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ABSTRACT 

To obtain high order integration methods for ordinary differential 

equations which combine to some extent the advantages of Runge- 

Kutta methods on one hand and linear multistep methods on the other, 

the use of “modified multistep” or “hybrid” methods has been pro- 

PosedIll, PI, 131. In this paper formulae are derived for methods 

which use one extra intermediate point than in the previously pub - 

lished methods so that they are analogues of the fourth order Runge- 

Kutta method. A five stage method of order 7 is also given. 
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1. Introduction 

In papers by Gragg and Stetter [ l] , by the present author [ 21 , and by Gear [ 31 , 

integration processes were considered which combine features of both Runge-Kutta 

methods and multi-step methods. In fact these new methods were multi-step ana- 

logues to third order Runge-Kutta methods in that one additional derivative calcu- 

lation was made at some point between steps. There is no reason in principle why 

more than one of these additional evaluations should not be made and the present 

paper is mainly concerned with the case of two evaluations. It is found that an 

order of accuracy 2k + 2 is possible and examples of processes where this order 

is achieved and which are stable exist for k = 1, 2, . . . , 15. Detailed formulae 

for some of these cases are given for k = 2, 3, 4. 

For a stable k step method requiring r intermediate calculations per step 

(that is a total of r + 2 derivative calculations per step) it seems worthwhile to 

aim for an order 2k + r. For r = 0 this has been shown by Dahlquist [ 41 to be 

possible only for k < 3. For r = 1 it appears to be possible up to k = 7 [ 21 and, 

as just noted, it appears to be possible when r = 2 up to k = 15. r = 3 is a par- 

ticularly interesting case as the Runge-Kutta case, k = 1, does not exist. 

However, using a construction that could in principle be used for cases of 

higher k, we have found that there exists a two parameter family of methods of 

order 7 with k = 2, r = 3. One example of such a method is given here. 

Tl;e initial value problem whose numerical soWion is sought will be written 

as 

dY 
x = f(X,Y) 3 Y(X,) = Y, (1) 
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where y, f are vectors with N components. For some purposes it is more 

convenient to consider the autonomous system 

2 = f(Y) 9 Y@,) = Y, (2) 

where y is the vector (x, y) with N + 1 components, f = 

YO 
= (x 0’ Y,). 

2. The Corrector Formula for the Four Stage Methods 

Postponing for the present considerations as to how yneu, y,-, are to be 

computed, we write 

k 

Y, = c 
j=l 

for the formula with which y, = y(xo + nh) is to be computed, h being the step 

size. fj for any subscript j denotes f(xo + jh,yj). If u,v are given constants 

there are 2k + 3 coefficients Al, AZ, . . . , Ak, bl, b2, Bo, Bl, . . . , Bk to be 

chosen so we shall seek values of these coefficients so that 

k 

0 = -p(O) + 
c 
j=l 

k 

-hu) + b2p’(-hv) + 
c 
j=O 

(4) 

for all polynomials p of degree <= 2k + 2. We shall suppose that u # v and that 

neither equals one of 0, 1, 2, . . . , k . 

Consider the function 

k 

O(z)=-;+z&+h 
bl 

(z+hu) 2+ 
b2 

(z+hv) 2+ 
j=l 

(5) 
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I 

so that the integral L(p) given by 

L(P) = & J P(Z) Nz) dz (6) 

C 

where C is a counterclockwise circle with centre 0 and radius R > max 

( bu\, bb blk) 9 e xp resses the error in (4) for a polynomial p. For L(p) to vanish 

for p(z) any polynomial of degree 2 2k + 2 it is clearly necessary and sufficient 

that 

IwI = O(lzp+4 (7) 

as lzj-+~. 

