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ANALYTIC CONTINUATION OF GROUP REPRESENTATIONS - V
Robert Hermann
Stanford Linear Accelerator Center, Stanford, California

I. INTRODUCTION

So far in this series we have dealt with analytic continuation at the "infini-
tesimal" level, i.e., we have considered "analytic continuation" of Lie algebra
representations, trusting to the known relatiorns between Lie‘algebra and Lie
group representations to provide us (at least implicitly) with corresponding facts
about continuation of group representations. Needless to say, it is at the group
level that the most interesting application to physics are to be found: For example,
the ""special functions' of mathematical physics occur as matrix elements of
various group representations. The general problem of reducing the tensor
products of representations into irreducible components and generalized "Wigner-
Eckart" theorems is of prime importance for the application of group theory to
elementary particle physics.

The interesting problems concerning analytic continuation of group representa-
tions and their matrix elements lead to additional degrees of complexity beyond
those we have encountered, since questions of analysis and geometry as well as
algebra appear. For example, one of our central problems can be described as
follows: Suppose for each value of the parameter A, t —*Ux(t) is a one-parameter
group of unitary transformations of a Hilbert space H. Consider two elements

Y, Y' of H, and the matrix element.

£(t,0) = <¥[u, | ¥ >
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One can ask various questions about the analyticity of this function of t and A,
and its asymptotic behavior as t and/or A go to infinity. For example, as we

will show, the asymptotic formula:
Pﬂ(z) ~ constant xzﬂ as z— o0

that plays such an important role in high-energy behavior of the scattering
amplitude is a typical case. (See [11] , Chapter 14 for work on this problem
from a slightly different point of view from that presented here.)

The ideas of Dashen and Gell-Mann [2] concerning the "infinite momentum"
limit also are of this nature, although we shall not be explicitly conéidering this

case in this paper. The formula

=] t
lim PQJ (cos 7) = It
00

of Inonu and Wigner [13] is also in this pattern.

In addition to these concrete problems there is also much work to be done in
developing the relation between analytic continuation of group representations and
group cohomology, a subject pioneered by-Nijenhuis and Richardson [16]. (Note
that the relation between group cohomology and Lie algebra cohomology has been
developed by W. van Est [4]). Again, there is an interesting and useful inter-
relation between various abstract questions and concrete problems that appear
in physics. In fact, there is a situation here that is almost unpalfalleled since
the nineteenth century: interesting physical questions suggest interesting mathe-
matical ones, and conversely. We shall present topics in this paper that proceed

in the direction of elucidating these connections,



II. GENERAL FACTS ABOUT MATRIX ELEMENTS

Let G be a group, Ha Hilbert space, and p a representation of G by
operators on H. Denote elements of H by ¥, i)', etc., the Hermitian inner

product by < l//[z,[/' > . (We use the physicist's rule:

1l

<§é/{?\l[/' >= A <ylyPr>

<7\l//’z//' > = A< ([z]z,l/f>
for each complex number A. A* denotes the complex conjugate.)

For fixed elements ¥, ytof H, the function g—< z‘[;'lp(g)l[» = f(g) is the

matrix element corresponding to ¥ and ¥'. In [11], Chapter 9, one will find

a short discussion from a slightly different point of view of the relation between
the matrix elements as functions on G and the representations themselves.
(This, in essence, is the theory of ""induced representations.') Let p(@)™* be

the adjoint operator to p(g)
<Yp@b>= <@ Yy >

Since (AB)"< = B*A* for operators A, B, we must define the ""dual" representation

p* by G by operators on H via the formula:
_1x
0*@ = ple™)
Then

1) = <y'|o@Y>=<p@ Y|y >
= <¢lp(g)*l,b’> i

= <l//[p*(g_1) Pr>*



This formula provides the connection between the matrix elements of p and
those of p*.
Let K be a subgroup of G. Suppose Yoo g, are elements of H that

transform among themselves by p'(K), i.e.,

p(k) d’iz o-ji(k) lPJ for keK
(1<1i,j,... n; summation convention in force.)
k—-«r(o' ij (k)) isan n x n matrix representation of K that we will denote

byos . Let ch be the transposed representation, i.e.,

<0T(k)>ji=a(k_l)

ij

Let £(e) = (1,0, .-, 1,0}, with £ =<y'|p@y > ---

Regard i as a map. G—-Cc".

For ke K
fi(gk) =<y 'I P (g)P (k)zp i>
= 03300 <¥'jo(@)¥;>
=0T(1<-1)ij £;(e)
Hence,
=0 & HIE , (2.1)

i.e., f is a cross section of the vector bundle on the homogeneous space G/K
determined by the linear representation k—.o-T k) of K. (See [11] for background
on vector bundles.) We shall denote the space of cross sections of this vector
bundle, i.e., the space of mappings G-ch satisfying (2.1), by [“(O-T). Note

in particular, that if n=1 and o-ll(k) =1, then

b =109

i.e., f determines a function on G/K.



Now, hold Pirever ¥y fixed, and consider ! —f as a mapping H—-F(UT).

Note that it is antilinear, i.e., sums go into sums, but
1 T *
AY goes into A* f'

There is a representation of G by linear transormations on [ ( oT): The

transform of T: G —C" by an element gy € G is the function
h 2ad
-1
g—~fk,
I £,(8) =<y '|p@y >, then
-1 -1
fe, 8 =<', ) p@¥;>
=< 0.-1 L N
=< pE, )Yl ;>
=<p*EY ¥'p© ¥ >

i.e., the vector p*(go) y' goes over into the transform of f by 8o Summing

up, we have proved:

Theorem 2.1 Suppose z,bl, cees z,bn are elements of H transforming under
the subgroup K by an n xn matrix representation ¢. Then the correspond-

ence

Y'—1: g‘—-(< P p(®) z,bi>)

defines an antilinear map H-—]~ (aT) that is an intertwining map with respect

to the given linear action of G on H and the left translation action of G on

I'(o).

Theorem 2.1 sums up many of the special properties of "matrix elements"
of representations that are useful in physics. Often it is further possible to ex-

. . n .
press the matrix-element functions f: G —C™ as products corresponding to
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certain product-subgroup decompositions of G. As an example, let us consider
the case where K is a compact, symmetric subgroup of G, with G semisimple

and connected, i.e., G= K@P, with
N e s
(x,p] cp, [P,P]JcK .
Let é be a maximal abelian subalgebra of P, and let A be the connected
abelian subgroup of G generated by A. Then, it is a general theorem [9} that:
G = KAK

(This means that every element g e G can be written (not necessarily uniquely) ‘

as a product kl ak,, with kl,k2 eK, ace A). In case G =80 (3,R), this is just

2 b
the Euler angle description of rotations, so it may be regarded as a generaliza-

tion of the Euler angle construction for an arbitrary semisimple Lie group.

Then,

fi(klakz) =< L//'f p (kl)P(a)P(kz)wi >
= <plep*y'plapoley >
=o(ky)y; <plk*y! [p(al)wj >,

Now, we can decompose the action of p*(K) on H. For example, suppose (I’[/I'-l)

are elements transforming as follows:
* oy = A /)t
W ,) = 7,09,
1< u,v,... $m; summation convention on these indices). Put:

f‘é=<¢/'u|p(g)z/fi> .

Then,

B ooy = ofl-
‘fi (D)—U(l\?,)jiy

-1,V
b OE @
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Thus, we see that the matrix elements are determined by:
{2) The decomposition of p(K) and p*(K) into irreducible representations.
(b) The matrix elements restricted to the subgroup A, which may be ex-
pected to satisfy cei‘tain differential equations.
Sinc,;e this sort of straightforward description of the matrix elements should
be familiar to the reader who has studied special representations of special
groups, i.e., G=S0(3,R) or G=S80(2,1) or SL(2,C), we will leave it at

this point.
III. INTEGRAL REPRESENTATIONS FOR MATRIX ELEMENTS

We will continue to review certain general facts about matrix elements that
are merely general versions of calculations well known in special cases. Let
us continue with a representation £ of a group G c;n a Hilbert space H. In the
last section, we supposed that H was given abstractly. Let us now suppose that
it is determined as a space of cross sections of a vector bundle on which G acts.
Consider a vector bundle

mT: E->M.

