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ABSTRACT 

The main problem, deforming a subalgebra of a Lie 

algebra, is treated algebraically, requiring an extensive 
” 

development of methods of defining multiplications on Lie 

algebra cohomolo,gy cochains. Some applications to differ- 

ential geometry are also presented. 
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I. INTRODUCTION 

As we have already seen [ 23 , one of our main problems can be described in 

the following way: Suppose G and & are Lie algebras, with $ a homomorphism 

of $ to &. It it possible to “deform” these structures in the sense of defining: 

a. A Lie algebra structure [X,Y], on C& varying with the parameter A , 

reducing to the given Lie algebra when A = 0. 

b. A one-parameter family of linear maps $ il : C&-k, each of which is 

a homomorphism of the [ , ] A Lie algebra structure on $ 

Thednonu-Wigner idea of “contraction” of Lie algebras and representations and 

the Gell-Mann method of “expanding” representations both suggest that this is 

the fundamental problem. 

In this paper, we shall develop the full algebraic formalism necessary to 

discuss this deformation problem. As can be seen from Ref. 4, this necessitates 

studying the “multiplicative” structure on the cochains associated with Lie 

algebra c ohomology . We have delayed presenting this theory because of its 

complexity, but in this paper we can present a relatively simple independent 

exposition, and show how it is applied to the interesting deformation problems 

in a straightforward way. There is considerable overlap in results with work 

done by A. Nijenhuis and R. Richardson [ 5,6,9,10] . However, the methods 

presented here are perhaps better adapted to the explicit calculations that are 

necessary to apply the theory to interesting problems of group representations 

and differential geometry. 

It is extremely interesting to notice that our basic problem (deforming Lie 

algebras and their representations) and that of K. Kodaira and D. C. Spencer [ 3,111 

on deformation of differential geometric structures are basically the same. We 
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will present some work designed to show this connection, without getting involved 

with the full detail of this. 

I would like to thank P. Griffiths and R. Richardson with whom I have had 

many conversations about the material presented here on deformations. 

II. THE MULTIPiICATIVE STRUCTURE ON COCHAINS 

Let 2 be a Lie algebra. Suppose Vl, V2 and V3 are vector spaces, and 

that 4+ 4,, 9, are representations of $, by linear transformations of VI, 

V2, V3, respectively. Suppose also that [Y : VI X V2 -+ V3 is a bilinear map, 

commuting with the action of 2. , i.e. , 

Q,(X) (a(vl, v2)) = Q! ($qX)V1’ v2) + Q! (VI, 420v2) for x ES Vp+Vf 3 l 

Let Cr(ei), i= 1,2,3,r = O,l,..., be the r-cochains of 2.. with coefficients 

in these three representations. (At this point, we will need the notations and 

concepts of Lie algebra cohomology theory as presented in (2) Part II. ) 

Our aim is to show that o! induces a bilinear map, which we also denote by Q, 

of Cr( 4,) X Cs( 9,) --+Crfs( $3), for each pair (r, s) of non-negative integers. 

Now, for I’ = s = 0, Cr($,) = Vl, C’($I,) = V2, Cr+S(~3) = V3 . We 

require in this case that a! be the same as the map we are given. We will now 

proceed by induction on (1: + s), assuming that a! is defined on Cr’ X C”, 

for r’+s’<r$:s, and show that it can be well-defined on Cr X Cs. For this 

purpose, we “postulate” the following law connecting the multiplication and the 

operation of contraction by an element of G. 

for 

~.h(w~,~~) = CY(X .Jw1,w2) + (-1)’ cr(y,x Ju,) 

2.1 
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Following a pattern established earlier, this rule enables us to define Q( wl, w2) 

by induction on r + s. 

My, w2) (x,, . . . s Xr+J = x1 JW+ w2) (x2,. . . ,x,+,) = ~4x1 Jy, w2)(x2, . . . ,x,+,~) 

+ (-ljr CJ4Wl,X1J~2)(X2, l l . ,Xr+s) for X1,. . . ,Xrss EC&. 

We must show that cr(wl, 2 w ) actually is a cochain, i.e.,depends skew- 

symmetrically on Xl,. . . ,,Xr+S. The abve formula (and the induction hypothesis) 

makes it obvious that it depends skew-symmetrically on X3,. . . ,Xr+s. We must 

consider interchange of Xl and X2. 

au+ qwy l l l , x,+s ) = x2 -M,J +w2) + (-1~~ x,J (Y(~~,x~Ju~)(x~, . . . ,x r+s ) 

= cqi2 J‘x,J wl, 02) + (-I)~-’ (u(x~J~~,x~I-J~~) . 

+ (-lfa(x, Jwl,xl Jw,, + (-I)~ cyp1,x2 J xl.mJ w2) 

(x3’“:‘xr+J l 

This makes it evident that the dependence on Xl and X2 is also skew- 

symmetric. 

Having defined ac(ol, 2 CO ) so that Eq.(2.l)is satisfied, we must now inves- 

tigate by the same sort of inductive reasoning how the other algebraic operations 

we have defined on cochains are compatible with this product. First, consider the 

Lie derivative: 

x c+Jl’ w2) = o! ( X(y), w2 ) ( + Q +W2) ) for wf Cr($,), w2 E cs(g2j, x0$ 

2.2 
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Proof Let Yc$$ We must show that YA applied to both sides of Eq. (2.2) 

gives the same result, if it is assumed that Eq. (2.2)is true for cochain of lower 

degree. (Notice that for r = s = 0, it just expresses the fact that a! commutes 

with the action of $&) 

YJX Q(W l,w2) = x( ~Ja(w,, w2,) - [x,Y] &,, w2) = x (~(yj ml> u2) 

+ (-lf QI (y, YJ w2))- a( v,yd w1,w2) - w’ qwl, [x,YI~~~) 

= (Y( [X,YI Ju1,w2) + Q! (~-Jx(w~), m2) + Q! (yJ~l,x~~2)) 

+ (-l)r (Y(X(wl), Y J w2)+ (-1)’ ~PJ,JXJl~‘~,) 

+ (-l)r o! w ( ,,~Jx(wz)) - Q([x,~IJ+w~)- ~-$~P~~w~IJ~~~ 

= YJ a xp,), u2 + Q! wl, xp,) cc > ( )I q. e. d. 

Now, turn to the following formula: 

d W‘+ w2) = a(dy, 02) + (-$ a(y, dw2) for w1 c Cr($+u2 E cr(+,) . 

