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AESTRACT 

Experimental information now exists on the behavior of electro- 

magnetic form factors F(q) at very high momentum transfer q. This has led 

to speculations on the asymptotic behavior of the form factors as q + 00. 

In this paper we consider non-relativistic Schrddinger models of composite 

systems and correlate the asymptotic behavior of F(q) with the nature 

of the forces in the Limit of zero interpa,rticle separation. Conditions 

for fall-off more rapid than powers of t are analyzed, and comparisons 

with proton and deuteron data are presented. 



I. INTRODUCTION 

The extension of experimental information on the electromagnetic 

form factors1 F(q) to very large values of q and to very small values 

of F(q) has spurred increasing interest in the asymptotic behavior of 

electromagnetic form factors for large momentum transfers q 3 00. 

Analyses of the observations for both electron-proton and electron- 

deuteron elastic scattering show that the F(q) continue to decrease 

very rapidly with increasing q and that this rate of decrease is sufficiently 

rapid to defy attempts at simple models. In the ca,se of the proton2 

the fall-off is at least as fa.st as N -$; to reproduce this rate theoretica,lly 
cl 

in terms of the usual narrow resonance model requires a ca.refully a.rranged 

cancella,tion between the contributions of two or more states in the spectral 

representation of F(q). In the case of the deuteron for which F(q) 

drops to less than 10 -2 F(0) for q N 1 BeV/c an ela.borate parametrization 

of the forces and of the deuteron wave function is required 3 as the inter- 

nucleon separation r 3 0. 

Wu and Yang' have conjectured on the basis of general statistical 

arguments that the nucleon form factors approach asymptotically 

F(q) N eaaq 
q-+m 

with a. = (0.6 GeV/c)-' 
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This behavior is correlated with the Orear fit to elastic high energy 

nucleon-nucleon scattering at large momentum transfers 

-4a.q 
* se 1 

where ql G q sin 8 is the transverse momentum transfer. Wu and Yang go 

further to suggest that Eq. (2) is a las for a.11 strong interaction 

processes. This suggestion has stimulated further more elaborate studies 

based on the a.ssumption of scale, or dilation, inva.riance of high energy 

6 processes, as well as on more detailed statistical analyses of multiple 

production processes7 which also predict a form factor behavior as in 

Eq- (1). 

The exponential form of Eq. (1) h as one a+pea.ling theoretical 

feature: within a. polynomial factor, it is the maxima.1 rate of decrease 

consistant with polynomial boundedness of F(t) in the complex t = q * - q* 
0 - 

pla.ne.8 Without polynomial. boundedness it is impossible to write a 

dispersion relation for F(t) with a finite number of subtraction constants 

(a circumstance too unattractive to entertain seriously). 

Figs. 1 and 2 show the latest measurements of proton and 

deuteron form factors. For the proton a universal form fa.ctor is assumed 

for t large and negative with GM(t) = pp GE(t); IJ-~ 2 2.179. In relating the 

deuteron cross section to a form factor the isoscalar nucleon charge form 

factor is divided out. 

Thus far only very wea.k bounds on asymptotic form factor behavior 

have been constructed within the framework of rela,tivistic local quantum 



-3- 

field theory.' With the aim of gaining some insight into the physical 

significance of the asymptotic behavior of F(q) we shall work within 

the framework of non-relativistic potential theory. The recent studies 

10 
of Serber, Bertocchi, Fubini and Furlan, 

11 and Tiktopolous12 have 

related the decrease of the nucleon-nucleon scattering amplitude at large 

momentum transfers to the nature of the inter-nucleon force as r 3 0. 

Since a.11 partial waves contribute to the scattering amplitude which is 

a function of energy as well as of momentum transfer this is a much more 

complex problem than is the study of F(q) which involves the momentum 

transfer only. 