If we write 

K(k’ )2h2k+ 2 
+(‘)= k’ 1 + hU 1 --- 

I-I (z + hj)2 
z + hu 2(z + hu) 2 z+hv (8) 

j=O 

we see that (7) is satisfied and that (8) is of the form of (5) if the constants U, V, K 

are chosen so that the residues of 4(z) (given by (8)) at z = -hu and at z = -hv are 

zero and so that the residue at z = 0 is -1. Assuming that u, v do not have values 

such that one of the right hand sides of (9)) (lo), or (11) vanishes we find 

where 

k 

l/U = 
c 

1 
j-u 

j=O 

k 

l/V = 
c 

1 
j-v 

j=O 

i+??--$--?!- 
U2 v2 

+ ~+~-~-~ 
u2 I.2 v2 v3 

Hk 
= 1+;+. . .+k>O,Ho=O. 
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Writing (8) in partial fractions and comparing with (5) we find 

k!2 

(j-u) 2 
j=l 

b2 = KV - k!2 _- --. 
.2v2 k 

I-I (j-v12 

(12) 

(13) 

j=l 

V 

2(j-v)2 
, (1% 

1 
A. 

1 
J 

--2f++-- V 

(j-u) (j-4 Wv)2 (W)3 
+ 2Bj(Hj-Hkmj) 

At this stage it is convenient to examine the error in (4) when p(x) is not a 

polynomial of degree 2k+2. We will suppose that p(x) E C 2k+4 [a,b] where 

[ a,b] contains 0, -hu, - hv, -hk. We can expand p(-h), p(-2h), . . . . P (-kh), 

hp’(-h), hp’(-2h), . . . . hp’(-kh), hp’(-uh), hp’( -vh) in Taylor series about 0 up 

to terms in p t&+3) (0) with remainder terms O(h 
2k-t 4 

) as h- 0. Substitute 

into the right hand side of (4) and we obtain, since Al, A2, . . . , Ak, bl, b2, 

Bo, Bl, .a., s were chosen to make this expression zero for a polynomial of 

degree 2k+2, only an expression rp (2k+3) (0) h”“‘,” + O(h2k+4), where E is a 

constant. To determine E we write p(z) = z3 n (z +hj)2, for which 

pt 2k+3) 
j=l 

(0) = (2k+3)! . We now have 

h2k+3 (2k-t3)! E = $ b(k! ) h 
2 2k+2z 1 + hU 1 hV --- 

z + hu 2(z + hu)2 z-thv 
dz 

C 
2(2-t hv)2 

(16) 
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I 

from which 

E =&- (v-ll+-yy i-i . 

3y applying this argument to every component of y 

e1-:-i,r in (3) to be 6 y (2k%3) tslJ h2k+3 + O(ll 2k%4 ) . 

3. Stability Considerations 

(17) 

in turn we find the 

So far the only restrictions that are imposed on the parameters u, v are 

tA;.;c ihey are not equal, that each differs from each of the integers 0, 1, 2, .*., k 

and tLat ;he right hand sides of (9)) (lo), (11) do not vanish. However, for a given 

Ii , ii may happen that some combinations of u, v do not yield a formula (3) which 

is stable when used as a final l’corrector. ‘I Excluding the “principal root” at 1, 

Ict R be the greatest magnitude for a root of the equation, 

” - Al2 k-l z -A2zk-2-... -Ak=O (18) 

R is a convenient measure of the stability of the formula: if R < 1 the 

.;ic,>Aod is (asymptotically) stable and if R > 1 it is unstable. 

For k = 1 only the principal root is present. For k = 2 it is found that 

R = j (15uv - 7(u+v) + 4) /(15uv - 23 (u-w) -I- 36) 1 . 

For higher k it has seemed most convenient to study R as a function of 

- 

i. , i’ ilUl~~eI%Xdly. For k = 2 it happens that R < 1 whenever u, v E (0,l). 

Y’isure 1 shows the contour lines R = 1 for k = 3, 4, 5, 6, 7, 8 and U,VE (0,l). 

For each curve, the value of the corresponding k is written beside it. Here a 

co;;vcntion is adopted in that the side of the curve where k is written corresponds 

to the region for which R < 1. We see from this figure, that the region for which 

u, v ,,I ,:ve stability tends to decrease in area as k increases. The same pattern 

co;;.zties up to k = 15 but there does not appear to be any region where R < 1 
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for k = 16. To illustrate the behaviour of R for k= 6, 7 , **a, 15, Figs. 2 and 

3 are presented. As u varies from .51 to .64 the values of v which minimize 

R and the values of the minimum R have been computed. Since the v which 

minimizes R is approximately .3u it was found convenient to plot v - .3u as a 

function u (Fig. 2). The minimum value of R is plotted in Fig. 3. 