2.3 

Proof For Xc& 

XJd ol(wl,02) = X 
( 
cy(wl,w2) 

> ( 
- d XAo!(wl,w2)) = , using that Eq. (2.3) is true 

for forms of total degree less than r + s, 
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cl wpJ2 ( ) + Q! (w1,x(w2)) - d (4x J4,w21 + hr w+x Ju2)) 

= Q ( w5w2 )+ a (w1’W2$ - Q (w+w2) 

- t-11 r-1 cr(xJy,dw2) - (-I)~ cu(dwl,x-jw2) - o ( u1,d(X_jm2)) 
( 

= (Y(XAd+&J + cw(wl, X Jdu2) -I- (-1)’ o(XJwl,dti2) 

- (-1)’ cY(dol,X.-jw2) = XJ lo!(dwl,w2) + (-l)r cu(+dw2)) 

This proves Eq. 2.3. 

Equation 2.3 indicates that the map CY on cochains induces a bilinear map 

(that we also denote by o) on cohomology classes, cy : Hr($,) X HS($2)*Hr+s(@3). 

Suppose that w1 and w2 are cocycles belonging to given cohomology classes 

w 1 and D 2’ Put o!(Gl,G2) = Lylol,) . We must verify several facts to 

make this definition legitimate: 

d CY(O~,L~)~) = 0, i.e., o!(wl,w2) is a cycle. (This follows from Eq. (2.3)J 

If a1 and w2 are replaced by “i and C.LJ~ in the same cohomolo,v class, 

then 

For the proof, notice that: 

a(d 8 1, w2) = da(e 1, w2) - (-1) r-l a(Bl,dw2) = da(01,u2), i.e., a(dOl,u2) = 0 

Thus, 

~(a~, W2) = a(ul - ai, m2 - u;) + Q(Wi,W2) + a(~~, ~‘2) - ~(Wi, W’z), hence 2.4. 
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I 

Finally, let us suppose that Vl = V2 = V that r$, = $12 = ‘#I, and that 

~(5,v~) = cW~~,V~) for vl, 2 v E V, where c is constant independent of v1 

and’ v2. 

Then we have: 

a(y, w2) = (-qrsc a(w2, cdl) for wle cr($), a2e c’($). 2.5 

Proof Again, by induction on (r+s). 

x Japl, w2) = cr(x Jw,, w2) + (--if cu(ol,x Jw,, = (-I)(~--~)~ c cqw2, XJ wl) 

+ (-1) r+r(s-l) c a(X j 02, cdl) = (-l)rs c ( (-l)s (Y(w2,X J wl) 

+ a(X -J~2’w1) = (-1)” c X Aa, (w,, wl) q. e. d. 

The general problem inherent in Eq. (2.5) is that of determining how algebraic 

relations among the representations of &used to define cochains induce algebraic 

relations among the cochains themselves. Let us turn to another example of this 

that is of interest in the application of Lie algebra cohomolo,v to deformation 

problems, namely that related to “associative” laws. 

Suppose we are given five vector spaces Vl, . . . , V5 with representations 

Q1* $5 . . . . of & on each. 

Consider bilinear maps 

cY:v1xv2+v3; Piv3XV4~V5 . 

Form P ( Q(v~, v,), v 4), (vy-, v5 are typical elements of Vl, . . . , V5). 

Similarly,. form /3’ 
( 
vl, cl’(v2, v4) and /3” 

) 
3’ wvl, vq)) , where the following 

bilinear maps have the following domains and ranges: 
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a’ : v2 xv4-+v3 ; P’ : Vl”V3’V5 

a!” : v1 x v4+v3 ; pl’ : v2xv3-v5 

Suppose now that all these bilinear maps commute with the action of. 2, and 

that the following relations hold: 

P (a(~,, v2), v4) = aP’ (~1, a’(v2, v4)) + bP” (v2, Q”(v~* v4)) 2.6 

where a and b are scalar constants. 

Our problem is to find if there is a relation similar to Eq. 2.6 among 

cochains. Suppose then that: 

Based on our acquired experience with this sort of thing, let us try to prove the 

following law as the extension of Eq. (2.6)to cochains: 

P (cL(wl’ w2) 9 w4) = 4’ (wl* o’tw2’ w4)) + (-l)“bp” (wz’ ,“(u;, wq)) 

2.7 

As before, we apply X -I to both sides of Eq. 2.7, where XC& with Eq. (2’ 6) 

starting off the induction. 

xJP b(~,,m2), 04) = P (xJQ(w~,o~),w~) + (-l)r+s P (~(~~*w~),xJo~) 
= P (cr(XJ01,W2), w4) + (-ljr P 

( Q(wl,XJ~2J,W4 
) 

+ (-l)r+s P (wy2)9 xJw,) 

= , using Eq. (2.7) , 
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apt ( XJwl, a’(w2’ w4 )) + (-l)(r-I)s b/3”@,, o”(X$, w4)) 

+ (-l)r 
( 

ap’ 
( 
ml, o’cxJw2’ w4) + (-I) ) 

+ (-l)r+s ap( (wl’ Q’(W2’ xJW4))+ (-l) 
( 

Now 

XJ/!?’ ( W1, O!‘(U2,‘U4)) = P’ (X J al* a’(W2s “4)) + (-lJr P’ (wl,x -JIy’(w2’ w4)) 

= p* (X -]a,, a’(~~, w4)) + (-l)r P’ (~1s a’(X Jw2f w4)) 

+ (-q pf (~1, Q’(wa,~Jw4jj xj+,, 0~11 u4)) 

= p(’ ( XJ02,‘Y”(CCl,W4)) + (-1)’ P” (o~~xJcr"(~~~w~)) 

= p** (X Jw,, (Y”(w~,w~)) + (-1)’ (~2, ~"(XJw1~ w4$ 

+ (-1)’ P” 

These identities prove Eq. (2. ‘7). 

III. DEFORMATION OF LIE ALGEBRA HOMOMORPHISMS 

We will now consider what is perhaps the simplest situation where one can 

see now the “multiplicative” structure of the cochain is related to deformation 

problems. Suppose that &and k are Lie algebras, and that h-+@A is a 

one-parameter family of Lie algebra homomorphisms from & to &, . Suppose 

that: 

* Wj(X) 1’ 
j=O 
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Let $I’ be the ‘following representation of $ by linear transformations on L : 

$‘(X)(A) = $,(X),A for XC&, AC& . i 1 
Then, each wj(X) , for j 2 1 , defines a l- cochain of swith coefficients 

defined by the representation #’ . Let us examine the conditions determined by 

the condition that each $I A be a Lie algebra homomorphism. 

Cwj (Lx, “1) Aj =x [Wj(X), Wj(Y)] hi+j, or 
j i,j 

wj ([x'yI) = C ["k_j(x)* wj(y)] = [@o(qI wk(y)] 
k=O 

i-1 

+ k+tx), @oty)] + c 
k=l 

Now 

= CGo(W2 wj(‘)J - [40(y), wjtx)j 

Hence, Eq. (3.1) can be rewritten as: 

j-l 

dwjtxI~ + c ~“k-j(x)f wj(y)] = 0 
k=l 

3.1 

3.2 
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Now let (Y be the map: LX,,&,-+ L- defined by: cx(A, B) = [A, B] . 

