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ABSTRACT 
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I. INTRODUCTION 

Recent work on the rate of the discrete symmetries P, C and T in elementary 

particle physics has, at the minimum, pointed out the need for a careful discussion 

of their true nature. (Note particularly the comments of T. D. Lee and 

G. C. Wick [4] on the ambiguity of the definition of C. ) This paper will suggest 

a purely (Lie) algebraic model where one can readily formulate some of the 

problems in a clear-cut mathematical way, and is the first in a series in which 

the relevant mathematical problems will be examined. Since the basic idea is 

to use the various extensions of the Poincarg Lie algebra, the first problem 

(which will be the main problem in this paper) will be to survey the methods for 

classifying extensions of the Poincare Lie algebra. 

First, however, let us present the main idea. Start off with the Lie algebra 

2 of the Poincare group G as a semidirect sum ,L + T of the homogeneous . \m 

Lorentz algebra L and the abelian ideal T of translations. Explicitly, we 

have: 

On this “geometric” level, P, and T (parity and time inversion) are isomorphisms 

of G. Thus, if (X,), u = 0, 1, 2, 3, is the basis for T, P.4 

P(xi) = - Xi, i = 1, 2, 3 

Wo) = - X0; T(Xi) = Xi, i = 1, 2, 3 . 

The action of these automorphisms on k is determined by the condition that 

each be an automorphism of G. - 
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Now, as L. Michel has emphasized [5] to define an elementary particle 

system, one must also be given an extension of G, i.e., a Lie algebra G’, h ti. 

together with homomorphism of @:z’ onto G. (The physical states can then - 
be 

defined by representations of G’ by operators on a Hilbert space.) If we call 2, 

the kernel of @ (which is an ideal of g’, i. e. , [G’, ,K] c K) then ,G is the m C 

quotient algebra ,G’/z. Prom this point of view, it is natural to define the 

“physical” discrete symmetries, which we shall call P’, T’, as automorphism 

of G’ such that: 
w 

$P’ = P$: $T’ = T$ 

We shall present below the method for finding all such extensions, based 

on the exposition of the classification of abelian extensions given in [2, Part III]. 

In principle then, it is possible to find all such operators P’, T’ by a definite 

algebraic procedure. If we further want the “physical” transformations P’, T’ 

to generate the same group as does P and T (i.e., P ,2 = T12) then in many 

cases they are quite determined. 

The transformation of charge-conjugation, C, is not so obviously defined in 

the general case, since it is not tied so clearly to “geometric” discrete. symme- 

tries. However, by examining the usual derivation for the Dirac equation we 

shall be able to pinpoint at least one way of defining C that has general validity 

and that leads to a well-posed mathematical problem. 

I am indebted to N. Hurgoyne, S. Glashow, L. Michel and G. C. Wick for 

many discussions about these ideas, and would like to thank them. I would also 

like to thank J. Prentki and the Theoretical Study Division of CERN for their 

hospitality while this paper was written. 
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II. ABELIAN EXTENSIONS OF THE POINCARE LIE ALGEBRA 

Let G_be an arbitrary Lie algebra. As we have said, an extension of G is L^*. 

a pair (G’, $) consisting of a Lie algebra G’ and a homomorphism C#I of G’, 
* -t4 w 

onto G. M-4 
Let z be the kernel of $. It is an ideal of 2’) and2 isomorphic to the 

quotient algebra G’/K . -4% 
In [2, Part RI] we have given a short exposition of the 

standard results describing how the second cohomology groups classify to 

abelian extensions (i. e. , the case where ,K is abelian). In this section we will 

apply this to the case where G is the Poincare’ algebra, an exercise that does * 

not seem to have been done in full detail before. * 

Recall how Lie algebra cohomolo,q is related to abelian extensions. Suppose 

K and % are Lie algebras withE abelian. 
hr 

Let $ be a representation of ,G by 

linear transformations on 5, and let w: (X, Y)-+o (X, Y) be a 2-cocycle of G 4% 

with coefficients in K, i.e., 

w(X,Y) = -w(Y,X) 

w(X, [Y, Z] ) - W([X,Y IZ) - w, IT, ZI) 

= #J(Y) (qx, z,) - $@+GGY)) - #m (WV* z,) 

for X, Y, ZE G. 