4. The Predictor Formulae 

We now consider a method for computing the values of ynmu, y,-, and the 

“predicted” value of y,. The formulae proposed are 

k k 

Y = n-u c A .Y lj n-j + h C Bljfn-j 

j=l j=l 

k k 

y n-v = A2jYn-j + h c c 
j=l j=l 

k k 

Yn = c + b32fn-v + C B3 jfn-j 

j=l j=l 

(19) 

(20) 

(21) 

The value of y, given by (21) we will write as Tn and the final “corrected” 

value as yn . For simplicity we will suppose that xn = 0 and for compactness of 

notation we will consider the autonomous form (2) of (1). Thus we consider the 

overall procedure for finding y(0) from y(-h), y(-2h), . . . . y( -kh) using the 

formulae 

k k 

Y(-hu) = C AljyW) + h C B,jf (y(-W) 9 (22) 

j=l j=l 

-7- 



k 
y(-hv) = c A2jy(-hj) f h b 

j=l 
[ 21f(~(-hu)) + $ B2f(5+W] , (23) 

k 
F(O) = C A3jY (- 3) 

j=l 
11’ + hb31f(y(-hu)) + b32f(y(-hv)) + 5 B3j’(y(-hj))] , (24) 

j=l 

k 
Y(C)) = c Ajy(-hj) + h bIf y(-hu) 

j=l 
[ ( ) t- b,f (y WV)) + b3f(3P)) + $3; (Y@ j jj, 

(25) 

w!;cre we have written b 3 in place of B. . 

We can choose the coefficients in (22) so that y(-hu) is given exactly when 

the components of y(x) are polynomials of degree 2k-1. When this is done, sup- 

pose the error can be written in the form 

E rii) 3, (2k) (o)h2k + crk*l) y(2k+‘) ((-,)~i21c+-1 + el (2kc2) y(21~+2) (o)h2k+2 + 0(h2k+3) . 

The same is true for (23), (24), and we suppose that the error for these formulae 

CCL-* be written in the same form (with subscripts 2,3, respectively on the 6 7s) 

where it is supposed that exact values are used for all quantities on the right-hand 

sides. If exact quantities are used on the right-hand side of (25) the error in this 

quantity is E y (2ki-3) (o) h2k+3 + 0(112k+4 ) where E is given by (1’7). Using the 

same type of calculation as in [23 we now find the total error in y(O), the approxi- 

mation to y(O), due to all sources. It is given by 

- F(O) - y(0) = h2k+I .+ b2crk) +. b3Efk) &k y(2k) 

+ h2k+2 + b C(2k+l)+ b ,(2k+l) (2k+l) 
22 33 
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+ b2b2&k) + b3b3l’r) + b3b32erk) 

)( > 

g 2 y@) 

-L 
blu $“k’ + b v 6 (2k) 

2 2 

+ h2k+3 E (2k+4 + b E (2k+2) + b af 
dyy 

(2k+4 
11 22 

+ E y(2k+3) 

+ h2k+3 

(i 

(2k+l) 
b2b21’l 

+ b3b31t1(2k+1) + b3b32E2(2k+1) 

e1’2k) 2 2 +b v’e(*) 

)( 

a3f 

2 

f2y(2k) + a2f CJf f y(2k) 
d7 dY 

UE’(ur) 
1 (2k) + b3b32ve2 1 8f 8f f y(2k) - - ay au2 

(26) 

In this expression, the various factors involving derivatives of y and f are 

supposed to be evaluated at y = y(0). As in [Z], the various products of such 

factors are to be interpreted in a conventional way. Thus one would associate 

with y(n), f, 2 , ‘$- , . . . , the tensors y w ( f’,fI 
3 

Two tensors in juxtaposition are supposed contracted over subscripts in the first 

member and superscripts in the second in such a way that the terms actually 
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occurring above have only one non-contracted superscript. Note that a term of 

order h 4k+1 is present in (26). When k > 1 this term could be absorbed into 

o&2k+4). 