(M is a manifold, m(E) = M . For each p € M, the fibre n_l(p) is a complex
vector space). Suppose G acts linearly on E. (This means: G acts as a trans-
formation group on E and M; with gn(v) =nwg(v) for g € G, V€E. Transforma-
tion by g maps the vector space n—l(p) linearly onto lT—l(g"p), for each p € M.)
Let [{E) be the space of cross sections. The action of G on M, together with
a multiplier system m(g,p) determines a representation p of G in I'(E).

For Ye[(E), g €G, p €M,

p@ ) ) = m(@, ) gPig o) 3. 1)
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For g €G, p € M, m(g,p) is a linear map of the fibre 7r'1(p) into itself. It

satisfies the functional equation

| | L
m(g,g;,0) = M, D) g,m (2,80 D) g, (3-2)

for go,',g € G, T€E M.

(In fact this is just the relation necessary to have p(gogl) =p<go ,p(gl)>, i.e.,

P is a representation.)

Let us make J°(E) into a Hilbert space in the following way: Suppose given,
for each p € M, a Hermitian inner product (,) on the fibre Tr_l(p). For
Y. € (E), p __,<l//(p), (,[/'(p)) is then a function on M. Let dp be a volume
element for the manifold M. Define: |

<y [¥r>= f (e, v @) (3-3)
M

The conditions that the representation p be unitary are worked out in [10],

Chapter 9.

It is now obviously a routine matter to work out an integral representation

for the matrix elements:

< p(g) (d/)l P> = f(p(g) ) (P%zl»’(p)) dp

M
(3.4)

= f(m(g,p)gw(g’lp),w'(p)) dp
M

As a simple illustration, suppose G is semisimple, non-compact, M= G/H,
where H is one of the "boundary homogeneous spaces" of Furstenberg [5,8,11],

I'(E) is the space of complex-valued functions on M, i.e., the vector bundle E
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is just the product M x C. Choose m(g,p) as follows:

' A
m@E,p)=J _; ()
g
where Jg(p) is the Jacobian of the transformation p — gp. with respect to the

volume element dp, A is a fixed complex number. Then

<pplp>= [ Jgﬁ Eve Do @ |
7 |

Now, one basic property of these boundary homogeneous spaces is that K, the
maximal compact subgroup of G, acts transitively on them. Thus, we can sup-
pose dp chosen as the unique (up to a scaler multiple) volume element which is

invariant under K, i.e.,
J () =1for k €K, T€M.
In particular, if(p) =1, then
pR) @) = Yior all ke K
and the matrix element

g~< p@ WY >= 1@

is a function on the symmetric space G/K, i.e.,

<p(gk)(z,//)l¢' > = <p(g)z[/]¢/‘>> for k €K, g €G.

Then, we have:

(g) = fJ'f*l Y @) dp .
M g

This explains why the spaces of the type M are called "boundary homo-

geneous spaces" for the symmetric space G/K. An important class of functions
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on G/K, namely the matrix elements of the '"class 1'" representations of G,
i.e., these in which K has an invariant vector [9], are exhibited in a natural
way as integral transforms of functions on M. (Of course, there is also a
geometric motivation: They ‘appear as parts of the boundary when the spaces
G/K are compactified [4, lO]_). These remarks take on a special importance for
physics when one understands that most of the special functions of mathematical
physics appear as matrix elements with respect to representations of a relatively
small number of groups.

It is important to notice also that these considerations are not restricted to
unitary represehta‘_cions of G. Thus, we may start off with a representation Py
of a real Lie group G on a Hilbert space H, with the representation depending
on a parameter set A. The matrix elements are then functions on G, depending
also on the parameter A . Let Gc be the compleﬁfication of G, i.e., the real
parameters of the group are considered as complex, and G is a subgroup of GC.
(Technically, one proceeds as follows: Let G be the Lie algebra of G. Let
Qc = G+ 1 G be its complexification as a Lie algebra. Consider Erc also as a
real Lie algebra of twice the dimension of G, and VVithS as a subalgebra. A

complexification of G is a Lie group G_ whose Lie algebra is G _, containing G
c = ~C

as a subgroup in such a way as to give use to the given imbedding of Gin 'gc .
An arbitrary Lie group may not have a complexification in this technical sense
although of course all the ""classical" groups do, i.e., SO(n,R)— SO(n, C),
SU(n) — SL(n, C), SO(p, @) — SO(p+q, C), etc. Let us suppose that the repre-
sentation p may be extended to a representation p of GC on the same Hilbert

space. Then, the matrix elements g—< ! p (2> will be complex-analytic

with respect to the complex analytic parameters for GC if the following condition

is satisfied.

pIX)=ipX) for X egc ‘ (3.5)
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Of cours'e, this condition implies that the representation cannot be extended to
be unitary on Gc‘ Conversely, 3.5 can be used to exteﬁd p from ,(,31 to M(}c
Even though £ may be "integrated" to give 2 global representation of G, the
extended representation of Gc may not necessarily give such a global representa-
tion of Gc: This is a group-theoretical reflection of the fact that the matrix
elements may have singularities when an attempt is made to analytically continue
them to all of Gc . At any rate, Nelson's theory of ""analytic vectors" [15]

does guarantee that p can be extended to a neighborhood of the identity in

Gc’ which means that the matrix element

<¢'p®y >

may be defined when g 1is sufficiently near the identity in Gc' Unfortunately,
there seem to be very few examples of this phenomenon worked out explicitly
in the literature to serve as a guide to a thorough analysis. We will work out

the case G = SL(2, R) in Section 10.
IV. LEGENDRE FUNCTIONS AND THE GELL-MANN FORMULA

It is well-known that the Legendre functions appear as matrix elements of
representations of SO(3, R) and its noncompact real form SO(2,1). The "Gell-
Mann formula" works particularly well for these groups; we will now show how
it gives information about their matrix elements:

Let G be the Lie algebra of SO(3,R). It is generated by elements X, Y, Z,

satisfying

(z,x]=Y;(2,Y]=X [X,Y]=2
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For example, in the physicist's notation
( ple, phy ,

Z=J ,X=J_, Y=J_ where T= (J_,J_,d ) is the angular
Z X y Xy 'z

momentum vector.) The Casimir operator is

A=xX2+Y2+ 72

Consider a finite dimensional representation pﬂ where A has the value
-4+ 1). Then, p(Z) has the eigenvalues -1if,...,il, with corresponding

eigenvectors z//_)\, v z//)\.

The functions

130 = <Wy|p,Ex0 £9 Wy > - £<i< L, (4.1)

are essentially the Legendre polynomials. (At least after taking account of
normalization, and putting z = cos t.)

In [12 part I] , we have indicated a way of exhibiting these representations
by starting with a representation of one of its contractions, namely the group of
rigid motions in the plane. Its Lie algebra is generated by elements Z,X',Y',

with structure relations:
(z,x]=Y ; [2,Y]=-X" [X,Y]=0

Let ¢(Z), ¢(X), ¢(Y'") be an irreducible realization of these structure relations
by skew-Hermitian operators on a Hilbert space H. X'2 + Y'2 is a Cesimir

operator; we will normalize the representation ¢ so that

o2+ Y'Z) = -1
Put
A(Z) = o(Z)
P(2) = &[22, X1] +AXY)
AY) = 1/2 ¢([22,Y'] +AYD
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Then, these operators satisfy the structure relations for SO(3,R), [12], Part I,

page 260. Let us compute the value of the Casimir operator:
[2%x] -
Z9X1 = ZY' + Y'Z
= 2V'Z - X,
or '
P = q;‘(x'()\- 1/2) +Y'Z) ,
Z)_. 2 2 A\ 1 t H
Py K)= ¢(X' (A-1/2)°+ Y'ZY'Z + (A- 1/ (X'Y'Z + Y zx)
= ¢(X'2()\- 1/92 + 1222 - Y'X'Z + (A- 1/2)@X'Y'Z + Y'?')>
[Zz,Y] = - ZX' - X'Z
=-2X'Z-Y',
pAM = ¢(Y' (A~ 1/2) - X'2)
?)—— 2 2 t 1 1 1
pyY) = ¢<Y' (h-1/2°+ X'ZXZ - (A- 1/ (Y'X'Z + XZY ))
. ¢<Y'2(A- 1792+ x%2% 4 XY'7Z - (A- 1/2@Y'X'Z - XZ))
Then,
P2+ x4+ ¥ = (a-1/2% - (A-1/9
=~ (A-1/2)(A+1/2), or f=XA-1/2
(4. 2)
Let z//j, j=0,+1, +2,..., be abasis of H such that
Define:
5.0 =< ¢ Lops o (B0 > (4.3
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This formula extends the "Legendre ‘functions” defined by (4.1) to integral
values of j and arbitrary values of JZ.V (To extend the-definition to non-integral
J, one must consider representation of the algebra X', Y',Z in which ¢(Z) has
a non-discrete spectrum, a refinement we will not consider here.)

