ I+!I~ , p E M, an “orthonormal 

basis’ for H parameterized by the measure space M. Suppose that M is also 

a topological space. We can now define the notion of the support of an element 

Let U be an open subset of M. One says that an element $ E H vanishes 

outside U if 

<J,gp>=o for all p c m - U 

Let $ be an element of D. Let us say that $I vanishes inside U if: 

< $@>=O for all @ E H which vanish outside U . 

Say that an element @ E D vanishes in a neighborhood of a point p E M 

if there is an open subset containing p in which $11 vanishes. The union of 

all such points is then an open set, hence its complement in M is a closed 

subset of M that we will call the support of I/J! . 

Let us now apply these general notions to an example where everything is 

sufficiently simple and, in principle, known, yet still sufficiently illustrative 

to suggest further developments. 
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VIII. PARTIAL WAVE ANALYSIS FOR S-MATRICES ASSOCIATED WITH 

SPIN ZERO REPRESENTATIONS OF SEMIDIRECT PRODUCT GROUPS 

We now want to examine the usual derivation of the partial wave analysis of 

the scattering operator in order to isolate certain interesting group-theoretic 

features. 

Suppose that G is a semidirect product of an abelian invariant subgroup 

T and a subgroup L, i. e., G = Lo T. (Of course, as our notations indicate, 

again we have in mind the case: G = Poincare’group, L = Lorentz subgroup, 

T = translation subgroup.) Use the notations described in the last section: 

Hl’ . . . , H4 are Hilbert spaces, pl, . . . , p4 unitary representations of G on 

Hl’ . . . , H4 which extend to Dl, . . . . D4 Dirac spaces associated with 

Hl’ m.., H4. Suppose Ml, . ..) M4 are auxiliary measure spaces in which 

L acts with 
. 

pi + G pi i = -1, ,.., 4 

defining orthonormal basis for Hl, . . . , H4 with 

Pi(t) (tipi) = mitty pi) 111 
pi 

piCQl (@pi) = ‘lp 
i 

15i-<4, tET, 1!EL 

(8.1) 

For fixed pi, t - mi (t,pi) is a homomorphism of T into the complex numbers. 

Suppose L acts transetively on Ml, . . . . M4. Let py, . ..) PO4 be fixed 

points of Ml, . . . . M4 (the “rest frame”), and Kl, .00, K4 the isotropy subgroup 
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I 

of L at pl, . . . . p4. Thus 

Mi = L/K., i = 1, . . . . 4 
1 

Now, suppose A is an operator Hl @ H2 -H3 @ H4 that intertwines 

the tensor-product action of G on each of the Hilbert spaces. Suppose also 

that A extends to a mapping of the corresponding Dirac spaces, i.e., 

A : Dl 8 D2-D3 @ D4 

The customary analysis now proceeds to regard the following formula as 

defining a “function” of the indicated variables, despite the fact that it is 

not considered legitimate to define the inner product of two elements of the 

Dirac spaces: 

f(P39 P4) = < A tip” @ tip0 
)I 

(8.2) 
1. 2 

Then, for t E T, 

f(P39P4) = < (PI 0 P$ w A 
i 

( 
GpT @3 tip0 

i 
(P3 G3 P*) F) (tips@ dJp4) > 

2 

= ml V,p$ * m,(td$) * m3 V,p,) m4(t,P4) f (P34q) 

This identity seems to imply that: 

f(p3,p4) = 0, except when 

m3jt,P3) m4 V, P,) = ml (t, $1 m2 (td?-~) (8.3) 
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Let N be the set of points (p,,p4) of M3 x M4 satisfying condition (8.3). 

The correct interpretation of this condition should be then that the support of the 

Dirac element A $J o @ # o 
( ,Pl P2 > 

of H3 @I H4 is contained in the set N. 

Another condition is readily obtained: Let K be the group Kl fl K2, i.e., 

Then, we have, from (8.2), 

f(kp3 > kp41 = f(p3 9 p4> (8.4) 

i.e., if f(p3, p4) is a genuine function of the subset N of Ml x M2, it is 

invariant under the action of K. 

. 

Let us examine the condition (8.3) that determines N. Now, for fixed 

‘j 
EMi, (j = 1,2,3,4), t -+ mj(t,pj) determines a homomorphism of the 

translation group T into the complex numbers of absolute value 1. Let T 

be the Lie algebra of T, and let ,,Td be the dual space of ,T, i.e., the space 

of linear mappings of the vector space ,T into the real numbers. Then, each 

pi determines an element of Td (for which we use the same notation) such that 

for X E T: :.. 

i < p.,X> 
mj(Exp X, pj) = e ’ 

( < pj,X > denotes the value the linear form p. takes on the element X E T.) 
J 

For k’ E L, Ad 1 maps iT into ,T. Let AddQ denote the dual representation 
d in T , i.e., ‘.‘.’ . 