Our primary interest in this paper is to correlate the asymptotic 

behavior of the electromagnetic form factor of a. compound system with the 

nature of the forces in 

We shall group the form 

their rate of decrease: 

the limit of zero inter-particle sepa,rations. 

factors into three broad categories according to 

(a.1 with apower la,w: F(q) N L ; p > 0 
qp 

(-d exponentially: F(q) - ewaq P(q) a>0 

(4 or with a. fractional exponential: 

F(q) N e 
-aqP/P+l 

p(q) aYP > 0 

where P(q) denotes a polynomial in l/q and/ or a,n oscillatory factor in q. 

As mentioned above the data as well as theoretical reasons permit 

us to ignore the possibility of a more rapid decrease than the exponential 

one. In order to emphasize that the differencesbetween power, exponential, 

(3) 
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and fractional exponential decreases in F(q) are not just a purely mathe- 

matical nicety butareindeed of experimenta. releva,nce we show in Fig. 3 

the three alternatives adjusted to go through two fixed points. 

Section II is devoted to the analysis of the asymptotic form 

factor beha,vior for a non-relativistic spinless "deuteron"--i.e. a 

spherically symmetric bound state of two spinless particles of equal 

mass, one electrically neutral and the other charged, interacting via a 

central static potential in the SchrEdinger equation. 

In Section III we generalize the discussion of Section II to a 

bound system of three particles --the motivation for this being a quark 

model for the proton structure as well as the existence of He 3 3 , H and 

of hea.vier nuclear targets. 

Finally in Section IV we discuss a new way of presenting the form 

factor data. in order to make more readily apparent the 'approach to 

a,symptotic beha.vior." 
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11. NON-RELATIVISTIC POTENTIAL THEORY FOR TWO-PARTICLES 

In this section we discuss the deuteron form fa,ctor at large 

momentum transfer in a potential theory model. For simplicity we assume 

that the deuteron is an S-state formed of two scalar nucleons obeying a 

Schrb'dinger equation and bound by a static, central potential V(r). The 

charge form fa.ctor is defined as the Fourier transform of the charge 

density; i.e. 

F(q) = Jd3r ei'*' I$(G)12 

co w (41 
= 

/ 
0 

r dr eiqr q2(r) = 2 /‘ r sin qr jJ2(r) e(r) dr 
-00 

where 

i 

1 r>O 
0(r) = 

0 r-co 
(5) 

a.nd q*(r) = q(r) since it represents a stationary S state solution with 

no flow of current. 

The beha,vior of the form factor at large momentum transfer q 3 m 

is determined by the behavior of the wave function a,t its singularities. 

We assume that the potential is infinitely differentiable for real 

positive r except possibly at the origin. In this ca.se the asymptotic 

behavior of the form factor is determined by the nature of a.ny possible 

singularities in the wa.ve function at r = 0. Since q(r) must satisfy 

the boundary condition of square integrability which rules out infinities 

as strong as or stronger than l/r at r = 0, the only types of singularities 

that are possible at the origin are essential singularities of the type 
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e -A/ra with A and (3 > 0 or discontinuities of the form r' with B > -1. 

We want to correlate the singularities of q(r) for r + 0 with the nature 

of the singularities of the potential at the origin and in this way relate 

the asymptotic behavior of F(q) as q + w with the inter-nucleon forces. 

First in order-to illustrate the influence 

of q(r) on the form factor we derive several general 

form of Eqs, (4) and (5): 
r) 

of the singularities 

results from the 

A. If the product of factors r q=(r) exists as an ordinary function 

for r 2 0 and is 13 well behaved at infinity, then a,symptotically for 

large q 

qq2) c* d$ - g”(o) + g (lv+o) 

s3 d 

+ . . . 
(6) 

where g(r) = r $2(r). F(q) will decrease faster than L , for any 
qp 

p a.s q 3 00 if and only if a.11 the even derivatives of g(r) vanish at r = 0. 

