
a,A&m-2~1 
November 1966 

SUPERCONVERGENT DISPERSION RELATIONS AND 

ELECTROMAGNETIC MASS DIFFEP,ENCES* 

Haim Harari+ 

Stanford Linear Accelerator Center, Stanford University, Stanford, California 

ABSTRACT 

Ordinary perturbation theory and the convergence properties of 

t-channel isospin amplitudes lead to the following,conclusions: 

(a) A I = 2 electromagnetic mass differences should be correctly ob- 

tained by summing the self energy contributions of a few low lying 

states;, (b) n I = 1 mass differences cannot be obtained in this way, 

and a subtraction term is always necessary; (c) the subtraction term 

has the correct sign and order of magnitude for explaining the proton- 

neutron mass difference. 
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I 

The problem of computing the electromagnetic mass differences between 

particles in a given isomultiplet has always been one of the greatest 

puzzles of elementary particle physics. It is well known that the simple, 

naive calculations which include only the contributions of a few low- 

lying states to the self energy diagram lead in most cases to totally 

wrong results (including the notorious wrong signs for the proton-neutron 

and K+- K" mass differences). On the other hand, the same simple approach 

gives the correct sign and magnitude in a few other cases (such as the 
f 0 fi - ?r difference). In this paper we propose simple, reasonable assump- 

tions on the energy dependence of t-channel isospin amplitudes for forward 

Compton scattering and, using these assumptions, we reach the following 

conclusions: 

(a) All A I = 2 mass differences should be correctly obtained when 

we approximate the self energy diagram by the contributions of a few low 

lying states. 

(b) There is no reason to expect that the same simple approximation 

will give the correct order of magnitude or even the correct sign for the 

n I = 1 mass differences. 

(c) A consistent calculation of the a I = 1 terms must include an 

additional r'subtractionn term. We show that this term has the correct 

sign and, roughly, the correct order of magnitude required by the experi- 

mental masses. 

We also demonstrate that the statements (a)-(c) are correct for all 

six electromagnetic.hadron mass differences which are experimentally 

known and we propose further experimental tests of our assumptions. 
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In perturbation theory, the electromagnetic self energy of a hadron 

is given by: 0) 
+m 

1 AM=- J T,,(s*,V) 8’ 
2 d4q (1) an -m q2- ie 

where eCLeVT ,,k12J > V is the forward amplitude for Compton scattering of a 
2 virtual photon with mass q , energy q" = V and polarization E' from a 

hadron with momentum p and mass M (MV = pq). We write T 
cI'/ 

as: 

Tpv(q2P) = t,(s2>wc12~ CLV -9clv ql+ 

2 
+ t2(q2dv2gpv + e P P f ; $9, + p,qJl M2 pv 

(2) 

Cottingham(1) has shown that by rotating the integration contour in (1) 

from the real to the imaginary axis in the complex V-plain, one can ex- 

press A M in terms of scattering amplitudes for spacelike photons,allowing 

US, in principle, to use experimental electron scattering data in order to 

compute the integral. Substituting V -+iV and integrating over the angular 

variables in (1) we find: 

AM=-& J CZ Jq dV~~[3q2tl(q2,iV)-(q2+2V2)t2(q2,iV)] ,(3) 
0 q2 -9 

We can now write, for tl and t2, fixed q2 dispersion relations in V and 

compute the t i 's in terms of their absorptive parts. The main obstacle at 

this point is, of course, the question of possible subtractions in the 

dispersion relations, since only in the case of no-subtractions we can 

hope that the contribution of the first few low-lying states will dominate 

the expressions for t 1, t2 and hence for A M. The convergence properties 

-3- 



of the dispersion integrals are determined by the asymptotic behaviour of 

the absorptive parts of the amplitudes. 

To lowest order in Q, the electromagnetic mass differences transform 

according to A I = 1 or A I = 2. For any given isomultiplet we can sepa- 

rate A M(')and A ,(2), and using Eq. (3) we can express each one of them 

in terms of Compton scattering amplitudes with t-channel isospins I = 1 

and I = 2, respectively. We now face the following question: What is the 

asymptotic energy dependence of the forward non-spin-flip I = 1 and I = 2 

t-channel amplitudes for Compton scattering of photons with mass q2? At 

this point we propose to use the most successful and least controversial 

prediction of Regge pole theory. (2) We assume that a forward non-spin-flip 

amplitude with a given set of t-channel quantum numbers, will be propro- 

tional at high energies to V a(o) , where a(O) is the t = 0 intercept of the 

leading Regge trajectory with the appropriate quantum numbers. (3) Fol- 

lowing de-Alfaro, Fubini, Furlan and Rossetti PO we further assume that, 

in view of the absence of low lying I = 2 mesons, all I = 2 trajectories 

have QI=,(0) < 0. 