<AddI( X3 = < p, AC@ -l (X)> For B E L, X E T, 
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(8.3) takes the form: 

i< p3+p4,X> 
e = e 

i < py+p$ X > 
, i.e., 

(p,, p4) E N if and only if; p3 + p4 = py+ pi (8.5) 

In the physicist’s notation, this takes the cust-omary form for the “S-matrix”: 

<pl,p2 
.I I 

Ap3,p4’ = &pl+p2-p3 - p,) f(q), where f(q) is function 

on the subset N c Ml x M2 x M 3 x M4 determined by (8.5). This “invariant 

amplitude” f(q) is not an arbitrary function on N, but is invariant under the 

group K(pl, p,), which is the intersection K(pl) n K(p2), where K(pj) is the 

subgroup of the ‘Q- E L such that Adda = pj O 

The usual “partial wave expansion” for the invariant amplitudes should 

now be interpreted as an expansion for f in terms of a complete, orthonormal 

basis of functions on N which are invariant under K(pl, p,). If N is 

compact, this should be expected to be an expansion over a discrete parameter, 

but if N is non-compact, it may be expected to be an e‘xpansion over a continuous 

parameter, similiar to the physicist’s expansion of the amplitude after the 

Sommerfeld-Watson transform. The relevance of our remarks in Section 6 is 

a simple mathematical model for this phenomonon should now be clear. 

In summary, we have gone through the analysis to point out the existence 

of two’general mathematical problems, which we will now state, but will only 

work on seriously in later papers: 

Problem I 

Suppose p is a unitary representation of a group G on a Hilbert space H, 

which extends to a representation of G on a suitable Dirac space D associated 
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with H. Suppose G’ is a subgroup of G, and @CD satisfies: 

p(g) (@) = m’(g) 9’ for g 6 G’ 
l 

Suppose p - @ 
P 

E D, p E M, is an orthonormal basis of D, satisfying: 

pm lJ5p = m&c, P) tip for g E G, p E M. 

Write formally: 

f(g) = <$’ i $, ’ 

It appears that: 

f(a) = m’ (g) m(g,p) f(p) for g c G’, p E M 

In Particular, for g E Gp n G’ (Gp = .isotropy subgroup of G at p), 

f(p) = m’ tg> m(w) f(p) 

Guided by our e‘xperience with the “S-matrix” case, we would guess that this 

identity requires that: The support of (I, be in the set of all points p E M such 

that 

n@c) mtg, p) = 1 for g E Gp n G’ 

Apparently, this sort of problem has not at all been considered (at least at this 

level of generality) in the mathematical literature. However, there is a close 

relation to problems considered by F. Bruhat [l]. 
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Problem II 

Let M be a manifold, N* a submanifold of M depending smoothly on 

the parameter A. In the “S-matrix” case, A may be considered as the 

initial momenta (p’, p”)). Let L be a group which acts on 1 2 M. Suppose KA 

is a subgroup L (also depending smoothly on h ) such that K A maps the 

subset N A into itself. Consider a function f A defined on N’, invariant under 

K? The problem: Investigate the expansion of fh in terms of a complete, 

orthonormal basis for functions on N A , particularly in regard to the dependence 

on A. For example, the variation through values of h at which N A changes from 

a compact to a non-compact set should be particularly interesting. Recent 

work by D. Freedman and J. M. Wang[G$ M. Goldberger and C. E. Jones [7], 

and E* Leader (to be published) should particularly be examined in this spirit. 
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3X. ANALYTIC CONTINUATION OF MATRIX ELEMENTS OF SO(2,l) 

As a guide to our general problem of investigation the asymptotic behavior 

of matrix elements of the form <$’ )U(t)@>as t-a, we examine in more detail 

in this section the case where U(t) is a one-parameter group generated by one 

of the elements of the Lie algebra of SO( 2,l). This will be done in such a way 

as to lead into certain general features to be covered in Sections XI and XII. 