If the method is to be accurate to terms in h 2k+2 then we see from (26) 

that 

w 
blel + b2ep) + b3 erk) = 0 (27) 

b E (2k+1) + b 6 (2k*1) + b 6 @+l) = 0 
11 22 33 

b2bZl e;2k) + b3b31 +““’ i- b3b32 e$*) = 0 

w blu 5 + b2v ei”“’ = 0 

(28) 

(29) 

?Ve now derive formulae for the coefficients in (22) and (23) so that these are ac- 

curate for polynomials of degree 2k-1 and so that (27) is satisfied. We then find 

formulae for the coefficients in (24) so that this is also accurate for polynomials 

of degree 2k-1 and so that (28), (29) and (30) are satisfied. 

By analogy with (5) we write 

k A 
Q,(Z) = 

1 ---I- z+hu c e-&i- +h 
j=l 

z-thj 

b 
31 -t 

(z+hu) 2 

b32 + 
k 

(z+hv) 2 
c 

B3j 

j =1 (z+hj) 2 > 

(31) 

(33) 
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and 

Lj(p) = r 2lrl / 
P(z) Qj(') dz s j = 1, 2, 3 (34) 

C . 
so that L1~), L2(p), L3@) is the error in (31), (32)) (33) respectively for a 

polynomial p(z) . Lib) is to vanish identically for j = 1, 2, 3 when p(z) 
J 

is of degree 2k-1 . Hence, 

I I 

Qj ('1 = O(lzl -2k-1) , j = 1, 2, 3 , 

It is clear that q,(z) must be given by 

(36) 

where the numerator has been chosen so that the residue at z = -hu 

Thus 

k 

l-l (W2 

Blj = 
&l 

(j-u) [(k-j)! (j-l)!] 2 

We write v2(z) in the form 

h* k II (v-j) 2 

v2p,(4 = - 
j=l 

(z+hv) b (z+hj)2 
j=l 

hR 

(z+hu) 2 

equals -1. 

(37) 

(38) 
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so that 

Bzj = 
Q=l 
’ e-Q)2 2 [ P +Q(- -+ ,.:,2) 

(j-9 [(k-j)! (j-l)! ] 
(40) 

k 

m 
(v-Q) 2 

A 
2j = (j-v) F(k-j)! (j-l)!] 2 

(41) 
11 

+B2j (2~j-lwS-j] + j-v) 

k 
QR 

rl 
(v-j) 2 

b 21= 
J= 
k 

(u-v) (u-j) 2 

(42) 

The form for v2(z) given by (39) has the correct behavior at infinity and at 

-11, -2h, . . . , 41, -uh, -vh. However, P, Q, R must be fixed so that the residue 

at -hu is 0 and the residue at -hv is -1 . 

We thus have 

k 
l=L+2 -&= 
R v-u c 

j=lJeu 

, (43) 

. (44) 

To obtain a third equation for P, Q, R we use (30). In the same way as 

for 6 we obtain for E. (2k) , j 

J 
= 1, 2 the expression 

w = 
h-2k 

s 

2 

7 
2xi (2k)! 

j=l 
l Qj (Z) do 

C 

(45) 
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so that 

(46) 

c (2k) = p 
k 

-- 
2 (2k)! j=l (W2 l r-l 

(47) 

Using the expressions (12), (13) for bl, b2 and substituting in (30) we find 

v,(z) is now determined. We must now choose v,(z) of such a form that 

(27), (28), (29) are satisfied. This can be done by defining Q,(Z) by the 

equation 

b&z) f b2’P2(z) i- b3Q3(Z) + ;Q(Z) = 0 9 (49) 

To see this, we observe that Q,(Z) defined thus has the correct behavior at 

-hu, -hv, 0, -h, -2h, . . . . -kh and at infinity. To see that (2’7) and (28) are 

satisfied we see that 

@t-m) = 
h-2k-m 

j 27ri (2k+m)! / 

Z2k+m 
Qj(Z) do 

c 

(50) 

for m = 0, 1 and j = 1, 2, 3. Making use of (49) we see that 

k c b e(2k+m) = _ 2;i-;;;-m;i 
j j 

z2k+m+l Q(Z) dZ=o . 
jxl / 

C 

since IQ(Z)\ = O(lzl -2k-4 as 121--+00. To see that (29) is satisfied, we 

multiply (49) by (z+hu) 2/h and by (z+hv)2/h and take the limits as z-.-hu 

(51) 
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and z + -hv respectively. We find 

b2bZ1 + b3b31 - ubl = 0 9 (52) 

b3b32 - vb2= 0 , (53) 

so that (29) follows immediately from (30). Using (49) we now list expressions 

for all the coefficients in (24). 