Construct Lie algebra ,G’ in the following way: 

G as a vector space is just K@ G. F 0++ w 
The bracket [, ] 1 in 5 is constructed as follows: 

[XSYI 1 = 0 for X, Y e K. 

[X*Yl1 = c)(X) (Y) for Xeg, Ye% 

[XSYI 1 = [XYI + w(x,v 

(2. 1) 

* 
for Xes, YrG . rvr\ 

We note however a preprint by A. Galindo, “An extension of the Poincairg 
group” giving an example of a non-trivial abelian extension. Such an example 
was also discovered earlier by A. Glashow, and mentioned briefly in E. Stein’s 
talk at the 1365 Trieste conference. It will be presented in more detail here. 
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Let Q! denote the map: g --c 2 which sends X + Y into cr(X f Y) = Y for 

XeG, Ye.5 Then, 2.1 tells us that cy is a homomorphism with kernel K-, i.e. , 

g1 is an extension of $ by K. Standard results assert that every extension of rh 

2 by K- arises in this way, and that this is a semidirect sum, i. e . , there exists 

a homomorphism B : G (c - E such that cup = identity, is and only if the cocycle 

w is cohomologous to zero. 

Note one sidepoint that is of interest for the theory of deformation of Lie 

algebras: If formulas 2.1 are used, with w (X, Y) replaced by A w (X, Y), where 

A is a real parameter, we obtain a one-parameter family of Lie algebras, each 

of which is an extension of 2 by I&, which for A = 1 is ,C’, and for h = 0 

is the semidirect prod&of 2 and K. 

Let us now turn to the case where G is the Poincarg algebra L + T, where M * v- 
& is the homogeneous Lorentz algebra and K is the abelian ideal formed by 

translations. Suppose 0 -5 - G’ --L G - 0 is an abelian’ extension. As we have seen v++ m 

in [2], wecanchoose w in its cohomolo,gy class (which only changes G’ up to ))a* 

an isomorphism ) so that 

X(w) = 0 for XeL (2.2) 

XJu = 0 for XEL (2.3) 

Equation 2.3 then says that w is determined uniquely by its reduction to 

T x T’, i. e., A we are given a”tensor” mapping skew-symmetrically 2 X T --. K. 
* -% 

In addition, 2.2 says that this tensor is invariant under the action of L on these N% 

spaces. Now 2 is the Lie algebra of SL (2, C). All invariant tensors of this 

group can readily be found by the usual Clebsch-Gordan analysis. Thus, in 

principle, we could solve the problem of writing down all possible abelian ex- 

tensions of the Poincare algebra. 
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of course, not every such invariant tensor will satisfy the cocycle condition. 

Let us examine this in more detail. Suppose then that w : G x G -L K satisfies - d Ph. 

x.J w = o = x(w) ford1 X~L . * (2.4) 

Let us look for the condition d o = 0. Now, 

x(W) = X, Adw + d(Xjw) ; 

hence from 2.4 above follows the condition 

XJdw = 0 for XeL. HI 

Suppose XE T. The condition that d w = 0 is now: 

or 

kjdw(Y,Z) = 0 for XE~, Y, ZEG, d%l 

X(w)(Y,Z) - d(xJw)(Y,z) = o 
or 

Let us work through conditions 2.5 

Case 1: Y, ZE:. The condition is then: 

- 

(2.6) 
Case 2 : Y,ZeL* -. Then 2.5 is automatically satisfied. 

Case 3 : YE&, ZE 2 Then onlv the following terms survive from 2. 5: 

- w ( [X,YI,Z ) - (P(Y) (wm) + w(X,[Y,Zl) = 0, 
or 

- w([X,YI,Z) - w(fY,Xl,Z) - qx,[Y,zI) + w(X,IY,Zl) =o> 

which again satisfied identically. Then 2.6 is the only nontrivial condition. Note 
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that it too is automatically satisfied if, for example, 

wy~) = 0 

Thus we have proved the following: 

(2.7) 

Theorem 2.1 Suppose 2.7 is satisfied. Then every bilinear, skew-symmetric 

mapping w:TxT- K which is invariant under L defines +-v-w - 

an extension of ,$ by K. m 

Next, we should inquire if the abelian extension by K constructed in this W 

way are semidirect products. Suppose otherwise, i. e. , the corresponding 2- 

cocycle w satisfies 
0 = X(w) = x.Jw for XeL , w 

and in addition: 

w = de, for some 1-cochain 8 . 