Then, 

= a (wk-jtx)30j(y))- a (wk~j(Y)~wjtx)) 

Hence, 

k-l 

c 
cy(wk_j, wj)(x,Y) = ([wk_j(x), wj(Y)I + cwj(x), wk-j(y)I) = 2 C[wk-j(x)? wj(y)l 

j=l 

Thus, Eq. (3.2) can be rewritten as: 

j-l 

dwj + ; 
c a(wj-k* k co) = 0 3.3 

k=l 

If all the data depends analytically on h , then Eq. (3.3) gives the condition 

(for j = 1,2, . . . , ) that A- 0, be, for each A, an homomorphism. 

Notice that Eq. 3.3, for j = 1, gives the condition we already know, 

namely dw ,, = 0. As we have seen [ 21 , the cohomolo,v class determined by 

WI in H1($) is the first “obstruction” to showing that each member of family 

A+@~ of homomorphisms is equivalent under the group of inner automorphisms 

of & to q. itself. In fact, the known theorem [ 51 is that, ifg-and I&are 

finite dimensional, if H1($‘) = 0, then 9, is equivalent to 4, for A 

sufficiently small. The proof involves as its basic tool the implicit function 

theorem. It is sometimes possible to extend it to certain infinite dimensional 

situations by a judicious use of the implicit function theorem inBanach spaces. 
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However, the situation of main interest to us, where &, is the space of skew- 

Hermitian operators on a Hilbert space, does not seem readily amendable to such 

techniques. We will then present the primitive, but more explicit technique for 

carrying out such calculations. 

Let L be the group of inner automorphisms of k. L is the group of 

transformations of &\\ generated by those of the form: 

. - 

ExpAdA:B-+ExpAdA(B) =c @$$ (B)=B+[A,B~+;[A,[A,B;iI... 
;j=() 

where A and B are elements of L. Wk 

We now have: 

Theorem 3.1 Suppose that H1($‘) = 0. For any sequence A1,A2,. . . of 

elements of J6;: consider the following formulas: 

c);(X) = Exp (Ad hjAj) . . . Exp (Ad A Al) Q,(x), 4: (X) = 2 ’ ’ w;(x) A’ 
k=O 

Our assertion is that this sequence can be chosen so that 

w;(X)=0 for 0 < k zj, all Ze&, 3.4 

Proof Choose A1 so that dAl=W1. Then, for X eG d 

Exp (Ad A A1)(Qo + w1 A+ . . .)(X) = (1+ h Ad A1 + . l .)($, + (+I + l . o)(X) 

= 
o,(x) + A ([Al, O,(x)1 + “l(W) + l .- 

= q,(X) + (terms involving A 2 3 , A ; . . .) 
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. 
proceed by induction on j, assume that: $i (X) = +,cx) + wj(xs hJ + . . , 

by 3.3, dwj = 0 . Choose Aj so that 

dAj=w., 
1 

again using the fact that H2(#‘) = 0. 

put 9, j+‘(&) = AdExp @jAj)(qj(X)) 

= (l+AjAdAj+...)($o(X)+Wj(X)&j+... 1 

=$,M +hj([Aj,-$oOI +dAj 0) +*** 

= eoX) f (terms involving A j+l , , . .) q. e. d. 

Theorem 3.1 is purely algebraic, of course. However, put 

gj = Exp (Ad kAj) . . . Exp (Ad A Al), an element of L. 

If gj converges as j-co, to, say gQ, note that: 

i.e., each of the homomorphisms 0, is equivalent under L to eo, i. e. , the 

deformation h -+ $h of homomorphism as “trivial. 0 The next step in the pro- 

g.ram should be to consider conditions for the convergence. In this pager, we 

will pass them by. 

Next, we consider a situation where the algebraic structure on the cochains 

plays a more important role. Suppose H2(@‘) is not zero. Given a cohomolo,v 

clxx in H2($‘), we inquire whether there actually is a deformation 

h--c 
@A = f wj ~j of 4, with w1 in that cohomology class. There is a 

standard answer that this is so if H2($‘) = 0. We shall now proce’ed to con- 

Fi\fc’r the formal aspects of this. 
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As we have seen, it suffices (modulo the convergence problems for the series , 
=c - w.h’), which we will again pass by, to show that a sequence 

‘A j J 
w 1’ W2’ l l l 

of cochains satisfying 3.3 exists, starting off with w1 given. However, this can 

easily be done by inductions: Assume wl,. . . wj exists, satisfying 3.3. We 

shall show that w~+~ exists. 

Put: j 
8. =-; c 
I+1 a(uj+l-k ’ (‘$ 

k=l 

We must show that d0 j+l = 0. For then, our assumption that H2($‘) = 0 

would guarantee that w. 
I+1 

could be chosen as the cochain such that 

dw. 
I+1 

= ej+J . Now 

j 

dej+J = - + F 
k=: 

Cy(da. ‘+1--k’ 
Wk) - o!(w. ‘+l -k’ d(‘$ 

Consider 

Make the following change of variables in the summation: 

3.5 

k-1-i j+l-k+k-8 
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Then, also B-+ j + 1 - k. The limits of summation remain the same. The sum 

3.5 is then: 

i k-l 

This gives the identity: 

j k-l 

dej+l = 
k=l a=1 

or 
. 

dej+l = -~ t: ~ “(Wk-e’ cr(W~l Wj+l-k)) 3.6 

k=l I=1 

However, we can also make a different change of variables in the summation 

in 3.5: j+l-k-l;k-l-+j+l-k. Then,also 8-k-B. 

The limits again remain the same. 3.5 then becomes 

i k-l z c cy(uk-17 "(uj=l-kp "2) 

k=l P=l 
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Hence, i k-l 

This is incompatible with 3.6 unless 

de. 
I+1 

=o 

Summing up, we have then formed: 

Theorem 3.2 Suppose that H2($‘) = 0, and that WI is a l-cocycle. Then, 

there exists l-cochains ~2, w3, . . . such that the formal power series 

satisfies the equations which, if the series converges, implies that each $I h 

is a homomorphism from 5;; to &,.- 

IV. AIJGEBRAIC .MPECTS OF THE DEFORMATION OF LIE ALGEBRAS 

As we have just seen, the formal properties of deformation of homomorphism 

to all orders involves a multiplicative algebraic structure on the cochains. We 

shall now consider the similar, but more complicated, structure involved in de- 

formations of Lie algebras alone. (This has been recently considered by 

Nijenhuis and Richardson [6] and S. Piper [8] but since our work here is from 

a slightly different point of view, we shall briefly indicate how it can be ap- 

plied to this case.) 

Suppose k-is a vector space, with [X,Yll a Lie algebra type of product, 

defined for all values of the parameter A. Consider its Taylor expansion: 
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Let $I be the adjoint representation of the initial Lie algebra [X, Y] o = [X, Y] , 

i.e., 

wlcy)= [x,yl 
Then, each wj is a 2-cochain of &with coefficients in the representation $. 