We get an asymptotic theorem for the Legendre function by transforming
from the ""Inonu-Wigner picture' (in which there is a singularity at A= o ) to
the "Kodaira-Spencer picture" (in which a family of Lie algebras deforms as

A—cointo the Lie algebra generated by Z,X',Y'). In fact, define:

AD) = 6(2)
oA = 5 £, ()
oA = 5 o5 )

As we already have verified [11], ¢, is a representation of the following Lie

algebra:

Z

(2.X),= ¥, [2.), = -x[x9-Z

which is a deformation of the Kodaira-Spencer sense of the Lie algebra generated
by Z,X',Y' .

In particular, everything is smooth as \—eo, and

lim

A—eo< Y |0, (Exp () y; >

:<z/6

¢@@¢X»%>

The right hand side is just the matrix element for the given representation ¢

of the group of rigid motions of the plane. In fact, this is known to be Jj ®),
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the Bessel function, The left hand side is

< Yo | Exp §) (1K) ¥y >
. t .
=< Y| Exp <PA<T X))‘”j >
-z, (/)
0-1/2
Hence
lim

£ /9 =30
>0 L .

This is the asymptotic formula proved by Inonu and Wigner .[13] by contracting
(in their sense) a series of finite dimensional representations of SO(3,R). Note
that our method, besides being more systematic, extends the formula auto-
matically to nonintegral values of £ and j and, if oﬁe is careful (as we have not
been) to at least certain complex values of t. Another virtue of our method is
that it extends routinely to representations of other groups to which the Gell-
Mann formula applies. Many such examples for semisimple groups are given
in [11].

We shall now turn to the physically more interesting case of the contraction

of the Poincaré group to the Galilean group.

V. CONTRACTION OF REPRESENTATIONS OF
THE POINCARE TO THE GALILEAN GROUP

The topic of the title of this section is one of the standard examples illustrating
the Inonu-Wigner ideas [12] . However, the interesting feature that "true'" repre-

sentations of the Poincare group contract to ray representations of the Galilean
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group suggests that the physicist's way of looking at this be rephrased (for
maximal clarity, if nothing else) in terms of our basic "analytic continuation
program. We have done this in [12:], Part II,for the simplest sort of situation.
However, we will now present it in simpler form that as a bonus, completely
covers the general case! ‘This way of looking at the problem is due to
L. L. Foldy [4], and in this section we shall only be adapting his work to our
point of Yiew.

First, we must describe the deformation of fhe Poincare into the Galilean

algebra. Let G be a vector space spanned by elements

P, H J,6 K.
1 i 1

(< i,j,..., £3 summation convention in force). Put A= 1/c (c = velocity of

light). Define a one-parameter family of Lie algebra structures on G as follows:

[Pi, Pj]}\z 0= [Pi, H]; [Jj, H])\

[Ji,Jj])\= - € [Ji,Pj]; - €5Pi 5. 1)

(eijk is the usual skew-symmetric tensor).
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For A # 0, this is the Lie algebra of the Poincare/group, for A = 0 that of
the Galilean group. Notice that it is perfectly analytic. in A.

Now, we want to construct a Lie algebra L and a one-parameter family
¢, of linear maps G —1L which, for A+ 0, is a homomorphism of the A-th
structure into L. For this, construct two Lie algebras H and S, His an
8-dimensional Lie algebra, with basic élements (pi, X 1, t) subject to the

following commutation relations:

o<pen] o= o] i 1

S 1is a simple three-dimensional Lie algebra (whose Lie group is then SO(3, R)

or SU(Z2) ) generated by elements (s;) with

[si, sj] = - eijksk
Now, let L=TU(H+ ), i.e., H+ 8 is the direct sum Lie algebra, and
- U + S) is its universal enveloping algebra considered as a Lie algebra via
the commutator. (We will in fact assume that U(H+ S) is the "complete"

enveloping algebra, i.e., including arbitrary "functions' of the generators.)

Now, define ¢p: G—L as follows:

Fitd

4))\(Pl) o

1

6Vm2e2+p2 , p2=pp

iti

i

¢, (B)

PAU = e XPr T S

2
¢)\(I<l) A Xi ¢}\(H) - eijksjpk/(mCZ + ¢)\(H)> - tpi
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One must now verify that ¢ ) isa homomorphism of the A-th Lie algebra
defined by (5.1) into I,, Let us take it for granted that this is done.

Of course, (5.2) is not analytic about A = 0, i.e., ¢ =%, Let us see if
the group theoretic trick introduced in [12], Part I, for "resolving the
singularity,' i.e., makiﬁg a central extension, which is "trivial" for A £ 0
but nontrivial for A = 0, works again.

The trick to introduce an element 1 to E that commutes with all the
generators of G ; for A# 0. ¢, 1is also extended by mapping this element
into the element 1 of H.

Consider:

H'}\=H—mcz- 1=H-

Then, all the relations (5.1) are unchanged by this substitution of HYy for H,

except possibly the last:

_ _ )2 m- 1) _ 2 .
[Pi’Kj] = N6, .H =X dij <H)\+——————) = 6ij()\ H) + m- 1)

Notice now that the "lucky" accident mentioned in [12] , Part T, repeats
itself: The commutation relations do not pick up a singularity as A—0 . How-
ever, again this is at the expense of not getting the Galilean algebra itself as
A—0 but a central extension of it.

Finally, we must check that the homomorphism ¢, also is analytic at

A=0. Let us look at (5.2). The only terms that are effected are the second
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and the fourth:

¢ (H')) = ¢, (H) - me” 1
2
= mc 1+ 22 - mc
) m cC
2
=mcz+% —I—%— + - me
2
-1 p
=2 m *
2
onE) = Mx (g0 + 2 1)

Again, we see that there is no trouble at A= 0: The representation b5 is
now analytic at A =0 . We conclude that Foldy's formalism gives an excellent
description of the simultaneous ""deformation or '"analytic continuation” of the

Poincaré algebra and its representations into those of the Galilean algebra.

- 19 -



VI. ANALYTIC CONTINUATION OF THE PLANCHEREL
FORMULA FOR SO(2,R)*

Before studying "analytic continuation' of matrix elements in generality,
it will be useful to examine some simple examples. SO (2,R) seems to be the
simplest case that gives some insight into the general case.

Consider two complex variables x and y, and the quadric M defined in

this space by
X +y =1

M is, of course, just the group manifold of SO(2,C). Let M° be the points
of M for which x and y are real, and let M' be the points for which x is
real, while y is pure imaginary. M° is the group manifold of SO(2,R), M'
the group manifold of SO(1,1). Both M° and M' are '"real forms" of M, with
M° compact (i.e., .a circle) while M' is non-compact (i.e., a hyperbola).

Suppose f(x,y) is a function defined on M alone, analytic in a suitable
domain, continuous when restricted to Mo, with boundary values (possibly in
a generalized sense) on M'. Now, f restricted to M° can be expanded in a
Fourier series (which is then the Peter-Weyl expansion for SO(2, R)) while the
boundary values of f(x,y) on M can be expanded in a Fourier integral <Which is
the Plancherel expansion for the group SO(1, 1)) .

Our main task is to examine how the two expressions may be related to one
another. Specifically, we have in mind developing a group-theoretic version of
the Sommerfeld-Watson transform, i.e., some procedure for "analytically
continuing' an expansion over a compact group into an expansion over a non-

compact real form.