Then, d(X(0 )) = 0 for Xe&, i.e., X(6 ) is a 1-cocycle. If, for example, 

,K, contains no subspace that transforms under Cp (L) like the representation of -.-at 

Ad 2 in T , we know from [2]- that I$( $I ) = 0, i. e. , there exists a WxezK- 

such that 
X( 6 ) = dWX for XC& . 

If. also, $ (L ) acting on 5 has no invariant vectors, one sees that the assignment m 
X- Wx is linear, and is invariant under the action of k also. Then, if E& con- 

tains no subspaces that transform under C#I (L) like the adjoint representation of we 

& in itself, we see that Wx = 0 for Xek, i. e. , 8 is an L-invariant linear 

mapping of 2 - K, forcing w = 0 if no such mappings exist. Summing up, uh 
we have proved: 

Theorem 2.2 If $I (&) acting in E has no invariant vectors, and no sub- 

spaces transforming like Ad L in L or T, then every nonzero -uY VW AM 
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2-cocycle determined by an L invariant map: T X T - K Ih rq M - 
is not a coboundry (as a corollary, the extension of G by - 

K determined by the cocycle is not isomorphic to a semi- rcI 
direct product ) . 

The simplest example of an w satisfying the conditions of theorems 2.1 and 

2.2 can be described as follows : Let K be the vector space consisting of the 
w- 

skew-symmetric bilinear forms on T, which we can symbolize by T A T. Let V.-h -6 clrh 
w be the skew-symmetric tensor product & X T - T A T. This leads to an * 2 *uI nn I*ar 
abelian extension of G, the Poincari algebra, by a six-dimensional abelian y*r, 
kernel. This algebra was first constructed by S. Glashow (and was the example 

that started this investigation). We will call it the Glashow Algebra. 

In summary, we might say that a good technique exists for studying and 

classifying the abelian extensions of the Poincare’algebra. How to reduce 

(finite dimensional) extensions by arbitrary Lie algebras to this case is more or 

less known, although difficult to find when needed; hence we will now present a 

short exposition. 
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III. EXTENSIONS WITH NONABELIAN KERNELS 

In this section we will briefly review the standard material describing how, 

in many favorable cases, extension of Lie algebra by nonabelian kernels can be 

reduced to extensions by abelian ones. 

Suppose $ is a Lie algebra, and K, K’ are two ideals of 2, with K’ < K, -.a& &P-+ 
and $+ = z’/z There is a linear map: 

G’/K’ - G’/K = G , 4v-A -yh hrr, 

with kernel K/K’. It is readily verified that this map is a Lie algebra homo- 
--.N 

morphism. Hence, if K/K’ is abelian, we have “resolved” the extension WV.* 

0 -K-G’ - G -0 into a sequence of two extensions: rm - e-l 

0 -, K/K’ - G’/K’ - G -c 0 (3.1) we.- m&-A rrH 
and 

0 - K’ - G’ -. ,G’/>’ - 0 (3.2) - MI 

Suppose now that 5 is a solvable Lie ideal of s’ . Choose 5’ as [s, I$ ,. 

Then, K’ is an ideal in K and, by the Jacobi identity, even an ideal in G’. 

Hence this remark applies, and we see that we may consider the problem of 

classifying all extensions by solvable Lie algebras as “solved” if it is “solved” 

for abelian ones. 

Let us examine the situation in case $ is the Poincare/ group, and 5 is 

a “two-step” solvable algebra, i. e. , 

K’ = &,E] , 
&‘,EJ = 0 . 

Now, 3.1 determines a representation $ of G by linear transformations 

in K/K’, and an element we Z2 ( C#I ). Recall that G’/K’ is described as follows: 
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G’/K’ = G @ I$$ (as a vector space). --J--M - 

[X, Y]’ = [X, Y] + w(X, Y) for X, YEG - 

[x, Y-j’ = 0 for X, YE K/K’ 

[X, Y]’ = c)(X)(Y) for;:: 
w%) YE K/K’. 

*r*M 
( [ ,] is the bracket in G’/K’) . 