The algebraic conditions imposed on these codhains are determined by the 

Jacobi identity, which should be true for each value of X: 

or 

j ik j,k 
k 

The terms for J = 0 and j = k just form the six terms of dwk(X, Y, Z), hence 

we have: 

dvk~~y,z)‘~ wj(x.wk-j e,Z)) -Wj(wk-j(x,y),Z)-Wj(Y,Ok-j~,“)) =O 
j=l 

4.1 

Now, after the pattern found for the case of deformation of homomorphisms 

considered earlier, one would expect to find the second term of 4.1 to be a 

multiplicative operation on cochains. However, at first sight, it has a different 

form than any we have considered before. We will now show that it does in fact 

fit into the same pattern as the unified theory of such multiplications given in 

Section II. 

Construct a representation @I as the “adjoint representation’ of $I. Ex- 

plicitly, let V be the vector space of all linear mappings A: &*& 
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$‘(X)(A)=[AdX,A] =AdXA-AAdX 4.2 

Let o! be the bilinear mapping: VX &-+I;efined by: 

CJ~%X) = A(X) 

Then, it is readily seen that a! commutes with the action of s via $I and $*. 

Define a mapping p: Cr($) --) Cr-L($l) as follows: 

If 

cd: oc,, . . . . xp cq,...,X~ 

is an r-cochain, then: 

PbF,, . . .Jr-lW) = wGQ . . . ,X,-1J% i.e. Pb)(x,, . . . ,Xrml) 

is a linear transformation G-G. w- 

Lemma 4.1 Wd = P(dw) 

Proof By induction on r. By definition, if r = 0, p(w) = 0, dpw = 3. 

Assume it is true for cochains of degree less than r, and let w E C(+). 

= (yJ4P+..,X,~,,x) 

i.e., yJp(w) = pcy Jw) 
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- P~W~~[~,~~l’..~~~,~,~(x) -... 

-cd ([Y,xJ”“‘xr~,~w -*a- 

i.e., 

Finally then, 

Y J (W(w) - NW) = Y (P(w)) - d @ P(w)) - P y&W 
. 

= P(w) - dp(YJ(4) - PVJd4 

By induction hypothesis, 

dpvJw) = m-y-h), hence YJ (d@(w) - P(dw)) = 0 . 

Since this holds for all Ye&Lemma 4.1 is proved. 

Suppose now that w and a1 are elements of C2($). Let us compute: 

which is an element of C3($) . 
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2 (BW 3 0) (x, y, z) = (+~Ju~j, w) - Q (pwj, ,,,) cy, z) 

= CY PFJw~),YJo (( 1) ( - Q! y&wf), xJw) + a( Pb’) 9 WPL v )m 

= a (m-lw’), wcy, z)) - Q (YJLW,, w@, “‘) + +J~(w’)r w(x y)) 

= cop, woi’, Z)) - w’Y,wpLZ) ( > ( + w’ z,w(x,y) ) - 
Then 4.1 can be written as: 

k-l 
dwk + k = 1,2,. . . 4.4 

With this formula in hand, and the rules we have derived for computing 

d a P(Wj, 3 Wk-j ) y it is now a routine matter to carry through the Kodaira-Spencer 

“deformation program, It as sketched, for example, in [4] ; it may be considered 

as an exercise for the reader. 

V. SIMULTANEOUS DEFORMATIONS OF LIE ALGEBRAS 

AND THEIR HOMOMORPHIS~Y’IS 

As we have seen [2], the Inonu-Wigner idea of rfcontractiont’ of the Lie 

algebra together with its representations suggests the study of the following de- 

formation problem: Let &be a vector space, and let Abe a Lie algebra. 

Consider one-parameter family (X, Y) -[X, Y]~ of Lie algebra structures on 

(3, together with a one-parameter family q5A : E-J,, of linear transformation, 

each of which is homomorphism of the h-th Lie algebra on G, i. e, 
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As before, let us expand in a Taylor’s series: 

The cochains wj satisfy 4.4. 

5.1 now leads to the equations: 

or 

5.2 

Suppose we relabel 

rx y] = [x7 Y], = o,cx Y) 

Following the pattern already established, split off from 5.2 the terms cor- 
. 

responding to j=O and J=k . 

5.3 

Our next task is to interpret the first four terms in 5.3 via Lie algebra 

cohomology. First, ok is an element of C’(@l), where $I’ is the repre- 

sentation defined by: 

PO(A) = [@J(X>,A] for AQ, - 5.4 
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Then, 

dO,(X,Y) = $‘m(ekcy)) - 9’(Y)(ekm) -$([x,yll 

q, is a 2-cochain with coefficients in the adjoint representation of G. cysr 

9 is a linear map: $-,A-- which commutes with the action of L via the 

adjoint representation on C& and via @’ on .& i. e. , 

Prn(@#) = [ym, m3] 

Thus, #I (wk) is well-defined as an element of C2($,) by the formula: 

The reader may readily verify that it follows from this remark that the mapping 

t#x Ck(Ad 9 ‘--, Ck(@) 

commutes with the $-operator, Lie derivative, and inner product, Thus, 5.3 

can be written as: 

5.5 
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We must now interpret the remaining terms by constructing the appropriate 

multiplicative structure on the cochains. The fourth term in 5.5 is easy: Let 

at be the bilinear map: j, x k--,k given by 

cr’(A,B) = [A,B] 

Then, 

- The interpretation of 0 
j ("k-j@7 v) is more complicated. Following the 

pattern used in the last section, let V be the space of linear mapping of g+& 

A typical element of V will be denoted by E. Construct a representation $,, on 

V as follows: 

f”‘(X)(E)CY) = W+Wl) - +WV) = $GQ,ECY) - E(kY]), 

for X, Y E C& E E V 

Define a linear mapping p,: Cr($,)-, C r-l(q)“) as follows: 

w(x17...7xr~l)m = 0(X1 ,..., xrel,x) for x,x1 ,..., xrmle L. 

One may readily verify, following the pattern established for the similar 

mapping p defined in Section IV,that p commutes with d, inner product, 

and Lie derivative. Now, define a bilinear ma.p y: V x ,Gd k by the formula: 

Again, it is readily verified that it commutes with the action of & as ex- 

pressed by @,, Ad& and $, . Then, 
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is a 2-chochain in C2($,), since p,(ej) is a 2-cochain, 

y(pYepk-j) KY) = Y(Ptej’, Wk-j(x,Y)) = Oj (Wk-j F7Y)) 

Finally, 5.5, the basic.,,deformation equation, If can be rewritten as: 

5.6 

Again, the algebraic part of the deformation program can now be con- 

sidered to be in standard form, since the rules for applying it to all the terms 

in 5.6 are known. 