An unsubtracted dispersion relation for ti (I)(q2,V) (i=1,2; 1=1,2) 

would have the form: 

2 
tiI)(q2,v) = .4Mq2&) 4 i (9) 

9 - 4M2V2 
-l-- ' 2 

Im ti1)(q2,V')V'dV' 

v' 
2 

-VP 
(4) 

where ti1)(q2,V) = t(I)(qF-V) and Vt is the inelastic threshold. i 

a &s2), - G;(q2& 
$qq2) = - 

II q2+ 4M2 

f3q2) = E q2Qq2), +- 4M2C;(q2)I _ 
x 

q2(q2 + 42) 
(6) 
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G;,Mh2) is the appropriate linear combination of the squared form factors 

(e.g. for the nucleon: Gi(q2)I-1 = Gi(q2)p - G:(s~)~). 

Eq. (2) together with unitarity gives: 

I. V2JI) 2 2 (q ,V) < const. V I - 
V -+m 

(7) 

will therefore satisfy Eq. (4) for I = 1,2. The amplitude ti2) 

satisfies: 

1 q) (q2,v)\ a vaI=2(oJ (8) 
v -+m 

If aI=, < 0, ti2) obeys the unsubtracted dispersion relation (4). It 

is then perfectly reasonable to assume that the integral over the absorp- 

tive part is dominated by a few low-lying states and that A M (2) can be 

determined by this approximation. 

For I = 1, the energy dependence of tl is determined by the intercept 

of the leading trajectory with quantum numbers I = 1, C! = 1, G = -1, 

P = (-l)'J. This is the trajectory of the A2 meson which has (5) oIA (o)-0.4 > 0. 
2 

We thel,ei'ore predict: 

(t!'tq2,v)l 0: voa4 
v '0) 

(9) 

The integrand in (4) will fall off like V 
-0.6 and the dispersion integral 

will not converge. We must intrcduce a subtraction and we find (we subtract 

at V = 0): 

16M3v2f11)(q2) + 2v2 Co Im ti1)(q2,V')dV' 
-I 

q2(q4- 4M2V2) n vt 
(1-Oj 

2 v'(v' - v2) 

We can now safely assume that the contribution of the low mass states 

dominates the integral in (10). However, we have an additional, unknown 
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term t$')(q2,0) which essentially results from the presence of high energy 

contributions. and which must be included in our final expression for A PI 0) . 

We conclude that for all A I = 1 mass differences there is absolutely no 

reason for the simple approximation of Ira few low-mass states" to give the 

correct magnitude or sign.. What one really computes in this approximation 

is a combination of A M(l) and an unknown term, and it is always possible 

that this expression will have the opposite sig-n to that of A M (I). The 

correct expression for A M Cl) is: 

AJ&~) =AMyb + A$ + AP$ +AM1 

m 

sub AM1 =-i q2ti1)(q2,0)dq2 (12) 
0 

2 l/2 

Ag=g (q2h2( M - q[(l -t- %$ - & 03) 
0 4M 

04) 

A M1 is the inelastic contribution obtained by substituting the integrals 

of Eq. (4) (for ti'))and Eq. (10) (for ti')) in (3). 

If we now consider the present status of the calculations of A M for 

mesons and baryons we find the following picture: 

1. There are two experimentally known A I = 2 mass differences: 

m(7t+) - m(n’)= 4.61 MeV; m(Z') + m(X-) - 2m(C") = 1.76 + 0.23 MeV. It 

has been known for a long time (6) (7) that the simplest calculation gives 

the correct TI+ - R- mass difference, and recent calculation5(7)(a) for 

A M(')(C) indicate that, again, the correct sign and magnitude are obtained. 