(3.3) 

Let 2 = 2 + I’, with L the Lorentz subgroup, T the translations. We -.A I 

knew that u can be chosen so that 

w(X,Y) = 0 for XeL , YEG (3*4) UVU 

Thus, 2 is a subalgebra of G’, not merely identified with a subspace. - 

Now, 3.2 determines a homomorphism $’ if G’ by linear transformations 4-N 

on K’, and a 2-cocycle W’E Z’($‘). 

in,;&‘. 

Notice from 3.3 that 2 + z/K-’ is an ideal 

(In fact, [z +,K/z’ , 2+$/E’] C K/K’ , so that this algebra is itself 

solvable. It is nilpotent if and only if @ (T ) = 0. ) Thus the rules given in v-6 

[2] for computing the second cohomology group for semidirect products applies 

again, and we see, qualitatively,, that everything can be reduced to computing 

tensors of SL(2, C) . We will not go further with the details here. 

Extensions by semisimple algebras are readily described. If 

0 -K-G-G-O, (3.5) WIN--m 

with z semisimple; then, by the Levi-Malcev decomposition [3], 

,G’=E+E, 

where R is a maximal solvable ideal, the “radical”., and 2 is a maximal semi- w 
simple subalgebra, which we can suppose contains K. Since K is an ideal of - w 

g, [R,,$] = 0. By the theory of semisimple Lie algebras, S can be written as clr 

the direct sum K f H of two ideals. /w.* 
Hence 2 = G’/K is just R + 2, and G’ 

-ti 4J 0-e 

is the direct sum (as a Lie algebra) of R + H and K; -CM HA 
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This “triviality” of extensions by semisimple algebra enables us to reduce 

the general extension problem to that for the solvable case, i. e. , ultimately, to 

the case of abelian extension. Suppose that we are given an extension 3.5, with 

K an arbitrary of Lie algebra.*Applying the Levi-Malcev theorem again, 
W-4 

K =R+S, 
- m-3 

with R a solvable ideal, S a simisimple subalgebra. Then, we have an exact .v.. ‘- 

sequence: 

or 

0 - K/R 4 G’/R -$/> - 0 , 
MM A* 

0 -s - ,G’/R - G - 0 . )H )m *m 

By our preceding remarks on extensions by semisimple algebra , 

G’/R is just G@ S . 4--L* -6% 
Thus, the problem is reduced to finding extensions of ,G + S by a solvable Lie f+ 

algebra. 

* 
Of course, to use the Levi-Malcev theorem, we can only consider finite 

dimensional Lie algebras. 
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IV. DISCUSSION OF THE GEOMETRIC DISCRETE SYMMETRIES P AND T 

G will continue as the Poincare Lie algebra L + T . Suppose q3 is a repre- 
)*r va. VW 

sentation of G by linear operators on a vector space V, with a given field of w.. 

scalars (say, the real or complex numbers). Suppose 5 is a Lie algebra (under 

commutator) of linear transformations on V, such that 

Then, of course, ,G’ can be constructed as the semidirect product algebra 

z+K, with r- 
$5 = ety,~ l 

The “physical” P and T, denoted by P’ and T’ , will be invertible linear 

transformations: V - V such that: 

@(P(X) = P’ $(X) PI-l 

C#I (T(X) = T’ $(X) T’-1 for Xes 

If such a P’ and T’ can in addition be chosen so that 

P’ KP’-’ =K M + ’ 

T’K@ = K 
A+-4 Aw- ’ 

we obviously have succeeded in defining the “physical” discrete symmetries as 

automorphisms of G’ . rrh 
The commutation relations that are satisfied by P’ and T’ are also easy 

to discuss via Shur’s lemma ( if p ((3) acts irreducibly on V ) . For then 

P’2 p(X) = p(X) PI2 

Tt2 p(X) = p(X) Tt2 for XEG. 

Then, if V is a complex vector space, if p(G) act complex-linearly and 

irreducible, if P 72 and T 2 are complex linear (recall that this will be so even 
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I 

if T’ is complex antilinear), i. e. , 

T’ (Xv ) = h*T’(v) for a complex number A,VE V, with At 

the complex conjugate 

then they are multiples of the identity. 