One example of such behavior is a. solution q(r) which has an 

essential singularity at the origin so that q(r) a,nd a.11 its derivatives 

vanish at r = 0. Another example is a. solution such that q(r) can be 

analytica,lly continued in a neighborhood of r = 0 with definite parity, 

i.e, $(-r) = t-9(-l-r) . We can then drop the Q(r) in Eq. (5) and note that 

the even derivatives of rjr2(r) vanish for r = 0. 

B. If we make the stronger assumption that q(r) can be continued 

as a function of the complex variable r into the complex r plane with 

definite parity q(r) = 5+(-r) and with a strip of a,nalyticity extending 

along the real r axis from -w to -t- ~0 of minimumwidth - a < Im r < -1-a - - 

as illustrated in Fig. 4,then the form factor falls off at least as fast as eSaq. 
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This theorem is readily verified with the aid of Cauchy's theorem. We 

can once again drop the 0 function since by assumption q2 
0 

r) = q=(, -4 
and write 

w 

F(q) = $ Im ~ drei" r q2(r) . 
J 
--w 

Displacing the contour as shown in Fig. 5 we have 

a. 

F(a2 dy emqy C-R + iy) $(-R + iy) I I 
2 

(x + ia) 

-R 
0 

+ ,iqR dy e-" (R + iy) 

a 

$(x + ia) 

$(R + iy> 

(8) 

Since q(r) is assumed to represent a bound state wave function the first 

and third terms vanish as R + w. By the assumed analyticity in the 

strip, $(x + ia.) is analytic for all x, and the integral in the second 

term goes to zero as q -3 ~0 by the Riemann-Lebesgue lemma. This 

establishes our claim. 

We now turn to the physically interesting problem of relating 

the behavior of $(r) as r -+ 0 to the properties of the potential V(r) as 

r-3 0. Almost any V(r) will lead to form factors with a power fall off 

a.s q 3 00. For example the Hulthe'n potential 14 

(7) 

2M V(r) = - Y 1 
1 _ essr 
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-C%- 
leads to a bound solution e i e 

-pr 
1 Y where a = 2 6 (- + S) and 

(3 =; (X - 6) and to a form factor 

F(q) a $ 
[ 

9 arc tan - i- q arc tan 3 - 2 arc tan q 1 1 
XI ma Ta.sq+ M. 

4 

The fa.llure to meet conditions A or B above for faster than a power fall 

off may be traced in q(r), or V(r), to this fact: if we continue q(r) 

into the complex plane with a definite parity we must write 

and thus have a singularity at the origin. Alternatively we may make the 

continuation simply by writing 

$2(r) = 1 

" ( 

.-ar + e-2gr _ 2e-(a+g)r 
> 

and since we do not have a. definite parity, i.e., q2(r) f + q2(-r), 

the step function Q(r) in Eq. (5) introduces singula,rities into F(q) 

and prevents us from invoking the Riemann-Lebesgue lemma. 

From the form of the radial ichrodinger equation (ti = 1; M = 

nucleon mass; EB > 0 is the positive binding energy and u(r) = r q(r) 

is the radial solution) 

1 d2u(r) 

' dr2 
= [EB t- V(r)] u(r) (9) 

we see thart if q(r) is to satisfy condition B above for exponential 
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form factor decrease, the potential must have the analytic properties 

of the right hand side of the equation: 

V(r) = & d2u(r) _ E 
dr2 B . 

V(r) must thus be of even parity when analytically continued for complex 

r, and must be analytic in the complex r plane -along the real axis 

within a. strip of minimum width - a < I m - r<+a as in Fig. 4 for q(r). 

(The potential V(r) = 3 can also lead to exponential fall-off for certain 
r 

discrete values of Vo.) 