%
I would like to thank A. Kihlberg who discovered an error in the first version
of this section. ’



Introduce a new variable z =x + iy. Then the z-plane minus the point
z =0 represents M as a complex manifold. M° is the set of z of the form
e16 , 0<6< 2, while M’ is the real axis.

i

Cousider the Fourier expansion of f restricted to MO, i.e.,

f(eie)~2fn einG R
n

2m

1 i6 -iné
fn = —2;/ fle’) e deo 6.1

(o]

We must somehow take into account the fact that f(z) is analytically
continuable off the circle [zl =1, leading to '""boundary values'" on M'. The
simplest way of doing this can be described as follows:*

Suppose f(z) satisfies a ""dispersion relation,' in the form of a Cauchy

integral representation:

=1 £(t)
f(z) = 5 L dt 6.2
1+€

for some € >0

Use 6.2 and 6.1, assuming that the integrals can be interchanged:

Rsor .
1 f em@
fn = T T de | f(t) dt

1+e \%0 t°
o8
- ff(t) £ dt for n3 0 6.3
i -
1+€ :

0 for n < 0.

*
I owe this suggestion to A. Martin.
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Suppose g(z) is a similar function, admitting a dispersion relation of the

form:
1-€
1 t
g(z) = 57 / tgé_zl dt .
€
Similarly,
. 1-¢/ on e—in@
"z f f o o) g(t) dt
T i e t-e
o)
= 0if n2>0
1-¢
1

- 1
fn T ooni
- 1
gn 27i

As €0, we obtain, in formal way

I
(), = 5

/ t—n~1 g(t)y dt for n< 0.
€

integrals:

0

fe”y e " ds

log(1+€)

log (1-¢)
f g(es) e ™% ds

log e

at least,

w -
/ (frg) (es) e ns ds
-0

6.4

6.5

6.6

Regard the function (f+g e® , defined as follows on the "boundary values' of
o

. the function (f+g) (els) on the non-compact set M':
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f(es) for s>0

(f+e) (%)

(f+g) (e?) g(es) for s<0.)

So far, n has been real; however, 6.6 suggests that we use the formula for
n pure imaginary as well, 6btaining in this formal way, essentially the ''Fourier
transform'" of the function s —(f+g) (es), i.e., the "Plancherel expansion' of
this function when it is considered as a function on SO(1, 1).

This simple explicit calculation immediately suggests a general framework.
Suppose G is a non-compact semisimple Lie group. Let Gc be its complexifica-
tion, G“ a compact subgroup of Gc whose compactification is also GC. (GH is
the "compact real form' of Gc)' G“ can be chosen so that G” NG=K isa
maximal compact subgroup of G, and a symmetric subgroup of G“. (One class

of examples to keep in mind might be:

It

G 80(n, 1), G, =80(n+1, O)

G

, = SO0m+1L,R), K =SO(n,R))

Let Kc be the complexification of K, considered as a complex subgroup of

GC. Define the following coset spaces.
M =G/K ;M =G /K;M = G/K
¢ ¢ u

Then, both M® and M' are "real" submanifolds of the comples manifold M,

i.e., complex analytic coordinate systems can be found for M for which,

locally, each of M® and M' are defined by real values of the coordinates.
Denote points of M, MO, M' by p, po , p',respectively . Suppose f(p) is a

function which is complex analytic on at least some domain of M, and defined
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and continuous of M°. Then, f(po) can be eipanded in a "Fourier series'" using
the spherical functions [10] of the symmetric space G“/ K. Let {f } denote the

coefficient in such an expansion (n is a descrete, multiparameter index). Then
= 0, o (6]
i = ff(p ) b (0% dp 6.7
. MO

where hn (po) is the spherical function parameterized by n, and dpo denotes a

o ., .
volume element on M~ invariant under GP«'

Now, M® will intersect M'. Suppose, as €— (0, M'- M° can be written
as the union of connected submanifolds Mi U Mi U... of the same dimension

as M'. (Precisely, we mean that, as € — 0, this union fills up M'—MO.)
Suppose B(po,p') is a Cauchy (i.e., Bergman-Weil) integral kernel which

converts a function f(p') on M' into a holomorphic function f(p) by the formula:
o
f(p) = f B(p , p") £(p") dp',
Ml .

where dp' is a volume element on M' which is invariant under G'. (We would
also suppose that the operator f(p') —f(p) is an intertwining operator for the
action of G' on these functions.) Suppose that, for fJ(p') defined and continuous

on M]€ » j=1,2,... the formula:

P9 = / B(p°,p") £'(p") dp' 6.8
M€

gives a continuous function on M°. We can now obviously combine 6.8 with 6.7

to obtain:

j o o)
£ = f B(p°,p') g, (p") dp” | f(p') dp'
Mg \ M°
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which should be the generalization of 6. 6. In particular, the functions:

g,(p) = _/ B(p°,p') g,(P") dp°
. MO
should be the generalization of the "Legendre functions of the second kind,"
i.e., the functions that are, in the classical notation, P, (cos 8).
Since working further would involve considerably more complicated
machinery, we shall leave these ideas as conjectufes to be worked on at a

later point.
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VII. GENERALIZED FUNCTIONS AND THE DIRAC NOTATIONS

So far, in studying matrix elements g—< z[;"p(g)lz// > of group representa-
tions we have assumed that ¥ and y' were elements of a Hilbert space H,
and that p is a representation of a Lie group G by genuine operators mapping
H into H. While this is adequate for simple problems, clearly many of the in-
teresting applications to physics involve such objects defined when ¥ and !
are "generalized functions' in the sense used by Gelfand and his coworkers. We
will now present some of these ideas in a form that will be most useful for our
goal of relating group representation theory to elementary peirticle physics and
quantum field theory.

It is interesting to note that Gelfand and Valenkin's version of the theory [9]
is extremely close to that originally used by Dirac in his treatment of quantum
mechanics, although they avoid Dirac's ingenious notations, presumably because
of its bad reputation among mathematicians. In our brief treatment here, we
'will attempt to susgest such a direct use of Dirac's ideas, although since it is
only a side point, we cannot claim that all the details have been fully developed.

Now we proceed to the description of the notations and ideas we will need.

A Hilbert space will be, in this paper, a complex vector space, elements
typically denoted by ¥,i', ..., with a positive-definite Hermitian inner product

WY )—<yly's, which satisties:

< y;lw' > = <¢']¢, >* (* denotes complex conjugate)
< Cl//lw > = c* <g[//1//‘ > for ceC (C denotes the complex numbers)
< zj//cw' > = c<¢'[l//'>
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We wﬂi not assume that H is complete, as is customary in most work in
functional analysis.

Let D be a complex-vector space of linear functionals on H. For in-
tuitive purposes, we will denote elements of D and H by the same sort of
letter, usually Y. For Y eD,¥'€ H,< gb[L//' > is the value of the linear
functional on ¥' . We will suppose that:

() D is a topological vector space. (Details‘about the topology of D will

be made precise as they are needed. Recail that Gelfand and Valenkin
define D acg the dual space, with standard dual space topology, of a
topology on H that is different fromthetopology on H defined by the
norm “ z,b” =W. )

(b) For fixed ¢0 € H, the linear form ' < ¢01¢'> isin D. This serves
to identify H with a subspace of D. When we write HCD, this is what
we mean, D will be called the Dirac space associated with the Hilbert
space H.

(¢) Any linear form in H that is continuous with respect to the Hilbert space
topology defined by the norm “w“ is also in D. (Thus, D contains the
completion of H as well as H itself.)

Note that < 1/111,[/’ > does not make sense as a number if neither ¥ nor Y’
belongs to H . However, it can be given a meaning by a limiting process, or
regarded merely as a convenient algebraic symbol in certain specific calculations.
To see this, we consider the idea of a "generalized orthonormal basis of H, which
we now define.

Let M be an auxiliary space, whose points are denoted by p,p',q, etc.

Let dp be a measure on M, enabling one to form the integral ff(p) dp of a
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of a certain class of complex-valued functions on M. Consider a mapping

M — D, denoted by p— ‘/’p . It is said to form an orthonormal basis for H if

<yly> %yjlwp>< pply) > dp (7.1)

for Y € H

This relation can be symbolized by the relation:

<Wplg>= bpq T PAEM

Now, suppose that A is a linear operator: H — H,

define A*: D — D by the formula
< A*Ylp >=<ylaP>  for ¥ €D, e H
The operators A that we will consider will satisfy the following condition:

A*(H)CH. o (7.2

Then, we can extend A to a map: D — D by the formula
.<A;//!</,'> = <Yjan)r > for YreH, Ye D
A vector YeD isthen an eigenvector fdr A with eigenvalue A if
AY =AY
H is diagonal with respect to the orthonormal basis p - wp if
Al[/p = )\(p)([/p for all p e M.