VI. STUDY OF THE FIRST ORDER TERMS OF THE DEFORMATION EQUATION 

We continue with the problem studied in the last section, and, in particular, 

with the main deformation Equation 5.5 or 5.6. Let us write it out for k = 1 

Both sides of this equation are cochains of (& with respect to the representation 

@I of & given 

$,(x)(A) = [@@),A] for Xc& AEk 

Notice that $7 is a reducible (but not necessarily completely reducible!) 

representation, since 

Also, the cochain on the left hand side of 6.1 takes its values in this invariant 

subspace @(G&, of k This suggests that we “divide out,, by this subspace, 
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i.e., construct V = rfj;/$ (2, and define $” as the quotient representation 

of $’ in V. Then, if X -0; (x) is the cochain that assigns the image of 

cl(X) in V, we see from 6.1 that: 

de,‘= 0 , 

i.e., 0; is a 1-cocycle,’ hence determines a cohomology class in Hl(#“) 

or the “first obstruction” to the deformation problem. This first cohomology 

class is typical of the Kodaira-Spencer theory. - 

Let us discuss in an informal way what happens if H~(c#J”) = 0 . Then, we 

can find an element A 1 of L such that: 
ha. 

Let us suppose further that C#I is one-one. Then, there exists an element 

yX such that: 

+ del(x19x2) - [0(x,), elw2j + [om2h ep,)]’ 



hence, 

y Xl’ Y2 [ 1 = q(x& +[x&] -[xz’yx~~ 6.2 

But, notice now that relation 6.2 is just that which asserts that d applied 

to the 1-cochain X -‘Yx of & with coefficients in the adjoint representation 

of bi, is just WI , i. e. , WI is a cohomology. We know the interpretation of 

this: The one parameter family A-+ eh of homomorphisms a-,k can be 

changed to h+tJ = $hTh, where Th is a one-parameter family of invertible 

linear maps: s-2, so that the cocycle of type WI attached to this new 

family h-+ fJ is zero. The new cochain of type el is now a cocycle itself, 

hence determines a cohomology class in H1(ef). Again, since the pattern of 

further development should be clear, we will not carry the analysis further 

at this point. 

VII. DEFORMATION OF SUBALGEBRAS OF LIE ALGEBRAS 

Suppose & is a Lie algebra, and &is a given subalgebra of L. We want 

to study possible deformations h+&, which assign to each value of h a sub- 

algebra of h, reducing to the given one at A = 0. The situation may be more 

general than the one considered previously, in the sense that the dimension of 

these subalgebras may not be the same, hence one cannot set up a common 

isomorphism between their underlying vector spaces. Yet, to apply our 

,,Taylorfs series,, methods, it is necessary to parametrize the problem in 

some convenient way. We can do this by using the ,,dual,, method of 

parametrizing subspaces, namely assuming that there is a one-parameter 

family h--+ P A of linear projection operators &,-,Jj, such that: 
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a) 
2 

*A = PA 

b) P&d = G 7 
.A 

hence, since & is a subalgebra, 

4 PArPAX, PAY] = [PAX, PAY] for X, Y CL, 

Having described the problem in this way, we are free to use the standard 

methods, i.e. , expand PA in a Taylor’s series, interpret the individual 

terms as cochains, then interpret the conditions on the cochains resulting 

from 7.1 in terms of multiplicative structures on the cochains. 

00 

PA = 
c 

Pjhj , 

W 

where each Pj is a linear map: I&+. 

7.1 a) gives the condition: 

c 
PjPk AJ+k = C P. AJ , or 

J 
j,k j 

k 

c 
P.P 

J k-j 
=Pk,k=O,l ,... , or 

j=O 

k-l 

PPk+PkP-Pk = 
c 

P.P 
J k-j 

j=l 

7.1 

7.2 
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Consider 7.1 b): 

c 1 Pj PkX, PBY 1 A j+k+a = c [pjx, PkY] iij+k or 

j,kQ j,k 

P [P(x),PQm] + j~Qpj’~kzipm]=~x7pQyj +[p~x7py]+~ [Pjx7’&jy] ’ 
j=l 

or 

PPXPY +PPxPY +P PXPY - PXPY - PXPY 
[‘k] [k’ ] d’ ] t ‘k][k’ 1 

k,l 
= PkmjY - Pj PkejX, PY 

I c 3 
j=l 

7.3 - 

The first step is to consider the left hand of 7.3 separately as a function 

of X and Y, which we define as ek(X, I’). Notice then that: 

0 if PX=O=PY 7.4 

ekv, Y) = p pkxs y [ ] -[pkx7y]= @ -p) ([y,pkx]) 7.5 

if PX=O, PY=Y (I = identity map of &.+a. 

NOW, let V = (I-P) (I.&, i.e., V = { XC& PX = 0 1 , identify V with 

k/G, and define Q as the representation of g in V resulting from passing \ 
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to the quotient via the adjoint representation of g in _L. Then, 

+GYcy) = (I-P) rxy1 for YEV 

We can now rewrite 7.5 as: 

e,p,.q = +(k3jpkg) for x W,Ye& 

7.6 

7.7 

Now, work out 7.3 for X, Y c& Put: 

qcm = (i-p) pkcx) 

Interpret uk as a 1-cochain of &with coefficients in V. Then, 

ek(x, y) = P [x, Pb;y] + P [pkx, Y] + pk b, y] - p7 pky] - [p,,, y] ’ 

for X,Yc& 

p ek(x,y) = ppk(~x,y]) = w; ([x,y]) for x7 “&’ 

7.8 

7.9 

7.8 is the key identity linking the deformation equations 7.3 with co- 

homology. (duk is of course the coboundary of the cochain uk with respect 

to the representation @ of k in V.) 

VIII. DEFORMATIONS OF COMPLEX STRUCTURES IN MANIFOLDS 

There is a close relation between the deformation-of-subalgebra problem 

and the Spencer theory of deformations of pseudogroups on manifolds [lg . 
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This way of developing the theory should provide a realistic algebraic model 

for D. C. Spencer’s monumental work, and provide a unifying framework for 

many differential-geometric problems. Since the deformation of complex 

structures has served as a model for most of the work of Kodaira and Spencer, 

it will be instructive to study it from our point of view before proceeding 

further. 

At this point we will have to use the theory of manifolds, for which we 

refer to Helgason’s book [I] which also contains, in Chapter 8, a short ex- 

position of the notion of complex manifold. (All manifolds, maps, tensor- 

fields, etc. , will be of differentiability class Coo). Let M be a manifold. 

F(M) denotes the rin, m of real-valued functions on M. V(M) denotes the set 

of vector fields in M: Each element XEVOM) is a derivation f -+X(f) of F(M). 

V(M) is both a Lie algebra over the real numbers(relative to the Jacobi bracket 

operation (X, Y) +[X, Y]) and a module over F(M), i. e., if f e F(M), XeV(M), 

fx is the derivation f, ---( fX(t) of F(M). The relation between these two types 

of algebraic structures on V(M) is given by the following rule: 

[x, f Y] = X(f)Y + f[X, Y] for f EF(M), X, YeV(M) . 