’ A3j = i;l; (jAj - blAlj - b2A2j - Bj) 

B3j 3 
= $- (jBj - blBlj - b2B2j’ 

bgl = + tub1 - ‘32”21) 

1 
b32 = 5 vb2 

, (54) 

7 (55) 

, (56) 

. (57) 

5. The Truncation Error 

In this section we shall find expressions for the coefficients in the asymptotic 

error term which we see from (26) to have the form 

h2k+3 %+3) ) af 
+% a$ y 

(2k+2) y(2k+l) _ c~ a2f fy(2k+l) 

2 au2 

df 3 y(2k) _ ,g d2f f af yGW + L c 
2 

+c3 ay ( > 3 au2 aY 2 4 
f2 ,(W + af 

i3Y2 

where we have supposed k 7 1 and the c’s are given by (26). From (49) we 

immediately find c;= - (2k+3) cl = - (2k+3) E . From (52), (53, we find 
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I 

that c2 = ck, c3 = ~5, c4 = ci . c2 is given by 

c2 = blU~l(21’+1) + b2p2(2k+1) = 
h-2k-1 

2ni (2k+l)! Ql (Z) + b2v Q2 (z) 1 Z 
2k+l dz 

(58) 

Since l’J Q#) + b2v(Px(Z)) P(z) dz = 0 when p(z) is any polynomial of 

degree??k, we may replace z 2k+l in (58) by any polynomial with the same lead- 
k 

ing term. We choose the polynomial (z+hu) n (z+hj) 2 so that 
j=l 

k 

b2V 

c2= - 
l’i 

(v-j) 2 
.= 

+ Q 1 . 
(2k+l) ! 

(59) 
To find c3 = b2vb21e1(2k) we evaluate e$2k) = ch-2k/2ni(zk) 1) /V,(z) fi (z+hjj2 dz 

to find C j=l 

b2vb21 k 

‘3= - (2k)! l-l (u-3 2 
j=l 

(60) 

Finally we find c4 1 1 = b u2&2k) by making use of (30) and the value of 6 W) 1 

to give 

blu(u-v) k 
c4= - (2k) ! n (u-8 2 (61) 

j=l 

6. Particular Methods 

- In this section we list some special methods. Since the complexity of the 

coefficients increases rapidly with k, we restrict ourselves to k = 2, 3, 4. For 

each such value of k we have selected two methods: with (u, v) = and 
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(4 v = (-+,-g) l For k= 2 the two methods are 

Y,-2/3= (16Y,-l+ llYn-2)/27 + h(16fn-l + 4fn-2)/27 (63 

Y,.+~= (47~~~~ - 20ynm2)/27 + V7fn-2,3 - 22fnal - 7$,,)/27 (63) 

Fn= (-13~,-~+ 23yna2)/10 + h(108fn-l,3 - 189fn-2,3+ 284fn l+ 61fnS2)/80 (64) 

yn= (48~,-~+ ynB2)/49 + h(160fn+ 648f, 1,3f 405f 
n-2/3 - + 280fn 1+ 7fnB2)/1470 

(65) ~ 

and 

yn-1/2= yn-2 - + Wf, 1 + 3fne2)/8 (66) 

Yn-1'/4= t1309Yn-l- 1053Yn-2)/256 +h(756fn-1,2 - 1659fnB1- 819fnS2)/512 (67) 

yn= (-140~~ 1' 193yn-2)/53+ h(512fn 1,4 - 560f 
n-1/2 + 3640fn 1+ 1574fne2)/1113 

(68) 

+ 2548fn 1+ 73f,-,)/lo395 . _ (69) 

- For k= 3 the two methods are 

Y,-2/3= (49Y,-2 + 32Y,_3)/81+ ht196fn-l + 196fn-2 + 28fnq)/243 (70) 