Again we will work with the “Gel1-Mann formula” method of generating 

representations of SL(2,R), which we will formulate in a slightly different 

manner D 

Let H be a Hilbert space, with Z, X, Y operators on H such that: 

[z,xJ = Y; @,Y] = -x [x,YJ = o ; x2+y2= -1 

Define operators Xh = Y Z t- )\ X 

YA=xz+ AY 

Our goal is to calculate matrix elements of the form: 

f&h) = <$“/Exp(tXh)$ > 

in such a form that the asymptotic behavior as t --rcc can be investigated. 

Now, Exp(tXh) satisfies the differential equation: 

& Exp 0X$ = XA Exp ttxg 

= (X0 + AX) Exp (tXh) 

Theorem 9.1 

Set AA(t) = Y A Exp (tXo) Y 
-A 

a Then 

%I - =(xo+hX)Ah,A(0)=l _ dt 

(9.1) 

(9.2) 

- 41 - 



In particular, Ah(t) satisfies the same differential equation (9.1) as 

Exp (t,X$, hence, if the relevant uniqueness theorem holds, then 

Proof: 

EXP ttXh) = Y* Exp (tXo) Y -A 

ko,*. Y] = kz, Y] =y -YX 

(9. 3) 

Since YX commutes with Y, we have: 

Hence, 

c 1 x0, YA = AY -= - hYAX 

XoYh Exp (tXo) Y -A 
EXP (tXo) Y 

-A 

+ YAXo Exp (tXo) Y+ = - )iy’X Exp (tXo) Y-A 

+ Y”X, Exp (tXo) Y-‘, oti (X0&X) (YAExp(tXo)Y-‘) 

% 
= YAXo Exp(tXo)Y-h = dt 

This proves (9.2), and the theorem. 

In the next two sections, we will investigate the roots of this formula in 

Lie group cohomology. Let us now proceed to see how it helps to calculate 

matrix elements. 

Let us now realize this algebra as an algebra of differential operators, 

using the method described in [12], Section VI. H is the Hilbert space of 
237 

functions f)(e), 05 6 52n, with<@/@> = $ $I (6)*$ (0) cl0 
0 

z= -& 
d xA= sin 6 -&.. - hcos 0 

YA= cos 8 d -gj + A sin 6 
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Hence, ‘X0 = sin 8 -$- , y. = sin e 

It is convenient to change variables: 

i0 
Z = e 

xO 
= l/2 (z2-1) $ , Y = 1/2i (z-z-‘) 

Exp WOW = f(g) + H+ ($$I=%, withs=z 

Note that Exp (tXo)(z)+ t 1 as t-+m, s-+t 1 . 

Note also that s is the “correct” function of t to choose to make 

Exp 
( 
t(s) X0(z) analytic in the neighborhood of t = -t W, i. e. , s = t 1. 

) 
Suppose Q = zn 

EXP (tXo) (Y+G) 

= Exp (tXo) 1/2i (z-z 
( 

n z 

Now, 

Exp(tXo)(z-z-l) = Exp (tXo) (+j 

zs-kl ( ) 
2 

z-l-s -1 
= = [zs+l) 2 - ( z+s) 2 

zs-l-1 (z+s) (zs+l) 
(z+s) 

z2s2+l+2zs-z2 -2sz-s2 = = z2(s2-1) -(s2-1) 
z2s+zs2+z+s 

= (s2-l)(z2-1) 

z2s+z(s2+l)+s z2s+z(s2+l)+s 

Note that: . 

Exp (tXo)Y EXP ( -tXo) 

(s2-1) 
is analytic at s = ? 1. 
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I 

Hence, 

Y A Exp (tXo)(Y+) 

z2-1 x sz+l = ( > p2-q-h (z2-q-A 
Z z2s+z(s2+ l)+s U 

zss 

( s2-1)-h 
( 

Z 

> 
-A sz-64 n = 

z2s+z(s2+l) +s ( ) z-f-s 

Thus, we have proved: 

Theorem 9.2 Suppose fin, !+brn satisfy: 

Z(tQ = in tin, Z (pm) = i? em 

Then, the matrix element: 

admits the following integral representation: 
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where the integral is taken over the unit circle in the comples z-plane. 

(Of course, since the integrand is analytic, it can be shifted in accordance 

with Cauchy’s theorem.) Note particularly that (s2 -1)Af (log($h) 

has no singularity in the neighborhood of s = !I 1. ’ 

This theorem sums up.‘many special facts about the Legendre functions and 

their asymptotic behavior as t -00. Another interesting observation: For 

certain values of complex t, there will be trouble with singularities in the 

integrand. This indicates the feature we pointed out earlier, Exp (tXh) will 

not be strictly definable for complex t. 
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X. LIE GROUP COHOMOLOGY 

AND THE DEFORMATION OF REPRESENTATIONS 

Many features of the argument of the last section are of general interest. 