Although such a potential would lead to the behavior conjectured 

by Wu and Yang it is at variance with our usual physical notions. When 

working within the framework of potential models a more singular 

repulsive core behavior for the potential as r + 0 is indicated by 

experimental comparisons. We turn then to potentials increasing at the 

origin as a power 

V(r) = --J$ .(>) 
a+ P) 

; 
r-+OMr 

p>O; ro>O . 
0 

In this case the potential dominates the behavior of the Schrodinger 

equation at the origin and we may write for the radial equation 

(10) 

(11) 

d2u(r) 

dr2 
y MV(r) u(r) ; r 3 0 . 
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The square integrable solution to this equation near the origin is 

L 

u(r) N C e 
- dr/ro)P 

and the form fa.ctor becomes (asymptotically for q 3 w) 

F(q) - 
q+ Co 

$ e . 

0 

We can evaluate the asymptotic value of this integral as q -+ 00 by the 

method of steepest descents. Let 

r = 

1 
p 1+-P 

( > 

2r0 

9 S . 

Then we have 

F(q) = % lCI[" Im f: exp [[2(qro)p)lip (is _ _L)] 

0 -Psp 

(12) 

(13) 

(14) 

where s o is the saddle point through which we detour the contour along a 



-11- 

path of constant phase. so satisfies 

i = -1 
sP+l l 

0 

In genera.1 Eq. (15) h as more than 1 root, possibly infinitely 

many. We choose the root such that the following rules are satisfied: 

i) The contour will be deformed into the first quadrant so 

that the integrand remains bounded at ~0 for real, positive q. 

ii) In the case that p is not integral, we want the root to be 

on the sheet corresponding to l/(l)l+' = 1 so that we may deform our 

exponent continuously from the real axis to the saddle point without 

passing through cuts. 

Thus we have 

S = e&h 
0 . 

With this choice the remaining integral is finite and the 

asymptotic behavior of F(q) is 

F(q) Y 
I c”l 

4 1 + 2-&g 
Im em I’Oq 

I 

'") 
1-i-P P+l 

P 

N I C”l 

l+q-i+g 
exp 

[ 
-F sin($ kp)(2(qro)P +G ) 1 q 

* [ 

x P - + F sin(g 2) (2(roq)p)k] x s=n &1+p 
. _ 

-t Y 2, 1 

05) 

(16) 

07) 
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For the special case p = 1 corresponding to V g k we have 
r 

1 &‘I 
Nd = ‘7 e 

-26 
sin 

q [ 
; + 2(qo’o) l/2 1 

which agrees with the exact evaluation. 15 These solutions are examples 

of case A discussed earlier wherein solutions of the type in Eq. (12) 

with essentia.1 singularities at the origin such that q(O) and all its 

derivatives vanish lead to faster than a power fall-off of the form 

factor. 

These fractional exponential fall-offs are of especial interest 

since the strength of the singularity in V(r) at the origin determines 

the fractional power of q in the exponent of F(q). 

Nayvely one might expect to be able to derive restrictions 

on the parameter p by continuing our result analytically into the region 

of timelike and assuming polynomial boundedness of the form factor 

for deuteron pair production; however, since our result is only an 

a.symptotic form, its continuation would not have to be bounded even if 

the true result were. 

The form factor in Eq. (17) has three unknown parameters 

appearing in it: the magnitude of the normalization constant C", the 

"range" of the repulsive potentia.1 r 
0’ 

and the power of the singularity p 

as defined by Eq. (11). We have thus far suppressed the appearance of 

a fourth parameter by insisting on the form of Eq. (12) for the solution 

asr-+ 0. In fact u(r) in Eq. (12) can be multiplied by an arbitrary 

power 16 
rn to read 

yn)(d = Ce 

(18) 

(19) 
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which also satisfies Eqs. (10) and (11) for p > 0 as r + 0. The added 

polynomial r 
2n 

thereby introduced 

by its value at the saddle point. 

F,(q) = i”nl 
l+zgT) 

exp - 

q 

into Eqs. (13) and (14) can be replaced 

The form factor is found to be 

+ sin($ &j(2(qI;-is:'i] x (20) 

1 
,.l 

X sin $ +p + 
[ 

nrr 
l+p+ 

p+l sin 
P ( 

fl 2 + P' 
---)( 2!rodp)L+ ' ] 2 l-tp . 