A complex analytic structure on M is defined by an F(M) - linear map, 

typically denoted by J, of V(M) -V(M) such that: 

4 J2 = - (identity) 

b) [X, Y] + J[JX, Y] = J[X, JY] + [JX,JY] 8.1 

Such an operator can be used to define the notion of complex analytic function 

on M; A complex-valued function f + ig is complex analytic if 

X(l) = JX(g) for all XeV(M) _ 8.2 
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(For example, consider the case M = R2, i. e., the space of two real vari- 

able x and y. -& and -& are vector fields. J is defined by 

Equations 8.2 are then just the Cauchy-Riemann equations.) 

This differential-geometric version of the notion of complex manifold 

emphasizes the relation to the underlyin, c “real” manifold structure, and its 

similarity to other sorts of differential geometric structure, such as 

Riemannian manifolds, homogeneous spaces, symplectic manifolds, etc. In 

this picture, however, the integrability conditions 8.1 are in a rather un- 

managably complicated form. As is customary in this subject, we introduce 

complex-valued functions and vector-fields on M in order to simplify it. 

F(M, C) is the ring of complex-valued functions on M, i. e. , F(lW, C) = F(M) 

+ iF(h4). V(M, C) is the set of derivations of F(M, C), which is in fact, just 

the Tfcomplexificationf7 of V(M), i. e. , 

V(M,C) = V(M) + iv(M) 

Consider a J satisfying 8.1. Extend it to an F(M, C) -linear map of 

V(M, C) -V(M, C) by the rule: 

) = J (V(M)) 4 i J(v(M)) 

Put: 

P=t (I+iJ) (I = identity operator) 

Then: 

P”=f (I-J2+2iJ)=i (I+ iJ)=p 8.2 
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i. e., P is a projection operator V(M, C) + V(M, C) . 

Notice that : 

P* (the complex conjugate of P) = f (I - iJ) = I - P 8.3 

i.e., P* is the projection operator on the complementary subspace to 

p (ww) * 

The advantage of introducing these notions is that the integrability condi- 

tion 8.1 b) takes the very convenient form: 

is a subalgebra of V(M, C), i. e., - 

P [PX, PY] = [PX, PY] for X, Y rV(M, C) 8.4 

Conversely, an operator P satisfying 8.2-4 defines a complex 

analytic structure on M: Define J = -i (2P - I), and verify reality that 8.1 0 

is satisfied. 

Of course, a deformation of a complex structure on M would be a one- 

parameter family h ---, Jh of J-operators, each satisfying 8.1, reducing to the 

given one at A = 0. Alternately, we can consider it as a one-parameter 

family A -P x of F(M, C) -linear operators: V(M, C) -+ V(M, C), satisfying 

8.2-4 for every A, reducing to the given P at A = 0. Hence, we are in a 

special case of the general theory sketched in the last chapter: 

L = v@‘t c), G = +(M, C)), V = (I-P)(V(M, C)) = P*(v(M, c)) , 

$(X)(Y) = P*[X,Y] for XEk YEV. 

- 31 - 



Notic:‘: now that both $& and V are stable under multiplication by F(M, C), 

i.e., - b,,r,h are T:(M, C) - modules. If 

PA= 
c 

Pkhk , and uk = P*Pk , 
k 

with each uk interpreted ai a 1-cochain: e V, notice that each wk is 

F041[, C) -1 lrlear. This suggests a study (that we will begin in Section 3) from a 

purely alt!obraic Ijoint of view of Lie algebra cohomology with an additional 

module st,~ucturc b-nposed. We can immediately check that dwk is also . 

F(M, q-linear: 

For fcF@I, C), K YeG WA 

=- p*[x, p*pk(m] - p*[fl, p*Pkcx)] - P*Pk [x, $j 

” x(f) p*p*pkcy) + p*pk(x)(f) p*cy) - x(f) P*Pkcy) + fduk (x, y) 

Thiri su,,eL 1 0‘~ s .- that, in constructing cohomology groups, we restrict our- 

selves 1 t 1 cochain:: that are F(M, C) -linear. They, in turn, can (in accordance 

with th,‘ v,cneraI i\t+nciPles of differential geometry [I] ) be interpreted as 

tensor- [‘I calds on 31. The corresponding cohomology groups are called the 

Dolbeat 111 coholl :,\!\gy groups for the complex structure on M. 

Lc,l I1~ i00li fh* a geometric interpretation for the O-cycles, i. e. , - the 

eleme,,l rl XEV 5;::L.h that: 

@(G&(Z) = 0, i.e., [sZ]C G 
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If Z satisfies this condition, so does X= i (2 + 23 X is a real vector - 

field (i. e. , in V(M) itself), and is, in fact, just the “real part” of the complex 

vector field Z. (Z* denotes the complex conjugate: If Z = X + iY, with 

X, YEV(M), then Z*=X-iY.) Z* also satisfies: 

From this, one sees that AdZ commutes with p, hence also with J, i. e., - 

[X,JY]= Jb,Y] for YCV(M) . 

This says that X is a vector-field generating a one-parameter group that 

preserves the complex analytic structure, i. e. , is what one calls (in the 
I 

theory of complex analytic manifolds) a holomorphic vector field. They form 

a Lie algebra, that we denote by & Thus, we have a sequence of vector 

spaces. 
d 

O-g+-y(M)‘cl(+ . . . 
. 

S is the Lie algebra of the “pseudogroup” of all complex analytic transforma- 

tions of M. This sequence (called the “Spencer resob~tiorP of the pseudogroup) . 

is exact, (i. e. , the image of each homomorphism = the kernel of the succeed- 

ing one) if and only if the Dolbeault cohomology groups vanish. 

We will leave discussion of this well-known (to mathematicians) example at 

this point, since we have merely meant it as t’geometric17 motivation for the 

general treatment in the next section. 
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IX. LIE ALGEBRA COHOMOLOGY AND THE SPENCER RESOLUTION 

Consider a geometric structure on a manifold M which leads to a Lie 

algebra & of vector fields on M. The Spencer resolution construction gives 

a sequence El, E2,. . . of vector bundles over M, together with a sequence 

Di:r(Ei)+r(Ei+l) of linear maps, i = 1,2, , . . r(Ei) is the space of cross 
c 

section of the i-th bundle 
> 

such that: 

a) rq = V(M) 

b) & = kernel Dl 

c) Di+lDi = 0 , i.e., image Di c kernel Dizl, i = 1, 1, . . . 

Thus, we have a sequence 

O-+S-+V(M) - r(E2) . . . 

The main problems of the theory are, first, to construct the resolution, then 

to prove that under certain “convexity1f conditions on M that the sequence is 

exact, i. e., image Di = kernel Di+l, i = 1,2,. . . We will now present an 

algebraic construction that might serve as a model for some of the ideas. 