-16 - 



y,-l/3= (14992ynvl-6784y; 2 - 2943ynw3)/5265 

+ h(118584f n-2/3 - 148400fn 1 -145208fn 2 - 17336fnm3)/l10565 (71) 

+ h(995085fn 1,3 - 2405700fn-2,3+ 4819248fn lf 3412836f, 2f 359691fnm3) 

(72) 

yn= (9369ynel+ 837~~ 2+ 71y, 3),'10277 

f h(20976rn+ 98415f n-1/3 + 39366f n-2/3 -I- 58536fn 1 

+ 750Sfn 2i- 321fn 3)/205540 (73) 

and 

%-l/2 = (-225ynq1+ 200ynD2 + 153yne3)/128 + h(225fnwl+ 300fnm2 + 45fn-,)/128 

(74) 

Y,-~,~= (6339487ynml - 2981088ynN2 - 2604735yrLw3)/753664 

+ h(4124736f n-1/2 - 
13604745fn 1 - 24795540fn 2 - 3851001fn 3)/3768320 

(75) 

Tn = (-206118ynel+ 125037yna2+ 101758ynD3)/20677 

+ h(3652480fn 1,4 - 7746816fn-l,2 + 49298865fne1+ 75689130fne2 

+l1559891fn-3)/7960645 (76) 
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yn= (5319ynel+ 513yne2+ 41ynW3)/5873 

-t h(20'7669$+ 689824f n-1/4 + 887040fn-l,2 

+ 715869fn lf 86229fn 2+ 3549fn-,)/2261105 . 

Finally, for k= 4 the two methods are 

.l - 33075~~ 2-f- 108000yn 3+ 23324~~ 4)/59049 

(77) 

+h(19600fn 1' 44100fn 2+ 25200fn ,+1960fnS4)/19683 (78) . 

,- 
Y,-~/~= (653682800yne1- 54440316~~~~ - 381259575ynS3 - 62034500yn-,)/155948409 

+ h(418263750f n 2,3 - 691608400fn-l - 1248768990fn 2 

- 540581400fnS3 - 35198800fn-,)/363879621 (79) 

+ h(40431069f n-1/3 - 122509179f n-2/3 + 30493456Of, 1+ 4254249514 2 

+ 164835435fn 3+ 9960664fn-4)/23290960 (80) 

yn= (301456~~ 1+ 65448~~ 2+ 22640~~~~ + 1457yn-4)/391001 

-I- h(14710080pn+ 76606236f n-1/3 -I- 16021962f n-2/3 + 62942880fn 1 

+ 20844054fn 2 + 3604260fn-3+119028fn-4)/15053585 (81) 
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and 

Y,,~,~= (-6125y,-1 - 3676y,_2+ Q261ynm3+ 2075~~~,$I1536 

+ h(1225fn-1 + 3675fnS2 -I- 2205fnw3 + 175fn-4)/512 
r 

(82) 

Y,-~,~= (884331175~~~l+ 449223975~~~~ - 1027077975ynB3 - 232028279~~~4) 

/74448896 

+ h(72817920f n-1/2 - 314524875f, 1 -1207478475fnm2 

- 737261595fn 3 - 58733115fne4)/74448896 (83) 

Gn= (-99742024~~ 1 - 45909828yn-2+123367176yn-3+ 27180523y,-,)/4895847 

+ h(148897792f n-1/4 - 239486976f n-1/2 +166217044Ofn-l+ 5185974240fnw2 

f 3056346216fnm3+ 240266188fne4)/171354645 (84) 

-kh(342709290$+ 1191182336fn-l,4+ 1372225536fn_,,2+1575099680fn-l 

-I- 450881640fn 2+ 75396384fnm3+ 2456234fnS4)/4036740015 . 