Since the argument implicitly involves Lie group cohomoloa, we will detour 

to sketch what we need. - 

Let G be a group, and let $ be a representation by linear transformations 

on a vector space V. One will find an exposition of the associated cohomology 

groups and their algebraic interpretation in [14], Chapter 12. Since we will 

only need cohomology of degrees one and two, and our notation differs from 

those of Kurosh, we will sketch what we need, Work by van Est [4] indicates 

the relation between Lie group and Lie algebra cohomology. 

A 0-cochain is an element of V. A one-cochain is a map ~3 from G to V, 

a two-cochain will be a map from G X G to V. These form vector spaces, that 

we denote by Co ($), Cl(@) and C2($). A coboundary operator will send Cn(@) 

into C n+l((b): 

(a) For w.5 Co (4), i.e., WEV, 

dNg) = $tg) (dG)for g 6 G 

(b) For o E Cl($) 

dMgl> g,) = Wg,) + + tg,) (dg2J) -Nglg2) for ~3 g2 E G 

Let us show that d(do) = 0 for w E Co (@) 

d(dw)t+ is.,) =dwtq +@‘(g,) (dNs2)) - dN+ .%,I 

= 0 + O(g,)tc.dj + Cptg,) (-f.J + @(g,)(U)) - (-W + $tP13g2)tfJ)) = O 

Let Z1(+) be the kernel of d: Cl($)--+ C2(@) 

Then H’(q) = Z2(+)/dCo ($). 
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L- 
I 

If G is a Lie group and we restrict ourselves to cochains that are differen- 

tiable functions on G, then the connection with Lie algebra cohomology can be 

made explicit 0 Let 2 be the Lie algebra of G, and let X E 2. The represen- 

tation $ of G induces a Lie algebra representation by operators on V, that we 

will denote by 2, of 9,: : 

@(xl =$ + (=WW) it = o 

We can define mapping CL: Cr($)-+ C’i$), r = O,l, 1, that commute the 

d-operator. 

Co ($) and Co ($I) are both equal to V, hence identified. 

If 0 E Cl($), define a(o) as follows: 

da(o) (xl = $~(ExP(tX))/t=O 

Suppose that o E V 

dw(g)= -w + Q(G)(w), hence cr(dw)@) = -$ 
( 

u+$tExp(tX)) 

=$&) (u)=dwW 

where do is taken in the sense of Lie algebra cohomology. Then 

cldo = dclw for o E Co($) 

Let us consider o 6 Cl(@) 

Wa(X>y) = $6) (M.dcY) a (WW)) - N4t[XJ]) 

= -g (#$++xP(tY)) -Q(Y)w(ExP(tX)) -+xP(t[X>Yl))/t = 0 

=- d J- Q(Exp(sS)) w(Exp(tY)) - $+XP@Y)) D(Exp(tX$& = 0 at as 

-& (Exp(t[X,Y] ))/t = o 

=- a 2 dw(Exp(sX),Exp(tY)) -w(Exp(tY)) + u(Exp(sX),Exp(tY))- dw at ds 
(Exp(sY) , Exp(tX)) -I- w(Esp(tX)) - o (Exp(sY),Exp(tX))& = o 
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- -g w (ExP(t[X,Yl))/t = 0 

We now prove that: 

- w (Exp(sY)Exp(rX) )I r,t = 0 

10.0 

= & w (Exptt [X,Y] ))jt = o 

For the proof, let us suppose that G is a group of n X n matrices, and that 

w can be extended to a function on all n X n matrices. (Using the techniques of 

manifold theory, the proof can be extended to abstractly given Lie groups) The 

left-hand side of 10.1 is then: 

Consider the following curve in the space of n X n matrices: 

x(t) =X Exp(tY) 

y(t) = Y Exp(tX) 

z(t) = Exptt [x t YJ ) 
Then, 

x’(O) =XY; y’(0) = YX; z’(0) =[X,Y] , i.e., x’(O) - y’(O) = z’(O) 

This relation between the tangent vectors of the three curves leads to the re- 

lation among their directional derivatives. 

& u(x(t)) - -$- u(y(t)) - -$ ,(z(t,>/, = o = 0, which is just 10.1. 