Suppose again that & is a subalgebra of a Lie algebra & and that 

V =C&. Let $ be the representation of ,G- in V obtained by passing to 

the quotient via the adjoint action of & in k. Let Cr($) be the r-cochains 

of &with coefficients in V, r = O,l, 2,. . . Let d:Cr(+) -+C rf1(~) be the 

coboundary operator. Let Zr($) be the cocycles Cr(r#Q, i.e., the kernel 

of d. Then, of course, we have a sequence 

d d 
o- ZO($)- CO($) - C1($b) - C2($) - . . . 9.1 
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It is exact if and only if all cohomolo,T groups of dimension 1 1 are zero. 

Now, we have: 

Theorem 9.1 Let N(GJ, be the normalizer of & in k Then Z’(4) is 

isomorphic to Nu/‘= E& hence, we have an exact sequence: 

d 1 
o-&4-c (@)--a... 9.2 

The proof should be obvious. If ZE& the image of Z in V = &/G*is in 

the kernel of d if and only if 

i.e., Z is in the normalizer. Further, the quotient map N G -, V has & Ld 

as kernel . q. e. d. 

Now we may inquire under what condition Co($) = V itself can be made 

into a Lie algebra so that the map J+,-+V of 9.2 is a Lie algebra homomorphism. 

We shall give one such condition. 

Suppose that k is, as a vector space, the direct sum @$ of sub- 

algebras, i. e. , V can, as a vector space, be identified with @’ . We must \ 

find the condition that the map NQ,/z s, is a Lie algebra homomorphism. 

Suppose that Z, ZleN(G , 
fk 

with Z = X+X’, Zl =X1 + Xi; X,XIg& and 

X’, x;u& Now 

[z,xl]=[z,zl] -pqy& 

[X, Zl] = [Z, Zl] -[Xl, zl] 6 g,, hence 

[z, q- [X’, ZJE & 9.3 

Then, 

2 [Z,Z,]-[Z,X;]-[X’,Zl]C$ or [Z,Zl] -[ZYXi] E& 9.4 



Now, we have: 

Theorem 9.2 Suppose N(s = -9 (N@fiN($$. Then, the map 

,,&= N(g/&&C&= Co(+) is a homomorphism. \ ‘ 

Proof Suppose that Z, Zl.f N(GJ, (7 N($\ . 

By 9.4, projection of 

by 9.4, the 

but also equals 

Since &(7&= (0), X1,X1 = 0, i. e., [ 1 
of N(CJ,n N(& on G projection of N(G) n N(G’) on G’ = 0 d 9.5 

m #A PJ 

This implies that projection of Z, Z1 on g = X’, X’I [I 1 [ 1 , which shows that, with 

the identification Co(@) = GA, the map &--+$ is a homomorphism. 

X. LIE ALGEBRA COHOMOLOGY WITH AN 

ASSOCIATED MODULE STRUCTURE 

In the last section we have abstracted out one feature of the complex- 

manifold theory that has general algebraic validity. Now, we will present 

another general .feature. 

Suppose that &is a Lie algebra, and also a module over the ring F. We 

will denote elements of &by X, elements of F by f. Suppose that to each 

XeLwe are given a derivation f-+X(t) of F, and that: 

[x,~Y] = ~(9 Y+ f [X,Y] , for X, YeLfeF 
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Suppose that X -, @J(X) defines a representation of & by linear transformation 

on a vector space V, that V is also a module under F, with 

cP(X)w = XW+f ‘m(v) f 

Let C;(o) be the submodule of Cr(+) (the r-cochains of $j, with coefficients 

on V) consisting of those r-cochains which are also F-multilinear, i. e., the 

functions X1, . . . , Xr -+ ~(x,, . . . , Xr) that satisfy: 

w(fx1,x2,“.4.) =fw (xl ,..., xr, 

for f EF, X1,..., X&j,, 

As a consequence of 10.1, one proves easily that: 

X(fw) = X(~W + Or(w) for w c C’(4), fcF 

X(W) denotes the Lie derivative of the cochain w ) 
Theorem 10.1 If WE Ci (@), X6& then X(G) E CG ($) . 

Proof For fEF, 

X(w) (f Xl’ * ’ * f xr, = ~(qu(fxl,. . . ,Xr))- w([x,fxl], . . . Jr, - . ‘” 

- w(13c1,. . . , [XJJ) = wb(x,9 .*-Jr) +w+(X1,...,Xr)) 

- X(f) w(x,, * l ‘, Xr) - f u([X, Xl] , l * ’ , Xr) < i 
- .*. -fwQ+.., [x,x,], = (Mb) (xy * * - 9x,)) 

10.2 

Theorem 10.2 d(Ck (o?))cCi+l(+), r = O,l,. . . 
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Proof We proceed by induction. For r = 0 : WCC!; ($) means w~V 

dw(fW = $ tfW4 = W(X) (4 = fWX) 

Assume it is true for forms of degree <r 

WXF,Xl, . . . . Xr) = (XJdw) (fxl, . . . , Xr) 

= X(w) (nr,, * * * , Xr> + W-b tfx,, . . . , Xr) 

(by Theorem 10.1 and the induction hypothesis), 

=fdw(X,Xl,..,Xr) g. e. d. 

Thus, we can use cochains that are F-multilinear to construct a cohomology 

group. They are obviously the appropriate group to discuss deformation of 

homomorphisms, subalgebras, etc. , that are F-linear. 

Notice the following way of defining an interesting cohomology situation: 

Suppose &is a Lie algebra that is also an F-module, with 
Jk 

also acting as 

derivations in F, as before. Suppose that Ais a Lie subalgebra of &that 

is also a submodule of 1s;ji Then, V = #j+, is an F-module, and the cohomology 

theory sketched above can be used. 

XI. DEFORMATIONS OF COMPLEX SUBMANIFOLDS 

OF COMPLEX MANIFOLDS 

Now, we proceed to abstract out of Kodaira’s work [3] on deformation of 

complex submanifolds an interesting algebraic structure. Let M be a mani- 

fold, J: V(M) -V(M) a tensor-field, (i. e., an F(M)-linear map). Satisfying 8.1. 

For peM, let Mp be the tangent space to M at p. Each vector field 
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;yeV(M) determines a tangent vector at p, i.e., an element of Mp, which is 

Its rrvaluet’ at p, which we denote by X(p). J has a “valuelf at p also, which 

Is a linear map (which we also denote by J of M -. Mp such that J2 = 
P 

- (identity). Then, as definition, 

JO@) = J(x0) 

Let N be a submanifold of M. For each point p of N, its tangent space, 

NP ’ 
is a subspace of M 

p’ Jw 
may or may not be equal to N . If it is, 

P 
for each pc:N, then obviously N inherits a J-tensor. If this is so, it is 

readily verified that the “integrability condition” 8.1 is satisfied on N also, 

i.e., N has a complex manifold structure. 