Several examples will make the ideas clear:

Example 1 - The Dirac Delta Function

Suppose that M is a locally compact topological space* , and the measure

dp* 1is such that all compact sets are measurable and have finite measure.

* It would suffice to think of Euclidean space RP as an example, with the
Euclidean measure dp = dxI
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(dp is then sometimes called a Radon measure.) For H we can take the space
of all continuous, complex-valued functions p—y() on M that vanish outside
of a compact set with < ;0/;/;' > :fw(p)* Y'(p)dp. For p € M, define dp €V as
follows: ‘

sp¥) = Y@) = <5p'zp> for YeH

Then, for Y,¥' € H,

_f< w]ap> < 8 [¥'>ap =f< 5p‘¢z>*‘< aplw» dp

= YE)* P @) = <Yy >
i.e., (7.1) is satisfied.

Let A be the operation of multiplication by a continuous, complex valued

function p —f(p) on M. Then, (AY)(p) = {(P)Y D).

A*, on H, is obviously just the action of multiplication by f*, hence maps

H into itself. Then

i

<Aap|t/z> A

* = < § \fx
A*Y > ap\f¢,>

() *Ym) = <i() 5p|¢» >

i.e., §_ is an eigenvector for A.
H p te)

Example 2 - The Fourier Integral

Let x denote a real variable, - <x <o, and let H be the space of in-

finitely differentiable functions x —i(x) that vanish outside of a compact set.

o0
<Plgr>= [Yrxy (»dx
, J X X
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Let p also be a real variable, -co<p<oo, and for each p €M, define

l//p € D by the formula:

>}

. 0 .
<¢p|¢> = \/—é—__}%: fe'lpxz/;(x) dx

7\
Notice that < ¢pl¢>= Y(p), where l:/I\ denotes the Fourier transform of .

Then
o0 0

f<‘/’ll’bp >'<¢pll//'>dp =f<ll/p!l/f>*i<¢/l¢'> dp}

-0 -60

= fol,%\(P)*/l/J\(P) dp = <¢’|l/" >
-00

This is usually called the ""Plancherel formula, ' and expresses the fact that the
Fourier transform is a unitary operator. We see that it is equivalent to the

statement that the Iﬁp form on orthonormal basis. (If one requires

@«
w=f<¢{wp>wp dp ,

-00
where the integral on the right-hand side is obtained as a limit of partial sums,
using another topology in D, then one finds equivalent statements to the Fourier
inversi‘on formulas.)

Define A as the operator ¥ (x) —d/dxi(x) . Then it is readily computed

that A* = - d/dx, and maps H into itself.

o0
- r _ 1 _-ipx .
<At//p.¢;>—<zj/p|A*w>— — [e d/dx Y(x) dx
-0
oc
= - 2177' ipfe_ipxz//(x)dx

-C0

il

- ip< l,bp]l!! >= <ipyy >
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This is interpreted as saying that ([/p is an eigenvector for A, with eigen-
value ip.

We now turn from these trivial examples to a situation where in addition
a group acts. Let H, D and M be as above. Suppose p Hz//p defines an
orthonormal basis for H. In addition, suppose that G is a group, and that
p:g —plg) is a representation of G by operators on H. Suppose p(@)* maps
H into itself, so that p(g) can be extended to an operator: D—D.

Definition - The orthonormal basis p— d’p of H is compatible with the
action of G on H if:

(8) G acts as a transformation group on M: For pe€ M, g €G, gp denotes

the transform of p by g.

0 PE (W) =mE. D) P, T g€G peM

The map (g,p) — m(g,p) is a complex-valued functionon G XM that is called

the multiplier system associated withthe orthonormal basis and the group action.

m cannot be an arbitrary function, but must satisfy a certain functional

equation. In fact,

p(8189) () = m(g, 2y, P) Vg g0
= ey (p (e ¥y )

= p()) (migyP) Ve, p)

= m(g,, P)m(g;, $5P) z//glgzp,

or

m(g,8,:P) = M(gy, PM(Ey, goP) (7.3

This is called the multiplier equation. We can rephrase its basic property in
the following way:
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Theorem 7.1  Suppose p— ‘/’p is an orthonormal basis for H, and that
m(g,p) satisfies the multiplier Eq. (7.3). Let g—p'(®) be a representa-
tion of G by linear transformation on V, such that p'(g) (zpp) is a multiple
of l/’gp . For g €G, define p(g) as a linear transformation on D by the

formula:

p(g)(z//p) =m(g,p)p'(g) (z//p) .

Then, pg —p(g) also is a representation of. G by linear transformations
on V.

Proof:

p(8189) () = m(218,. P’ (818) ()
= M(g5, D) (8, 85P)p' (81)0" (89 (¥)
=gy, g,0p' @) (M, plo' (€) (1)
= (g, 800" (8) (0185 (V)
=pEPeley (Y » i.e.,

p(g1g2) :p<gl)p(g2) . q.e.d.

Theorem 7.2 If m(glp) satisfies the multiplier equation, so does

any power m(gl,p)a, where a is a complex number.
Proof: This is obvious from 7.3 .
Now fix a point q € M, and consider the isotropy subgroup of G at q,

that we denote by G4

Gl= {ge€G: gg=q}
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Theorem 7.3 If m(g,p) is a multiplier system, then the mapping

p
gﬁm(g,po) is, for g€ G © , @ homomorphism of G% into the complex
numbers.

Proof: For G
m(g,8,,q,) = m(g,, P1M(g, 8,9

=m(g,, Ym(g,, )
which exhibits the homomorphism property.

As is well-known, this formalism épplies to describe the spin-zero repre-
sentations of the connected Poincare’group, G = LT, where L is the subgroup
of Lorentz rotations, T the invariant subgroup of translations. M is the
"mass-shell positive energy' subset of thé vector space of 4-momenta, that we

denote by R2, i.e.,

M=p€R4: p.p=m2, po>0
(p-p denotes the Lorentz iﬁner product)

p=%p',p%p% then pop= % - o2 - 092 - ©°)2

The elements z//p for p € M, are then the §-functions in momenta.

p(@¢p=%p for Lel,peM, i.e.,

the action of L is just that of the Lorentz rotations.

p(t) lﬁp =mtp Y,
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For each p, the map t—-m(t,p) is a homomorphism of T into the complex
numbers (since T actson M trivially, i.e., TC GP for all p € M) m(t, p)

is determined explicitly in the following way: The Lie algebra T of T can be
identified with the space-time vector space, the space of momenta is its dual space.
Then, m(Exp X,p) = eP® for x €T, p e rt,

The spin representations of G require a slightly more elaborate formalism,
that will be described later when it is needed.

Let H continue to be a Hilbert space, p— z//p , P € M, an "orthonormal
basis'" for H parameterized by the measure space M. Suppose that M is also
a topological space. We can now define the notion of the support of an element
Y e D.

Let U be an open subset of M. One says that an element ¥ € H vanishes

outside U if

<1//¢,p>=0 forall pem-U

Let Y be an element of D. Let us say that ' vanishes inside U if:

< Y Yr> =0 for all ¥ € H which vanish outside .

Say that an element ' € D vanishes in a neighborhood of a point p € M
if there is an open subset containing p in which ' vanishes. The union of
all such points is then an open set, hence its complement in M is a closed
subset of M that we will call the support of ' .

Let us now apply these general notions to an example where everything is
sufficiently simple and, in principle, known, yet still sufficiently illustrative

to suggest further developments.
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VIOI. PARTIAL WAVE ANALYSIS FOR S-MATRICES ASSOCIATED WITH
SPIN ZERO REPRESENTATIONS OF SEMIDIRECT PRODUCT GROUPS

We now want to examine the usual derivation of the partial wave analysis of
the scattering operator in order to isolate certain interesting group-theoretic
features.