In the asymptotic region this additional polynomial factor should not 

conceal the dominant qualitative feature of a fractional exponential decay 

modulated by the sin factor. 

Practical implications of these results will be explored in 

more detail in Section IV. 
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III. THE THREE BODY CASE 

We now consider the asymptotic behavior of the electromagnetic 

form factor of three point particles, only one of which is charged, 

under the assumption that the forces are two body forces of the type 

considered in the previous section. We also assume scalar particles 

and use non-relativistic quantum mechanics as-before. For simplicity 

we consider the equal mass case, although different masses give essentially 

the same result. 

The three body SchrEdinger equation is 

where r 1, r2, a.nd r3 represent the position vectors of particles 1, 2, 

and 3, respectively. Index (1) refers to the charged particle. Defining 

and eliminating the center of mass coordinate R, we rewrite Eq. (21) 

as 

We shall not solve Eq. (22). Rather in order to search for any 

differences in the form factor behavior between the two and three body 

cases we shall confine our attention to two body potentials that increase 

as l/d4 as the separation between each pair of particles d + 0 . 

(21) 
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Furthermore since this case is not exactly soluble, we assume that the 

asymptotic beha.vior of the wave function is of the form: 

1 1 1 

+ = e 
- a2r+ Is - r[ + Is + rI ( N N 1 N N fkF,,d 

where f(r,s) is some less singular function. This corresponds to a 

two body potential V K 5 plus three-body terms of the form 

in addition to less singular terms. The three-body terms are as singular 

as the two-body terms only in the limit r = s = 0; therefore there is 

at least some justification for assuming that this sort of wave function 

has about the right form to solve the most singular part of the problem. 

In any case, we shall attempt to find the corresponding asymptotic 

behavior of the form factor in order to obtain some insight into the 

actual behavior in the three-body case. 

Since we have a bound state we may assume that for large 

separations the function f takes the form 

E e -20(;,,5:) 
. 

We approximate f by this form everywhere. We must evaluate the following 

integral for the form factor 

2 
i-qs 

F = d3s e - 3 d3r e- 2a 

in the limit q + w. 

(23) 

(24) 

(25) 
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We can immediately perform the integrals over three of the 

angles. This gives 

F(q) = - Re $ & (g)2(2n)2 { ds fdrr' [dz exp [iqgs 

0 0 

1 

I J 

1 
-2a G+ + 1 

r2 - 2szr + s2 r2 
2 - 

I 
dr, z, 4 

+ 2szr + s 

where T(r,z,s) = 2p'p(;,s), z = z 'f . 

We can now use theorem A of Section II to show that in this 

case again the repulsive core potential gives rise to a. form factor 

which decreases more rapidly than any power of q as q -+ w, TO do this 

we write 

co 
F(q) - ; s 

0 

ds sin g qs[ /IJdz fdrr's 

-2a 1/2r - ( 1 1 - - - Tjb7v) 
Xe ( r + 2srz + s 

2 J' 
r - 2srz + s 4 I 

and observe that the function in brackets (corresponding to g in the 

theorem) is an odd function of s and that all of its derivatives exist 

at s = 0, since 

cc 

s 
dr 2 .-5a/r e-8v- 

rp 
0 

ex ists for all p. Thus for all n, the g (4 

so that the theorem indeed applies. 

0) exist, and g (2"+o) = 0 

(26) 

(27) 
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Having assured ourselves that we have faster-than-power fall-off, 

we now turn to the problem of computing the actual asymptotic behavior. 

None of the three integrals in F(q) can be performed explicitly. 