(85) 

The coeffieicnts cl, c2, c3, c4 in the expressions for the asymptotic 

truncation errors of these methods aretabulatedin Table I. 
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7. A Seventh Order Method 

In this section we consider a method in which three intermediate calcula- 

tions are performed within a step. We consider only the case k = 2 although the 

method of derivation would be the same for higher k. The method we seek then, 

will be defined by the equations 

y - n u = A11 yn-l + A12 yn-2 + hPllfn-l + B12 fn-2) 

Ye n v = *21 yn-l + A22 yn-2 + h@21 fn-u + B21 fn-l + B22 fn-2) 

(86) 

(87) 

Tn= A4l yn-l + A42 yn,2 + h@41 fn-u + b42 fn-v + b43 fn-w + B41 fn-l + B42 fne2) 

Yn = A1 Yn,l f A2 Yn-2 ’ h@l f,-u + b2 fn-v+ b3 fn-w ’ b4 ‘n + Bl fn-l + B2 fn-2) 

(90) 

where u, v, w are distinct from each other and from 0, 1, 2 and All, A12, 

. . . . B2 are the coefficients for the method. 

It is now our purpose to choose the various parameters so that 

Y n-u’ Yn-v9 yn-w9 ?n agree with their exact values with error O(h4) and so 

that yn agrees with y, with error O(h8). As for the previous methods we 

shall identify the various coefficients in (86) - (90) as the numerators in the 

partial fraction expansions of certain rational functions 

cp,m P2(& (o,(z)9 (pq(@’ cpw* 
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Setting h = 1 for simplicity we shall suppose that these functions are related by 

bl Ql(z) + b2 'p,(z) + b3 cp,<z> + b4 cp,@) + zQP(z) = 0 

and that Qly Q29 Q39 Q take the forms 

Q,(Z) : - 
K1 

(z+u) (z+1) 2(z+2) 2 

Q,(z) = - 2 

Q,(Z) = - 

(91) 

(92) 

(93) 

(94) 

l Q(z) = - 
z2(z+l)2(z+2)2 

(95) 

For a rational function @ (z) let p ( $I, zo) denote the residue at z = z. . 

Also denote by B the set of functions bounded in. (z: Izf ZR} where R is 

some real constant satisfying R > max (2, 1111, Iv], jw]}. Thenusingthetype 

of analysis in the previous sections we see that K1, K2, . . . , M3 must be 

chosen so that the following conditions are satisfied. 

p(Qy u) = -1 , 

p(Q2,u)= 0 , 

p(Q29 v) = -1 , 

(96) 

(97) 

(98) 
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#w3* v) = 0 

P@,* w) = -1 

p(cp, u) = 0 

Pm v) = 0 

pm w) = 0 

p(‘p, 0) = -1 

z89 (z) C B 

zQp (z) CB 

bluql(z) + b2vlP ,(z) + b3w(P3(z) E- B 

bluql(z) + b2vv2(z) + b3w9 ,(z) 
> 

E B 

z6 b$Pl(z)+ b2v2q2(z) + b3w29 ,(z) tB 
-i 1 

z6 { (b2vbzl + b3wb31) cp ,(z) + b3wb32 cp,(z) ) 

These constitute 16 independent conditions on u, v, w and the 15 constants 

K1, K2, l ... M3 - Hence u, v, w cannot be chosen independently. A tedious cal- 

culation yields the following relationship between these numbers 

(6*12&) - (6&8&2) (u+v+w) + (SiS&) (uv+vw+w-u) - (15&6&) uvw = 0 (112) 

where either value of the surd may be chosen. We select the values v = f, w=l 
3 ’ 

resulting in u = (1312 - 4&@/819 or its conjugate. As it happens, the conjugate 
- 

value leads to an unstable method, so only the one value of u need be considered. 

We are now in a position to compute Kl, K2, . . . , M3 and hence, the coef- 

ficients All, A12’ . . . , B2. First we use (102), (103), (104) to compute Ml, M2, M3 
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and (105), (106), (107) to find L1, L2, Lg. We now determine bl lim (Z+U)2Q(Z) , 
z- -u 

b2’ b3 ’ M21’ M31’ M32 are now found from (97), (QQ), (100); Kl is found from (96) 

and then K2 and K3 from the simultaneous equations (108)) (110). L21 is now 

given from (98) and L31, L32 from the system (109) and (101). We are now in a 

position to compute the remaining coefficients and to substitute into (111) as a 

check. For the calculations performed by the author, this check was indeed 

satisfied. 