Suppose that G is a semidirect broduct of an abelian invariant subgroup
T and a subgroup L, i.e., G = L.T. (Of course, as our notations indicate,
again we have in mind the case: G = Poincaré group, L = Lorentz subgroup,

T = translation subgroup.) Use the notations described in the last section:

Hl’ e H4 are Hilbert spaces, Pys vens Py unitary representations of G on
Hl’ oo H4 which extend to Dl’ ceay D4 Dirac spaces associated with
Hl’ ey H4. Suppose Ml’ ey M4 are auxiliary measure spaces in which

L acts with

Py = ¥p, i=1...,4
defining orthonormal basis for Hl’ «e0s H 4 with
(T = m.{t,p. 8.1
A () = mytipy Py (8.1)
(£ =
P W) = by

i
1<i<4, teT, LeL

For fixed P t — m, (t,pi) is a homomorphism of T into the complex numbers.

Suppose L acts transetivelyon M., ..., M4. Let p‘l’, eeny pz be fixed

l’

points of M . M4 (the "rest frame'), and K

17 -

UREEY K4 the isotropy subgroup
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of L at pl, ey Pye Thus

Mi = L/Ki, i=1, ..., 4

Now, suppose A is an operator H1 ® H2—+H3® H4 that intertwines
the tensor-product action of G on each of the Hilbert spaces. Suppose also
that A extends to a mapping of the corresponding Dirac spaces, i.e.,

A:D1®D—>D3® D

2 4

The customary analysis now proceeds to regard the following formula as
defining a "'function™ of the indicated variables, despite the fact that it is
not considered legitimate to define the inner product of two elements of the

Dirac spaces:

f(p3, p4) = <A (wpg). ® %g) l,[/p3 ® l//p4 > (8.2)

Then, for t € T,

f(pgopy) = <(P;® Py (V) <A (z/fpi) ® %g)> (py ® py) (1) (¢p3® t/zp4)>

O 0.

This identity seems to imply that:

f(p3,p4) = 0, except when

m(t,pg) m, (£,0,) = my (8, PY my (105  (8.3)



Let N be the set of points (p3,p4) of M3 x M4 -satisfying condition (8.3).
The correct interpretation of this condition should be then that the support of the

Dirac element A (z//po ®l/{30> of H, ® H, is contained in the set N.
1 2

4
Another condition is readily obtained: Let K be the group K1 N Kz, i.e.,
P (Vo ® = Yo@yo for k €K
b) ® Vg Py~ TPy
Then, we have, from (8.2),
f(kpg,kpy) = f(p5,Py) | IS
i.e., if f(ps,p4) is a genuine function of the subset N of Ml x M2’ it is

invariant under the action of K.

Let us examine the condition (8.3) that determines N. Now, for fixed
pj GM.l, (j=1,2,3,4), t— mj(t,pj) determines a homomorphism of the
translation group T into the complex numbers of absolute value 1. Let T
be the Lie algebra of T, and let Td be the dual space of T, i.e., the space
of linear mappings of the vector space T into the real numbers. Then, each
p; determines an element of ,_Téd (for which we use the same notation) such that
for X € T

: i< p.,X>
m(Exp X, p) = e )

( < pJ.,X > denotes the value the linear form pj takes on the element X € T.)
For £ € L, Ad{ maps T into LT Let Addﬂ denote the dual representation
in T, i.e., |

<ad%i(p), x> =< p,_AcLa‘l (X)> ForfeL,X €T
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(8.3) takes the form:

i< p3+p4,X> i<pg+p;, X>
e = e ,» l.e.,

. s 0O
(Pg»P,) € N if and only if- pg+p, = p{ +pg (8.5)

In the physicist's notation, this takes the customary form for the "S-matrix'":
< p1’p2 ‘A\p3,p4> = (5({)1 + P, =Py - p4) f(q), where f(q) is function

on the subset Nch x M2 x M, x M, determined by (8.5). This "invariant

3
amplitude" f(q) is not an arbitrary function on N, but is invariant under the

group K(pl,pz), which is the intersection K(pl) N K(p,), where K(pj). is the

o)
subgroup of the ¢ € L such that Addﬂ(pj) =p, .

] ,

The usual ''partial wave expansion" for the invariant amplitudes should
now be interpreted as an expansion for f in terms of a complete, orthonormal
basis of functions on N which are invariant under K(pl, p2). If N is
compact, this should be expected to be an expansion over a discrete parameter,
but if N is non-compact, it may be expected to be an expansion over a continuous
parameter, similiar to the physicist's expansion of the amplitude after the
Sommerfeld-Watson transform. The relevance of our remarks in Section 6 is
a simple mathematical model for this phenomonon should now be clear.

In summary, we have gone through the analysis to point out the existence
of two 'general mathematical problems, which we will now state, but will only
work on seriously in later papers:

Problem I

Suppose p is a unitary representation of a group G on a Hilbert space H,

which extends o a representation of G on a suitable Dirac space D associated
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with H. Suppose G' is a subgroup of G, and YeD satisfies:

p(g)(Y) = mi(g) ¢¥' for g € G

Suppose p— l/lp € D, p € M, is an orthonormal basis of D, satisfying:

p(g) zjlp = m(g,p)z/;p for g € G, p € M.

Write formally:

f(g) =<y' ll/p >

It appears that:

f(gp) = m'(g) m(g,p) f(p) for g € G', p e M

In particular, for g € GP n g (GP = isotropy subgroup of G at p),

f(p) = m' (g) m(g,p) f(p)

Guided by our experience with the "S-matrix'" case, we would guess that this
identity requires that: The support of ¢ be in the set of all points p € M such
that

m'(g)m(g,p) = 1 for g € G° ng

Apparently, this sort of problem has not at all been considered (at least at this
level of generality) in the mathematical literature. However, there is a close

relation to problems considered by F. Bruhat [1]
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Problem I

Let M be a manifold, N)‘ a submanifold of M aepending smoothly on
‘the parameter A. (In the "S-matrix'’ case, A may be considered as the
initial momenta (pg, p(2))>. Let L be a group which acts on M. Suppose K)‘
is a subgroup L (also depénding smoothly on A) such that K)‘ maps the
subset N}‘ into itself. Consider a function f)‘ defined on N)‘, invariant under
K)‘ . The problem: Investigate the expansion of f)‘ in terms of a complete,
orthonormal basis for functions on N)‘, particularly in regard to the dependence
on A. For example, the variation through values of A\ at which N }‘changes frorﬁ

a compact to a non-compact set should be particularly interesting. Recent

work by D. Freedman and J. M. Wang[6], M. Goldberger and C.E. Jones [’7],

and E. Leader (to be published) should particularly be examined in this spirit.
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IX. ANALYTIC CONTINUATION OF MATRIX ELEMENTS OF S0(2, 1)

As a guide to our general problem of investigation the asymptotic behavior
of matrix elements of the form <’ 1U(t)z,lz> as t—oo, we examine in more detail
in this section the case where U(t) is a one-parameter group generated by one
of the elements of the Lie algebra of S0(2,1). This will be done in such a way
as to lead into certain general featﬁres to be covered in Sections XI and XII. |

Again we will work with the "Gell-Mann formula" method of generating
representations of SL(2,R), which we will formulate in a slightly different
manner.

Let H be a Hilbert space, with Z, X, Y operators on H such that:

z,X] = Y;[2,Y] = -X [X,Y] = 0; X2+Y2=-1

Define operators X, = YZ+ AX
Y)\ = XZ+ AY

Our goal is to calculate matrix elements of the form:
f(t,A) = <¥'|Exp(t X;)y >

in such a form that the asymptotic behavior as t—eo can be investigated.

Now, Exp(tX, ) satisfies the differential equation:

d
T Exp (tX}\) = X)\ Exp (tX3)
(9.1)
= (X, * AX) Exp (tX)
Theorem 9.1
Set A;(f) = Y’ Exp (X ) v* . Then
da, :
i T Xyt AX) Ay, A(0) =1 ) (.2
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In particular, A)\(t) satisfies the same differential equation (9.1) as

Exp (t,X )\) , hence, if the relevant uniqueness theorem holds, then

¥ Exp (tX,) v~ A (9. 3)

- Exp (tX,)

o

. Since YX commutes with Y, we have:

[xo, Y)‘] = Mt [XO,Y:] g

[Yz , Y] - -¥X
Proof: '

Hence,

A

MExp (x) YN = [XO,Y’\] Exp (1X) ¥

XY A
0

A

+ YOX | Exp (X)) vA - —)\Y)‘X Exp (X ) y A

+ Y)‘XO Exp (tX) YA or (X FAX) (Y)\Exp(txo)y')‘>
day
dt

= oA -A
= Y X Exp(tX )Y" =

This proves (9.2), and the theorem.