We dismiss the z integration by noting that it is over a finite integral 

(-1 <_ z ( +l) and that integrand is positive definite and smoothly 

varying in this interval. Hence, in the interest of simplifying the 

algebra and with no further justification, we. set the z integrand equal 

to its maximum (i.e., z = 0) and write 

co co 

F(q) a L d Re 
9 dq f 

(jrr2 .-a/r 
s ds e 

. 

0 0 
(28) 

Here we have made use of the absolute convergence insured by 

7 to exchange orders of integration. 

The s integration can now be performed by the saddle point 

method yielding the asymptotically leading term for q + co. First we 

scale the coordinates: let k = i aq then 

22-z 
J- 

4as 4ar s+ s 
;?I 

\i~;; r-+ 
E- 

so that 

Do 

F(q) a - f & % Re 
s 

drr2e- k/4r , (29) 
k 0 0 

For fixed r, the s integral is in the standard form for 

evaluation by steepest descents as done in the last section in Eqs. (l&)-(17) . 

However, the subsequent r integration extends over the entire range 
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05~ <my and it is not apparent from the form of Eq. (29) that the 

variable r does not itself grow N Lf- k or larger and so spoil the asymptotic 

approximation. One way to verify that this region of r >fi does not 

affect the leading term in the asymptotic series for F(q) given by the 

method of steepest descent is as follows: 

We can write the s integral as 

co 
Re 

s 
e ds 

0 

= 1 e-Gr 

1s _ J,2 +12irs] - 4aqb gryry ‘) 

2 ds (30) 
-03 

where we have used the fact that the exponent has a strip of analyticity 

- ir <_ Ims < ir to translate the contour as in theorem B of Section II. - 

The Riemann-Lebesgue lemma implies that the integral in Eq. (30) 

vanishes as k approaches infinity. For r > fi the exponential factor - 
-k outside the integral is less than e . Hence the region r 2 k can be 

ignored in comparison with the other region to which we now turn. 

The saddle point of the exponent of the s integral in Eq. (29) 

occurs at s where 
0 

is 0 ( 
2 

= r i-s . 

There are three roots of this equation consistent with the 

P branch s = s for s real and positive. They are: 

(31) 

s (1) - 
0 

- -i l(A + B)i$ (32) 
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where the positive square root is taken; 

(2) = -i I 1 
3 

S 
0 

- $ (A + B) + i $(A - B) ' 

where the root lying in the upper half plane is taken, and 

s (3) = -i 
0 

where the root in the lower half plane is taken. 

A and B are given by 

The positions of the roots are shown in Fig. 6. We must choose 

the root in the first quadrant, s (2) , for the reasons given in Section II. 

Then the form factor is 

where 

(33) 

(34) 

is 

F(q) N $ $ -$j-q Re 
0 

0 
G(r) (36: 

k 

. 
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is a slowly varying function of r, and so is given by Eqs. (33) and 

(3% 

In principle, we could once more resort to the method of 

steepest descents to find the asymptotic form for the remaining integral. 

However, in practice, the algebra is too complicated to enable us to 

locate the saddle point exactly. Therefore, we restrict ourselves to 

the easier task of finding the location approximately which suffices 

for our purposes. 

Recalling from our discussion of Eq. (30) that the region of 

large r is unimportant, we expand the exact expression for s and for 
0 

the exponential factor in Eq. (36) for r < 1. We get 

S N 
0 r<l J[ 

-.$ (1 + i) - z (1 - i)r2] 

and the exponential factor 

4s o,rl 
i(r2 + sf) 

E 1s . o+ S --ik 
0 

N - 
(1 + i) r2 -&-$(1-i)- 2P . 

Using this approximation, we find the only relevant saddle point to be at 

r = 
0 

= (0.61) - (0.16) i . 

This gives 

F(q) = k $ Re P (k) e 
w(so' r,)fi 

(37) 

(3% 

(391 

(40) 
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where 

and 

or 

k = ;aq 

w(s,, ro) = - 1.98 + (1.26) i 

F(q) K $ & e -1.98 6,, P(k) e-i(l.26) Ji;- 
. 