Since this analysis is, in effect, done in every back on relativistic quantun 

mechanics, and is very straightforward when done from this point of view, we 

shall leave it at this point. 
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V. DISCUSSION OF CHARGE CONJUGATION, C 

As we have just seen, there is a straightforward algebraic motivation for 

the definition of the 71physical’t PI and T’ that one finds in quantum mechanics 

books, Let us turn to charge conjugation. In effect, we will give in general the 

“explanation” for C that one finds in quantum mechanics books in various special 

cases. 

Suppose again that g-is the Poincare’ algebra, with p a representation of 

gby linear transformations on a complex vector space V. Suppose also that V 

has a “complex conjugation” transformation v --cv* which has the following 

properties: 

It is linear over the real numbers. 

(Av)* = xv for each complex number A . 
** 

V = vforveV . 

Let p* denote the following representation of g by linear transformations on V: 

p*(X)(v) = (p(X)(v*))* for veV, Xeg. 

Notice that p*(X) is also a complex linear transformation of V, and X up *or) 

is also a homomorphism of G by linear transformations on V. It may be equivalent 

to the original representation, i. e. , there 9 be a complex-linear transforma- 

tion C: V -V such that: 

p(x) = c-lp*(x-)c . for XE~, 

p(q(v) = c -l (p(x)(v*))* C for WV. 

Now let Cl be the following linear transformation of V: 

C*(v) = Cv* for ve V . 
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Suppose K is a Lie algebra of (complex linear) transformations on s, with 

(y-1 KC’ c K F ’ 

We can construct the semidirect product 8’ of 2 with s, as before. Note 

that C’ is an anticomplex linear transformation of V , i. e. , satisfies: 

C’(Av) = h*C’(v) for A a complex number, veV, 

and C’ commutes with p (9. Thus, C’ induces an automorphism of 2’. 

Notice also that C’ takes a “positive energy state” of g into a “negative energy 

state. ” Let X0 be the generator of time translations in 5 A positive energy 

state is an eigenvector of ip @J corresponding to a positive eigenvalue: 

ip(Xo) (v) = Ev , or 

p(xd(v) = -iEv , with E ~0. 

Then, 

pcxo)(C’v) L &-+ P&J c’ (VI 

= c’ P(xoHv) 

= C’ (-iEv) 

= iE (C’v) , 

i.e., C’v is a “negative energy state.” 

Then, we see that C’ has the algebraic properties to be expected or the 

charge conjugation operator for the one-particle states, e.g. , solutions of the 

Dirac equation, before second quantization. 

The operator C can also be readily interpreted as an automorphi.sn, of an 

extension of G . Suppose that: kr 

cI$-l C- K . A-- 
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Let $ as a vector space equal 

where I& and I& are two “copiesrT of J& 

Define C: s’*G’ - as the identity on E , so that 

and 
C intertwines the action of g on& and ,I& 

It should be clear that this is the algebraic version of the reinterpretation of the 

Dirac one-particle theory by constructing “anti-particles, IT with charge conjuga- 

tion sending particles into anti-particles. 
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VI. AUTOMORPHISMS OF EXTENSIONS OF THE POINCARE’ALGEBRA, 

BY SEMISIMPLE ALGEBRAS 

Having briefly reviewed some of the algebra involved in the usual definition 

of P, T and C, let us inquire if the same qualitative results can be derived from 

a simpler set of assumptions. Suppose 2: is a Lie algebra with a semisimple 

(finite dimensional) ideal J$ such that the quotient s’/K- is the Poincargalgebra. 

As we have seen, G’ is a semidirect sum of a subalgebra isom<r;7hic to J& 

(which we also denote by GJ and 2, i. e., 

Let A be an automorphism of c . 

Theorem 6.1: A maps K- into itself. 

Proof : A@ must be a semisimple ideal of G’ . Its projection 

into G must be a semisimple ideal of G, the Poincarzalgebra. There are none, - 

hence its projection is zero, i.e., A(K) c K . - - 
Now, let x be the projection of +C’ onto 2. From theorem 6.1, we see 

that ETA, considered as a mapping G--+5 is an automorphism. Let us denote 

by A’ this automorphism of +GG 

The bracket [G, K] C K determines a linear representation r$ of 2 by 

derivations of & 

Suppose that : 

For every automorphism A’: $-WE, there is an automorphism 

such that 

for XEG P-- (6.1) 



- 

(For example, this is so if $ is the representation of & by Dirac matrices, 

with $4~ = 0. The physicists’ version of this statement is that automorphisms 

of the Dirac matrices can be found corresponding to parity and time reversal, 

which are the only outer automorphisms of the Poi ncare/ algebra. Note that 

the existence of a! is automatic if A is an inner automorphism of G.) 