In the next two sections, we will investigate the roots of this formula in
Lie group cohomology. Let us now proceed to see how it helps to calculate
matrix elements.

Let us now realize this algebra as an algebra of differential operators,
using the method described in [12], Section VI. H is the Hilbert space of

2m
functions (), 0< 6 <2m, with<w{z//>=f W ()% (8) do
(8]

- 4
Z = da
XM= sin o —g—é - Acos 0
Y)"z cos 6 d_de + Asin 6
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. . d .
Hence, Xo—sme a0 ° Yo—sm 0

It is convenient to change variables:

. . - 2 .. 4 S |
z = e X, 1/2 (z°-1) Z ¥ 1/2i (z-z 7)
t t t
Exp(tX )(z) = [z 12“6 + 1) [z + 1:‘3 = ZS:; , with s = 1-%1-:e
e -1 e -1 z e’-1

Note that Exp (tXO)(z)——v‘t 1as t—oo, s—% 1.

Note also that s is the "correct" function of t to choose to make

Exp <t(s) Xo(z)> analytic in the neighborhood of t = * oo, i.e., s = % 1,
Suppose ;Z/=zn
-A
Exp (£X ) (Y ")
= Exp(tX) (1/21 (z-z"l))—)‘ 2"
Now,
' -1 z°-1
Exp(tX)(z-z ) = Exp(iXy) (%57)
z5+1
(z+s> -1 _ Lzs+1)2 - (z+s)2
zS+1 (z+8) (zs+1)
(z+s)
- z?‘sz-!-1+225-z‘2—Zsz—s2 _ zzgsz—l)—(sz—l) _ (sz-l)(zz—l)
2 2 2 2 T2 2
Z s+zs +z+s Z S+z{s +1)+s Z S+z(s8 +1)+s
Note that:

Exp (tXO)Y Exp(~tXO)
is analytic at s = T 1,

(s%-1)

- 43 -



Hence,

YA Exp(tX )(¥ )

_ 221 * gsz—l)—)‘ (22_1)—)\ sz+1\
T \z 2 2 z+57

2z st+z(s + 1)+s

L
<sz-1>*< T > )

Z s+z(sz+1) +s

Thus, we have proved:

Theorem 9.2 Suppose z//n, z//m satisfy:

Z(Wy) = in Y. Z(g,) = im Y
Then, the matrix element:

<y | (B @0y, > = E6A)
admits the following integral representation:

f <log (%),A) =< wm]YAExp(th) Y_}\ zj/n >

3 s2-1 zZ -A <sz+1>n Ly
B i 2 2 7+8

z s+z{s +1)+s
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where the integral is taken over the unit circle in the comples z-plane.

(Of course, since the integrand is analytic, it can be shifted in accordance

with Cauchy's theorem.) Note particularly that (sz—l))‘ f <1og (%) ,)\>

has no singularity in the ‘neighborhood of s = % 1,

This theorem sums up many special facts about the Legendre functions and
their asymptotic behavior as t-—c0. Another interesting observation: For

certain values of complex t, there will be trouble with singularities in the

integrand. This indicates the feature we pointed out earlier, Exp(tX,) will

not be strictly definable for complex t.
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X. LIE GROUP COHOMOLOGY
AND THE DEFORMATION OF REPRESENTATIONS

Many features of the argument of the last section are of general interest.
Since the argument implicitly involves Lie group cohomology, we will detour
to sketch what we need.

Let G be a group, and let ¢ be a representation by linear transformations
on a vector space V. One will find an exposition of the associated cohomology
groups and their algebraic interpretation in [14], Chapter 12. Since we will
only need cohomology of degrees one and two, and our notation differs from
those of Kurosh, we will sketch what we need. Work by van Est [4] indicates
the relation between Lie group and Lie algebra cohomology.

A O;cochain is an element of V. A one-cochain is a map w from GtoV,
a twé—cochain will be a map from G X G to V. These form vector spaces, that
we denote by c’ (), Cl(qb) and Cz(d)). A coboundary operator will send Cn(qb)
into c*1(4):

(@) For we C° (¢), i.e., weV,

dw(g) = ¢(g) (w) “for g€ G
(b) For w e Cl(qb)
dw(8),89)=W(g)+ ¢ (8)) (w(8y)) ~w(818y) for g1,8, € G
Let us show that d(dw) =0 for we CO (¢)
d(dw)(g,, 8) =dw(z)+ 6 (g)) (dwigy)) - dw(g,, )
= W+ o)W+ (8 (-0 + B(g(W) - (~w+ dlE )W) =0
Let Zl(cj)) be the kernel of d: Cl(cp)——> Cz(qb)

Then H(¢) = 22(¢)/dC (¢).
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If G is a Lie grouﬁ and we restrict ourselves to cochains that are differen-
tiable functions on G, then the connection with Lie algebra cohomology can be
made explicit. Let 9 be the Lie algebra of G, and let X € ,,(3 The represen-
tation ¢ of G induces a Lie aigebra representation by operators on V, that we
will denote by ?\, of G,

60) =5 ¢ (Exp(%)) /, _

We can‘ define mapping o Cr(¢)—> Cr(i)\), r =0,1,1, that commute the
d-operator.

c’ (¢) and c° (21) are both equal to V, hence identified.

Hwe Cl(¢), define o (w) as follows:

daw) ®) = g o(ExREX)) /o
Suppose that w e V

-w + $(G)(w), hence a(dw)X) = —(% <w +¢ (Exp(tX)) (w)> /i

il

dw(g)

¢X) (w) = dw X),
where dw is taken in the sense of Lie algebra cohomology. Then
odw =dow for we Co(cp)

Let us consider w € Cl((p)

a(w)X,Y) = ¢X) (d(w)(Y) d(w)(X)> - a(w)([X,Y])

«1)(X)w<E*<p(tY)> - (Y)w(Exp(tX)) -w(Exp(t (x,Y] ))/t

4
at
< —é@— 9(Exp(sx)) w (Exp(tY)) - ¢ (Exp(sT)) w(Exp(X)/g |, _ g

w (Expt (X, ¥]))/, _

Q)]Q)

4
at
= .aéi d w<Exp(sX),Exp(tY)> —w (Exp(tY)) + w(Exp(sX),Exp(tY)>—

(Exp(sY),Exp(tX)> + w<Exp(tX)> -w (EXP(SY)’EXP(‘:X)V s,t=0
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d
& o ol
We now prove that:

a_at_ 555 [w (Exp(sX>Exp<tY)) - w (Exp(sY)EXWX))} r,t=0

, . 10.0
4 w (Exp(t (X, ¥]))/,
' T dt =90
For the proof, let us suppose that G is a group of n X n matrices, and that
w can be extended to a function on all n X n matrices. (Using the techniques of

manifold theory, the proof can be extended to abstractly given Lie groups.) The

left-hand side of 10.1 is then:

—d% [w (x Exp(tY)) - w <Y Exp(tX))] /o

Consider the following curve in the space of n X n matrices:

x(t) =X Exp(tY)

y(t) = Y Exp(tX)

z(t) = Exp(t[X,Y])
Then,

x'(0) =XY; y'(0) = YX; 2'(0) =[X,Y] , i.e., x'(0) - y'(0) = z'(0)

This relation between the tangent vectors of the three curves leads to the re-

lation among their directional derivatives.

gt <X(t)> d <Y(t)> 4 CU<Z(t))/,c _ o = 0, which is just 10. 1.