We have confirmed this result by using a computer (Burroughs B5500) 

to plot the real and imaginary parts of w(so, r) and then locating the 

saddle point. The saddle point is at r. = .651 - .126 i, and w(s,, ro) 

is found to be -l.979 + 1.285 i which is in good agreement with Eq. (41). 

(42) 



IV. CONCLUSIONS 

In conclusion we may attempt to assess the value of constructing 

asymptotic forms such as Eqs. (19) and (20) for compa.rison with elastic 

electron deuteron scattering data. At what values of q do we a.rrive at 

the asymptotic region, for example? 

A priori we can give no answer. In practice, we look at the 

data in search of clear evidence that one or another of the asymptotic 

behaviors is emerging. This is not easy to do and requires a very 

broad range of accurate data. From Fig. 3 it appears that power, exponential, 

and fractional exponential fall offs have grossly different appearances. 

The situation is much less clear if we remove the arbitrary restriction 

that the curves go through two specific points in common and demand 

instead that we construct the best fit to the data available. The latest 

proton form factor data can be plotted over several decades of values and 

as is seen in the three graphs of Fig. 7 is fully compatible with all 

three asymptotic decay laws of -& emaq, and embG 
cl 

For the deuteron the detailed functiona, forms of elaborate 

theoretical models have no difficulty in reproducing accurately the 

data over more than two decades. Now for the first time the simple 

exponential form e -w appears to be inadequate. The latest precision 

data of Friedman, Hartmann, and Kendall, when added to all earlier work 

on the deuteron form factor, shows positive curvature in a logarithmic 

scale in Fig. 2. 

The form of Eq. (20) is free of all details of the deuteron 

bound state and depends only on the nature of the assumed repulsive core 

-22- 
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singularity as r -+ 0. For it to be of any real value we must be able to 

demonstrate that the function 

&n 
C 
F(q)/sin (A 

p,nq 
P/P+l+ cp 

P n)] Y 

qP/P+ 1 

= p+l sin $ s) (2ro)'/l' ', flp+4n 
p,n P 

and Cp 
p,n = FGl+p 

approaches a horizontal straight line for some values of p > 0, n, and r 
0’ 

We expect that the length r. should be approximately O.?f to 0.4f, 

corresponding to a repulsive core that is neither too large to interfere 

with low energy deuteron parameters nor too smalL to prevent the data 

from being in the asymptotic region of q r. > 1 for q N 4f-1 to 5f-l. 

The normalization constant of Eq. (20) does not appear in Eq. (43). 

The polynomial power n will be important in collaboration with the parameters 

r 
0 

and p in locating the nodes of F at the appropriate q values for 

experimental agreement. Thus far there is no evidence for the oscillating 

behavior of the sine factor but further extension of observations to 

larger q values is needed. At present the nodes can be avoided 

successfully as apparent from the dotted curve of Fig. 7~. In any event 

(43) 

it will be of great interest to see whether nodes appear in the nucleon 

or deuteron form factor as the momentum transfer increases. 
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-2a- 

Fig. 3 - Logarithmic plots of eeaq, e -b& and q 
-C with a, b, and c chosen 

so that the values of the functions coincide at 1 and at 3. 

Fig. 4 - Infinite strip of analyticity of width 2a about the real axis 

in the complex r plane. 

Fig. 5 - Displaced integration contour discussed below Eq. (7). 

Fig. 6 - The trajectories of the three roots so of Eq. (31) as a function 

of increasing, real r. Each trajectory starts at r = 0. The 

dashed lines represent Re so = + Im so. 

Fig. 7 - Best fits to the proton form factor of the type discussed 

a. Fit to a. double pole (plotted vs. q2). 

b. Fit to e-a'q (plotted vs. q). 

c. Fit to e-dq/qo(piotted vs.fi). Also shown a.re dashed 

lines representing different fits with the oscillatory 

factor shown. 
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