10.1 enables us to see how to define o!(w) if cc) E C2($), namely: 

a2 
~(W)FY,Y) = dsdt 

forX,YcG. by\ 

Exp(tY) ) - +‘xp(sY) Exp(tX$& = o 

- 48 - 



One sees from this formula that cr(w)(x,Y) = - cr(w)(Y,X), i.e., a(w) is actually 

a cochain in C2(+). Further, our method of defining CZ(C~(#I)) guarantees that: 

a(dw) = da(w) for w E C1($) 

Having shown the connection between Lie group and Lie algebra cohomology, 

let us turn to the connection between the former idea and deformation of Lie 

group representations. 

Suppose G is a Lie group g-tp (g) is a representation of G by linear trans- 

formations on a vector space H. Consider a deformation of p depending on a 

real parameter A, i. e. , for each A, g+ph(g) is a representation of G by 

linear transformations on H, reducing to the given one for A = 0. 

Set wtg) = d A ), dP (EC) P(2)/* = 0 

Then, 

4g1g2) = -& ( PpqPh (g,)) P (g;l) P (g;l& 0 
10.2 

= wtg,) + Pkl) c&2> p (p;‘) 

Let V be the vector space of linear transformations: H-H. Let + be the fol- 

lowing representation of G by linear transformations on V: 

@(g)(A) = pkPpd) for g 6 G, A OJ. 

Regard w as an element of Cl($). Then, condition 10.2 means: 

dw = 0 

Define: w (X) = &- bA W/h = o for X 6 $ 

Regard w as an element of Cl($). 

Then, it is readily verified that: a(w) = 3, 

i.e., the definition of w as a cohomological “first obstruction” associated with 

-49- ’ 



the deformation A + pA of Lie group representations is compatible with the 

previous definition (in [12], Part 2) of 2 as a “first destruction” associated 

with the deformation J, -+ PA of Lie algebra representations. 

We now turn from this brief general review of material covered in detail 

by Nijenhuis and Richardsqn to a more specific topic, namely, the formulation 

in cohomological language of the argument used in Section 9. 
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XI. GROUP REPRESENTATIONS DEFORMATIONS ASSOCIATED WITH THE LIE 

ALGEBRA REPRESENTATIONS THAT ARE LINEAR IN THE PARAMETER 

Suppose G is a connected Lie group, g is its Lie algebra, and ,ph is a 

one-parameter family of representations of 2 by linear transformations on a 

vector space H. Let P f po, and assume that ,ph is of the form: An 

jAW = J(X) + Ap) for X 6 $ (11.1) 

where c3 EC’( $)0 (V is the space of linear operators: H - H, and ,$(X)(A) = IT- 

P (W - Wx) = [P(X), A] f or X E G,, A c V). Now, we know the conditions that 

t,, given in this form be a representation, namely: 

(a) dg = 0 04 I,&!W)+p)] = 0 for X, YcG a (11.2) 
m 

Our problem is to show that this special assumption about the Lie algebra 

deformation implies a special form of the group deformation, namely: 

,yg) = A@ 9 h 1 P (g) (11.3) 

where, for each g, A, A(g, A) is a linear operator: H - H, and 

WJ) = A(g, 0) = 1 (the identity operator). 

First, let us start off with a deformation pA(g) of form 11.3 and deduce 

the consequences 0 

d 

,p)JX) = 2 +TPv I)& = $- +v(tX), A) P (Exp (tW)/t =. (11.4) 

= -yLA) +hpw , 
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with 

AGO) = dt d +&W,h)/t=o . (11.5) 

Hence, 

A(X,h) =hw(X) for XE$, all A . (11.6) 

Let us write down the condition that 11.3 define a representation for every 

value of A : 

ph(g,g,) = A(g1g2A P&y,) = P~Gq PA (g,) 

= A@+) P (g,) A (g2,A)Ng2) 

= A(gl’A)P(gl)A(g2’h)P(g21)P(glg2), 
or 

A(glg2ph) = A(gl,h)/'(gl) A(g2,h) p(g;l) a 
(11.7) 

CXlr experience with constructing “multipliers” for representations now 

suggests a way to solve these equations: As an Ansatz, set: 

A (g, JJ = E+W) (11.8) 

where: 

0 ccl($), i. e. , w is a mapping of G -) V = (operators on H) 

I 
w(g) : geG forms an abelian set of operators on H. 