10.1 enables us to see how to define a(w) if w e Cz(¢), namely:

2
)0, Y) = 55 w(ExPE0) Exp(Y)) - w(BxpE) Bxpx)/ L _ g

for X,Y€G.
PN

- 48 -



One sees from this formula that a(w)X,Y) = - a(w)(Y,X), i.e., a(w) is actually
a cochain in Cz(cp). Further, our method of defining oz(Cz(qb)) guarantees that:
a(dw) = da(w) for we CH()

Having shown the connection between Lie group and Lie algebra cohomology,
let us turn to the connection between the former idea and deformation of Lie
group representations. |

Suppose G is a Lie group g — p (g) is a representation of G by linear trans-
formations on a vector space H. Consider a deformation of p depending on a
real parameter A, i.e., for each A, g»p)\(g) is a representation of G by

linear transformations on H, reducing to the given one for A = 0.

d -1
Set w(g) =5 P, (@ P8 )y~ ¢
Then,

d -1 -1
o8185) = (B (€00, 62) p(85) p(81 /5 ¢
10.2

= w(g)) + p(g) w(gy p (gzl)

Let V be the vector space of linear transformations: H—H. Let ¢ be the fol-

lowing representation of G by linear transformations on V:

-1
o(e)(B) = p(g)Ap(g ) forg € G, A€V.
Regard w as an element of Cl(cp). Then, condition 10.2 means:

dw=20
Define: w X) = de qb}\ (X)/)\: 0 for X € G.

Regard w as an element of Cl(qb).
Then, it is readily verified that: o(w) =W,

i.e., the definition of w as a cohomological "first obstruction' associated with
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the deformation \ — p A of Lie group representations is compatible with the
previous definition (in {12], Part 2) of w as a "first destruction" associated
with the deformation A — p)\ of Lie algebra representations.

We now turn from this brief general review of material covered in detail
by Nijenhuis and Richardson to a more specific topic, namely, the formulation

in cohomological language of the argument used in Section 9.



XI. GROUP REPRESENTATIONS DEFORMATIONS ASSOCIATED WITH THE LIE
ALGEBRA REPRESENTATIONS THAT ARE LINEAR IN THE PARAMETER

Suppose G is a connected Lie group, G 1is its Lie algebra, and Py isa
one-parameter family of representations of G by linear transformations on a

vector space H. Let Af =‘.£o, and assume that Mp)\ is of the form:
DX = pX) + Aw(X)  for Xeg (11.1)

where (@ eCl( ¢). (V is the space of linear operators: H — H, and Q(X)(A) =
A K
P (X) - Ap(X) = [P(X), A] for Xe G, A €V). Now, we know the conditions that

,ye)\ given in this form be a representation, namely:

@) dw =0 ®) (W), w(V)] = 0  for X, YeG - (11.2)

4L
Our problem is to show that this special assumbtion about the Lie algebra

deformation implies a special form of the group deformation, ﬁamely:
Py(8) = Alg,X)P(g) (11.3)

where, for each g, A, A(g,)\) is a linear operator: H - H, and
A(e,_)\) = A(g,0) = 1 (the identity operator).
First, let us start off with a deformation p)\(g) of form 11.3 and deduce

the consequences.

0E = 55 P® PETAL, = o A N4

LX) a‘?“ p}\<Exp(tX)>/t:O = a%—A(EXp(tX),}\)p(EXp(tX)>/t=0 (11.4)

I

I

AKA) + P,



with
. .
A = A(Exp(tX),}\)/t:O . (11.5)

Hence,
AX,A) =Aw(X) for XeG,all A . (11.6)

Let us write down the condition that 11.3 define a representation for every

value of A:
P, (8185) = A(8189:A) P(8185) = P)(81) Pp (85)
= Ag, M) P(g)) Alg,y,M)P(8y) |
= A(g, NP (8)) A (g, M) P(8;1 )P (8,8,),
or
A (g 8y.A) = A(gl,x)p(g1>A<g2,A>p(g"f) : (1.7

Our experience with constructing "multipliers" for representations now

suggests a way to solve these equations: As an Ansatz, set:

AEN) = Exwle) (11.8)
where:
w 601(¢), i.e., w is a mappingof G — V = (operators on H)
w(g): geG} forms an abelian set of operators on H. (11.9)

Then 11.7 takes the form :

Bxp (Ao (ey5,)) = Ew(h @) p ) Bo(Molsy)o €]

Fxp(Awlg)) * PE) w(E,) p(6))-



This condition is implied by the following one:
wiggy) = wig) + o€ wEy) o (11.10)

with qu(gl)(A) = p(g)) Ap (gil), for each A€V, i.e., each linear
map A: H — H. 11.10 is just the condition that dw = 0, where w is interpreted
as an element of Cl(zp).

Then, 11.9 and 11.10 are sufficient conditions that 11.3 and 11. 7 define a
deformation A — p)\ of representations of G.

Suppose further that:

a(w) = dB, for BeV, i.e., BeCO(¢).

Then, we know that this is so if and only if

W = dB, where B is interpreted as an element of CO(¢) .

Then,

1

w(g) = B - ¢(g)(B)

B - p(g) BA(g ) (11.11)

Summing up, we have proved:

Theorem 11.1

Suppose P is a representation of the Lie group G by linear transformations
on H. Let B be a linear transformation: H — H, and define w (g), for
g6G, by 11.11. Suppose that 11.9 is satisfied. Then the following formula

defines a deformation A —p) of p.

pre) = E(A(-B+ p(@) By ) (1.12)



A

The corresponding deformation p”* of the Lie algebra representation is

given by:

PX) = P(X) + Aw(X) ,
with

w (X)

M

dB(X) =[p(x), B] (11.13)

This is the abstract version of the construction done in Section 10 in order to
calculate the asymptotic behavior of the Legendre function P’QJ (cosht) as t —oeo0.

We will now turn to the abstract version of the asymptotic formula itself.
XII. AN ABSTRACT VERSION OF THE ASYMPTOTIC FORMULA

Suppose H is a Hilbert space, with p)\ a one-parameter family of repre-

sentations of G by operators on H of form 11.12.

For fixed elements Xe€G, V¥, I,b'é H, consider the matrix element:

£(t.A) =< ¥'|p, Exp(tX) () >

Our experience with the calculation in Section 10 suggests simplifying 11.2

with a further Ansatz. Suppose that:

(a) The operators | B, p(g) Bp(g—l) : geG! form an abelian set of

operators. (12. 1)

(b) There is an operator C with:

Under the condition,

py(&) = C P (pg) (12.2)

Then for Y eH, Xe€QG,
(B (i) ) = M (Ep (130) (Mo -
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Suppose that another parameter s can be introduced as a function of t,

such that:
@) As t -0, s —1
(b) There is a reél ~valued function a(s, ) ) such that
p(Exp(t(s)’X»(CAlll)/a (s,A\) is non-singularat s = 1 .
Then |

o\Ex (1)) () 2 (s (8.1

takes a definite, computable value as t — oo, so that this formula determines
the asymptotic behavior, in the classical sense, of matrix elements as t — o0,
with A held fixed.

Now, let us examine the asymptotic behavior of A — o0 , with t held fixed.

We know that :
AX) = P(X) + Aw(X)

Hence, P (X/\) is non-singular in the neighborhood of A = o .  Thus, we

can expect that
Exp<tp)\(X)> = Py Exp (t X/A) = Py EXp(t/AX)
will behave decently as A — o0

But,

A t

P}\Exp<t7\X> =c™p Exp<xx)c

= [c Ap (IEXp( tX)’) C }‘] VA

Y

A

We then face the problem of investigating this formula as )\ — c0. Further
work on these lines is dependent on doing more explicit calculations in order to
obtain a reasonable idea of what to expect in general, hence we will defer it to

later.
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Another comment about 12, 2: If the operators C)‘ and C_)‘ are genuine
operators on the Hilbert space and 12.2 held for all gin G, 12.2 would say that
p)\ was equivalent to p, and, in particular, the value of the Casimir operators
of gwould be the same for both representations. For the case of G = SL(2,R),
for example, this would be nonsense. There are two remarks to be made about
this: First, the operators cA and/or C°)‘ are highly singular. <For example,
for the case G =SL(2,R), H = Hilbert space of functions y(g), 0 < 8 < 2,

C)‘ is the operator of multiplication by
(sin 9))\>
Second, the C may not be valid for the whole group G. (For example, 'for the

case G = SL(2,R), it is readily verified that the C changes if X is replaced by

Y). The general idea is that the relevant cohomology vanishes when restricted

to a suitable subgroup of G. This is not surprisiné: We have seen many ex-

amples of this method of "computing" cohomology groups, i.e., choose a suit-

able subalgebra or subgroup for which the relevant cohomology groups vanish.
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