The actual numbers depend on the details of the assumed q2 dependence of 



the form factors and on the number of intermediate states included in the 

calculation. Typical numbers are: (7) A Mc2)(,() N (5 t 1) MeV; 

A M(2)(2) - (1.5 +_ 0.5) MeV. 

2. There are four known A I = 1 mass differences: m(n) - M(p) = 1.3; 

m(Z-) - m(C+) = 7.9 + 0.1; m(Z-) - m(") = 6.5 Itr 1.0; m(K") - m(K+) = 3.90+0.25 

(in MeV). In all these cases we find indeed that the simple approxima- 

tion fails comLtely(7), and at least for N and K even the sign is wrong. 

This was recognized a few years ago by Coleman and Glashow (9) who pro- 
_ 

posed that an arbitrary A I = 1 "tadpolen term will.be added to all these 

calculations. We interpret this "tadpole" contribution as our subtrac- 

tion term (Eq. (12)) and we believe that our approach explains why "tadpoles" 

are always needed for A I = 1 and are not required for A I = 2. (10) 

What can we say about the sign and magnitude of the subtraction term 

(12)? We multiply Eq. (10) by q2 and take the limit q*-+O. For V # 0, 

5 
(1) (q2 ,V) does not have a pole (11) 2 atq =O. We therefore find (for the 

nucleon case(12)): 
0 

lim q2t(') 2 
A 

1 (q ,O) = 4M lim fi1)(q2) = $ (cl 2- un2- 1) 
r) P 05) 

q=+o q=+o 

Equation (12) can now be rewritten as: 

A &$” = - $! (pp2- pn2- 1) j ddd-r 06) 
0 

where T = 
4M2 

and g(-r) is a dimensionless unknown function of T satis- 

fying g(O-) = 1. Although we do not know the explicit form of g(T), we 

can safely assume that the integrand in (16) converges very rapidly 
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(possibly as fast as q 
-6 , since t!l)(q*,O) must be proportional to the 

product of two ordinary form factors, each presumably falling like q 
-4 ). 

The sign of A Ml sub will then be determined by Eq. (15) and will be nega- 

tive for m(p) - m(n)! Neglecting A MI in (11) and using the experimental 
m 

nucleon form factors and mass difference we find that I g(7)d-c is re- 

quired in this case to be of the order of i . 
0 

In order to see whether 

this is reasonable we parametrize g(T) = eBa' and find a - 4, leading to: 

This certainly has a reasonable slope 

cal analysis for the various terms in 

M2 ae (17) 

2 atq =O. A more detailed numeri- 

(11) will be given elsewhere. 

There are two 'families" of additional experimental tests for our 

general approach. Measuring some more A I = 2 differences such as p+- o-, 
*-I- *- *++ 

-2Y*13,N +N "3 
yl -I- yl 

- 2N*+, is one possible set of tests. How- 

ever, even the simplest calculation of these differences requires some 

information on the magnetic moments of these particles and therefore 

suffers from very large ambiguities. A second test which will be much 

more crucial and will be performed in the next few years at SLAC is to 

measure the total yp and yn cross sections. (3) We predict that at high 

energies: 

I Qd - o&n) a v I 
-0.6 (W 

In conclusion let us summarize our results: We have explained both 

the success (for A I = 2) and the failure (for A I = 1) of the simple 

approximation of including only a few low-lying states in the expression 
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for the electromagnetic self energies of hadrons. We have presented an 

explicit formula for A M (I = 1) which includes a "natural" subtraction 

term, and we have demonstrated that this term has the correct sign and, 

roughly, the correct order of magnitude. 

We acknowledge numerous helpful discussions with S. M. Berman, 

S. D. Drell, A. C. Finn and J. D. Sullivan. 
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10. We can extend our superconvergence assumptions to SU(3) and assume 

that since there are no known 10 and 27 meson multiplets, they all - - 

have a!(O) < 0. This immediately gives the octet transformation 

properties for the tadpoles. 

11. Im tl(q2,V) has no q* = 0 pole since q21m tl(q2,V) is a longitudinal 

cross-section and.it vanishes at q* = 0. We also notice that 

lim q2Re tl(q2,v) = 0 since the limit is independent of V and 
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should vanish as V -+w. 

12. We do not know the magnetic moments of C and E. However, if we use 

their SU(3) values, we find that (15) has the right sign for these 

cases as well. 