Values of the coefficients are given in Table II in algebraic and in decimal 

form. For the number (a, + P&)/r the integers Q, p, y are given as is the 

decimal value rounded to 20D. That a method of the form we are considering 

should be (asymptotically) stable it is necessary and sufficient that -1 < A2 $ 1. 

In our case, it is found that A2 = -751 + 160& % -0.53 so the method is stable. 

8. Numerical Comparisons 

In this section we present the results of numerical tests made using five 

different methods to solve the initial value problem 

$$= 3y/(2+x) - l/y , Y(O) = 1 (113) 

and to give the result at x = 10 . For each method, stepsizes h = .4, .2, .I, .05 

were used and the results are shown in Fig. 4 as plots of the error E against the 

number N of derivative calculations performed. Attached to each curve is the 

order of the corresponding method. The methods used were 

the 4th order Runge-Kutta method, 

the 5th order method given by (17), (18)) (19) of [ 21, 

the 6th order method given by (62)) (63)) (64)) (65) in this paper, 

the 7th order method with coefficients in Table II, 

the 8th order method given by (74), (75)) (76), (77). 
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It should be emphasized that for many problems it would be unrealistic 

to measure the effort expended in obtaining a solution in terms of only the number 

of derivative evaluations. For the problem (113), for example, it would certainly 

be appropriate to take into account also the number of other multiplications per- 

formed, As far as Fig. 4 is concerned, this would have the effect of decreasing 

the relative advantage of a high order over a low order method. However, apart 

from the seventh order method which shows up rather badly, it appears that even 

for quite large stepsizes, the higher order methods are preferable for this problem. 
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TABLED 

A11 1920 04532 38 .54416 5493 53259 0.38241 94033 7941197879 

A12 3573 48727 -38 54416 5493 53259 0.61758 05966 20588 02121 

Bll -523 38100 -8 59232 5493 53259 -0.10260 83933 98362 64633 

B12 790 01654 -3 12140 5493 53259 0.14114 3401544339 82287 

A2l 78 37472 -6 59016 5 31657 8.92758 48293 62169 12157 

A22 -73 05815 6 59016 5 31657 -7.9275848293 62169 12157 

B21 -1769 07184 207 90000 675 20439 -1.17584 30710 62836 24075 

B22 4 47520 13878 5 31657 -0.71931 04014 15142 55364 

b21 -248 73684 22 64538 25 00757 -5.69909 80235 50856 99385 

A3l 2356 68275 -248 08500 49 68243 24.01373 99926 7355640526 

A32 -2307 00032 248 08500 49 68243 -23.01373 99926 7355640526 

B31 -4 37253 79630 22536 17550 44167 68027 -7.5066148265 39844 05295 

B32 -539 51980 -22 81995 ' 198 72972 -3.25343 81526 74812 15826 

b31 -589 30744 33970 74 7748118375 17 56892 17074 -13.52288 38441 74063 47633 

b32 13 53320 13 93235 40 74756 1.93586 34973 81829 94895 

A41 3659 24924 -1943 56296 49 58737 -110.04554 38107 13772 93095 

A42 -3609 66187 1943 56296 49 58737 111.04554 3810713772 93095 

B41 -6 31513 79588 4 6248158232 44083 17193 34.88217 92792 85014 55736 

B42 210 94684 74145132 247 93685 14.8774246203 01035 56676 

b41 -2 71216 34824 37940 124595 63159 44878 4655 62378 75273 67.2711069634 1013118380 

b42 4187502 -133 65846 91 50659 -6.39340 54062 9619643986 

b43 -1122984 8 86248 2154385 1.40823 83540 13788 06289 

Al 752 -160 1 1.53347 84282 5127126950 

A2 -751 160 1 -0.53347 84282 5127126950 

Bl -8 63124 184040 2667 0.03753 897184251039455 

B2 -242355 51629 2910 -0.06650 33457 30637 63826 - 

bl -1042768 14958 67067 222142 25284 35759 2404 08358 09774 -0.3446743420 54428 78832 

b2 43371 -922.5 358 0.28467 76972 87325 02551 

b3 -6 99300 150984 19765 0.4491643349 95228 32616 

b4 5787 -1207 1182 0.10631 82554 0873141086 