Now, we can consider “deformations, 1’ i. e., a one-parameter family 

x -+ NA of complex submanifolds of M. The “trivial” deformations are those 

of the form 

where A-$ h is a one-parameter family of transformations of M that pre- 

serve the complex-analytic structure on M, i. e., that are complex-analytic 

transformations on M. 

Let us formulate this more algebraically. Suppose F(M, N) consists of 

:he functions of M that are zero on N. Then, F(M, N) is an ideal in the ring 

F(Il), and F(N), the functions on N, can be identified with the quotient ring 

F@l)/F(M, N). A vector field XeV is tangent to N if: 

X(&M, I?) c FM W 
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Thus, the action of such an X by derivation on F(M) ‘induces an action by 

derivation on F(N) = F(M) /F(M, N) . This defines a vector field on N, which 

is just the induced vector field on N. Let V(M, N) denote the set of these 

vector fields that are tangent to N. Then, the condition that N be a complex 

submanifold is 

Notice that 

i. e., V(M, N) is a subalgebra of V(M). 

Also V(M, N) is an F(M) -submodule of V(M). Thus, a deformation of 

submanifolds, h -+ Nh (independently of the condition- that each submanifold be 

complex),can be considered as a deformation X -+ V(M, N 4 of a subalgebra of 

Now, we can handle deformations of complex submanifolds. As before, 

“complexifyt l F (MJ and V(M) to F(M, C) and V(M, C) . Put P = l/2 (I + iJ): 

F(M, N) and V(M, N) can be complexified to F(M, N, C) and V(M, N, C). Then. 

P(V(M, N, C)) is a subalgebra of P(V(M, C)) . A deformation A -NA of complex 

submanifolds leads to a deformation A -P I9 C)) of subalgebras of 

P(V(M, C,> - 
We have carried the analysis sufficiently far to make it clear that the 

algebraic formalism sketched above applied to this situation also. However, 

there is a new feature: We 

k(= g(V(M, N, C,))’ and we 

have Lie algebra &= P(V(M, C))), a subalgebra 

count those deformations h-+ of 2s “trivial!’ which 

are obtained by acting on Aby a one-parameter family of automorphisms of 

Ataken from a given group of automorphisms. Ln this case, the Lie algebra 
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of the group of automorphisrns is &the normalizer of P(v(M, C)) in V(M, C), 

modulo P(V(M, C)) itself, i.e., the group is the group of automorphisms that 

is induced by the complex analytic transformations of M on V(M, C). This, 

is a slightly more general deformation problem that is considered here or in 

Richardson’s paper [lo], but the same methods apply to it: We shall return to 

this in another paper. 

XII. DEFORMATIONS THAT &E LINEAR 

IN THE DEFORMATION PARAMETER 

Let us turn to another problem that is closely related to the flmultiplicative” 

structure on the cochains, namely the problem of deciding when a-given defor- 

mation is equivalent to one which is linear in the deformation parameter. (For 

example, the “Gel1-Mann formula” type of analytic continuation of Lie algebra . 

representations [2]leads to such types of deformations, in a very natural way.) 

Since we will only begin this discussion in this paper, we will consider the 

simplest case, the deformation of Lie algebra homomorphisms. 

Let (5;, and &be Lie algebra, and let +: &+A be a homomorphism 

from &to & Let V be the underlying vector space to &, and let c$’ be the 

following representation of &by linear transformation in & 

Let weC2($‘), i.e., u is a iinear map &e k. 

Consider: 

Q,(X) = $0 + Au(X) for Xck. 
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Then, 

Now, let Q: &x &Abe the map a&Y) = [X, Y) . Then (Y induces a 

multiplication 

Cr($J’> XaCR@‘) --( Cr+R (4’) 

on cochains, as described above. 

We see that @,, is a homomorphism for every A, if and only if : 

dw = 0 12.1 

(Y(c.d, u) = 0 12.2 4 

Suppose now that a given ~.fc’(Q’) satisfies 12.1, but not 12.2. Then 12.1 

says that u 1 is a cocycle, hence determines a cohomology class that we denote 

by W1. Can we change u1 within its cohomology class so that 12.2 is also 

satisfied. Now, cx induces, as we have seen, a multiplication 

H’(Q’) x H1(@) - H2(qI+) 

Thus, a necessary condition is that 

-- 
Q(W, w) = 0 

Now, it is easy to see that it is not always a sufficient condition. However, 

we can add another condition which makes it also sufficient, and that is satisfied 

in many examples. 
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Theorem 12.1 Suppose UEZ’($‘) satisfies 

a(& 6) = 0 

Suppose also that’ Z’(G) can be split up as a direct sum 

dC’(#) @ W1 : 

where W1 is a subspace of Zl(+) satisfying: 

a&, wj II cd(c$‘) = (0) 

12.3 

12.4 

Conclusion: 

If w’ is the element of W1 which is the same cohomology class as w 

then eA defined by: 

is, for each A, a homomorphism of &into 
k 

. 

The proof is trivial: 12.3 says that a!(=, w) = c~((w’, w’) = 0, i. e. , 

IY(W’, w’)6dC2(@‘), while 12.4 then implies that CY(W’, w’) = 0. Then, 12.1-2 

are satisfied with w replaced by w’, whence the conclusion. 

- 43 - 



BIBLIOGRAPHY 

1. S. Helgason,“Differential geometry and symmetric spaces, 1’ Academic 

Press, New York, 1962. 

2. R. Hermann, “Analytic continuation of group represen’Wions, I-HI, 11 to 

appear, Comm. in Math. Phys. 

3. K. Kodaira, “A theorem of completeness of characteristic systems for 

analytic families of compact submanifolds of complex manifolds, l1 Ann. 

of Math.75 (1962) 146-162. - 

4. A. Nijenhuis and R. Richardson, “Cohomolo,q and deformations in graded 

Lie algebras, u Bull. Am. Math. Sot. 72, l-29 (1966). 

5. A. Nijenhuis and R. Richardson, “Deformation of homomorphisms of Lie 

groups and Lie algebras, 1’ to appear, Bull. Am. Math. Sot. 

6. A Nijenhuis and R. Richardson, If Deformation of Lie algebra structure, ” 

to appear. 

7. S. Page and R. Richardson, “Stable subalgebras of Lie and associative 

algebras, f f to appear, Trans. Am. Math. Sot. 

8. S. Piper, “Deformations of algebras, ‘1 Ph. D. thesis, Stanford, 1966. 

9. R. Richardson, “A rigidity theorem for subalgebras of Lie and associative 

algebras, I1 to appear, Ill. Journal Math. 

10. R. Richardson, “Deformation of subalgebras of Lie algebras,” to appear. 

11. D. C. Spencer, “Deformation of structure, on manifolds defined by transi- 

tive continuous ps eudogroups , (I Annals of Math. 75 (1962), 306-445. - 

- 44 - 