I 
Then 11.7 takes the form : 

(11.9) 

Exp hw Iy2 l )) = EAT( ho (g,)) P $1 Expjhw (g2))p (g;l) 

= Ex~+~(gl) + P(g1) w(g,)P(g;l)) * 
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This condition is implied by the following one: 

w(g+q = wtg,) + wT,)(W(P,)) , (11.10) 

with P@(gl)(A) = p(gl) Ap (g;‘) , for each AEV, i.e. , each linear 

mapA: H -, H. 11.10 is. just the condition that do = 0, where o is interpreted 

as an element of Cl(@). 

Then, 11.9 and 11.10 are sufficient conditions that 11.3 and 11.7 define a 

deformation J, - pA of representations of G. 

Suppose further that: 

a(w) = dB, for BEV, i.e., BEC’($) . 

Then, we know that this is so if and only if : 

Then, 

W = d.B, where B is interpreted as an element of Co($) . 

w(g) = B - $43 (B) 

=B - pm BP&?) (11.11) 

Summing up, we have proved: 

Theorem 11.1 

Suppose P is a representation of the Lie group G by linear transformations 

on H. Let B be a linear transformation : H - H, and define w (g), for 

g6G, by 11.11. Suppose that 11. 9 is satisfied. Then the following formula 

defines a deformation A -PA of p . 

PA(g) = Exp (-B + p(g) Bp (g-l ))) w (11.12) 
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The corresponding deformation ph of the Lie algebra representation is 

given by: 

with 

P*(X) = P (X) + h(X) , 

o(X) 7 dB(X) = [p(X), B] (11.13) 

This is the abstract version of the construction done in Section 10 in order to 

calculate the asymptotic behavior of the Legendre function Pi(cos ht ) as t - 0~). 

We will now turn to the abstract version of the asymptotic formula itself. 

XII. AN ABSTRACT VERSION OF THE ASYMPTOTIC FORMULA 

Suppose H is a Hilbert space, with pA a one-parameter family of repre- 

sentations of G by operators on H of form 11.12. 

For fixed elements XEG, @ , @‘E H, consider the matrix element : 

f&h) = < ti’lP*Exp(tX)($4’ . 

Our experience with the calculation in Section 10 suggests simplifying 11.2 

with a further Ansatz . Suppose that : 

(a) The operators 
1 

B, P(g) BP@-‘) : gcG 
I 

form an abelian set of 

operators. (12.1) 

(b) There is an operator C with : 

B = logC, i.e., C = ExpB. 

Under the condition, 

P*(a) = c -*P(pg) CA (12.2) 

Then for GE H, XEG, 

PA (Exp (tX) (@)) = C- A p (Exp ( tx)) (C*$’ ) a. 
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Suppose that another parameter s can be introduced as a function of t, 

such that : 

(a) As t - co , s - 1 

(b) There is a real-valued function a(s, A) such that 

Then 

p~~(tcsjX)~C~~~/a~s,~~ is non-singular at s = 1 a 

takes a definite, computable value as t - 0~) , so that this formula determines 

the asymptotic behavior, in the classical sense, of matrix elements as t - co, 

with h held fixed. 

Now, let us examine the asymptotic behavior of A - 00 , with t held fixed. 

We know that : 

ph(W = P(X) + hw(X) . 

Hence, pA (X/A) is non-singular in the neighborhood of A = co . Thus, we 

can expect that 

Exp (t PAW,) = P* Exp (t x/h) = PA Exp(thX) 

will behave decently as A - co . 

But, 

We then face the problem of investigating this formula as h - co . Further 

work on these lines is dependent on doing more explicit calculations in order to 

obtain a reasonable idea of what to expect in general, hence we will defer it to 

later. 
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Another comment about 12.2: If the operators Ch and C -A are genuine 

operators on the Hilbert space and 12.2 held for all g in G, 12.2 would say that 

$ was equivalent to p, and, in particular, the value of the Casimir operators 

of $ would be the same for both representations. For the case of G = SL(2,R), 

for example, this would be. nonsense. There are two remarks to be made about 

this: First, the operators Ch and/or C-* are highly singular. For example, 

for the case G = SL(2, R), H = Hilbert space 

CA is the operator of multiplication by 

(sin e$) 

of functions +!I@), 0 L 0 I 2n, 

Second, the C may not be valid for the whole group G. (For example, for the 

case G = S+(B,R), it is readily verified that the C changes if X is replaced by 

Y). The general idea is that the relevant cohomology vanishes when restricted 

to a suitable subgroup of G. This is not surprising: We have seen many ex- 

amples of this method of “computing” cohomology groups, i. e. , choose a suit- 

able subalgebra or subgroup for which the. relevant cohomology groups vanish. 
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