6.1 can be reinterpreted as follows: Define A” : g-5’ as follows: 

A” (X) = A’(X) for Xeg 

A”(X) = Q(X) for XEK . 

Then AT’ is an automorphism of x . 

Let us compare A and A” , i.e., put 

B = fi”-l . 

Note that nB is the identity on s and BK- c Kk However, B does not 

necessarily map (; into itself. 

Since & is semisimple, every derivation of & is an inner derivation. In 

particular;xe see that there is a homomorphism. 

such that 
for XE~, YES . 

For XeG- , put 

o(X)&BX-X, 

i.e., o(X) is the projection of BX in &. 

Then, for XC%, YE%, 

B[X, Y] = [BX, BY] 

=B[$ FJ > Yl 

= [B$ (3, BY] 

= [X, BY] + [o(X), BY] 

= [$ 0, Bd+[w@% BY] - 
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or 

Since & ,has zero center, we have 

B+J=rf-@)+ @), 

BX=X+@(X) -Be@) (6.2) 

for XE&. 

Now we have proved: 

Theorem 6.2. Suppose condition 6.1 is satisfied. Then every automorphism 

of 2 is the product of one satisfying 6.1 and one satisfying 6.2. 

The automorphisms of type 6.1 are essentially determined by the automor- 

phisms of 2, i. e., are like parity and time reversal, while those satisfying 6.2 

are essentially determined by the automorphisms of “internal symmetry group” 

$ i.e., are like charge conjugation. 

Let us ask whether conversely any automorphism of & will serve to define 

such an automorphism of g. Suppose then that B:K-+K is an automorphism, 

and we use 6.2 to extend B to G hence to GT n.2 -. Reversing the steps leading to 

6.2 shows that B [X, Y] = [BX, BY] f or Xes, YeG. We must investigate the 

case where X, YE% 

Bb, Y] = [X, Y’j + 4,X, Y] - B$[X, Y] 
= [X, Yl +bWs MY)] - [W(X), WY)] 

bx, BYI = b + @(Xl - B+(X), Y + G(Y) - B+(Y)] 
= b, Yl+ k G (Y,] - [X, W( Y>] 

+ [W% Y] + [@(XL NY)] - b#dW, WU)j 
- bWXh y’l - bW(W, G(Y)] + [B+(X), WY)]= 

= k Yl + bNX)s MY)] - [WU WY)] 
+ [#dXh (P(Y)] + [W‘?, NY)] - b(X), WY)] 
- [W(X), Wd - i%(X), NY)] + b$W, W(Y)]. 
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Thus we have: 

Theorem 6.3. A given automorphism B of K- extends to an automorphism 

of G’ which satisfies 

BX-XC& for cu XEG 

if, and only if for X, Y ~2 : 

These conditions are, of course, automatically satisfied if B+p) = G(X) for 

all XE G. - 
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VII. FINAL REMARKS 

In summary, we have presented in this paper several comments that prepare 

the way for an attack by the methods of Lie algebra theory on some of the per- 

plexing problems concerning the role of the discrete symmetries in elementary 

particle physics. These remarks are not essentially new (they follow L. Michells 

idea that the extensions of Lie algebras are the useful objects to study) but hope- 

fully they might serve to point the way toward new problems that may be of physical 

interest. We have in mind the following problems, which we will discuss in later 

papers : 

a. 

b. 

C. 

d. 

Study from both a mathematical and physical point of view the non- 

semidirect product e,xtensions of the Poincare’algebra, and their auto- 

morphisms. 

A more detailed analysis of the semidirect product extensions. (Much 

of this is probably contained in a different language in the work in the 

physics literature on invariant wave equations. ) 

An algebraic formulation and proof of the PCT theorem, 

Study of the infinite dimensional extensions of the Poincarealgebra, 

particularly with the aim of isolating the algebraic aspects of the work 

in the physics literature on “gauge invariance. I1 
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