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ABSTRACT 

An example is given of a bound state which occurs in a 

channel with a repulsive Born approximation. The bound 

state occurs due to the attraction provided at low energy by 

three particle intermediate states. 
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I. INTRODUCTION 

For some time, physicists have speculated that inelastic channels in particle 

collisions might give rise to resonances or bound states. Such a mechanism is 

well known in nuclear physics, 1 and it has been applied to particle physics by 

several authors, includtig, for instance, Cook and Lee. 
2 

These authors performed 

a matrix N over D calculation to see if the higher nucleon resonances might be 

driven by the opening of the p N channel. The interest in such a mechanism stems 

from the fact that particle exchange on the left is not always attractive in the 

channels where resonances are known to occur. Put in modern terminolo,T there 

is sometimes a breakdown in naive bootstrap philosophy, which assumes that 

elastic unitarity and the crossing matrix are sufficient principles for the prediction 

of resonances. The inelasticity mechanism is invoked as a cure for the breakdown 

of bootstrap theory. 

Unfortunately, all past attempts to assess the effects of inelasticity have 

been marred by an enormous number of approximations and simplifications. It . 

has neven been clear whether it was the inelasticity or the approximations which 

produced the resonances. In the present paper we wish to correct this situation 

by presenting a model calcuJation in which the dynamics are carefully evaluated, 

without important approximations other than the exclusion of states involving more 

than three particles. Specifically, our scattering amplitudes will have the hallowed 

properties of analyticity, crossing symmetry and unitarity. 

We study a reaction in which the single particle exchange poles provide a 
- repulsive force. Corresponding to this, when we construct a scattering amplitude 

satisfying crossing and elastic unitarity (one meson approximation), no bound 

state appears . This is in agreement with naive bootstrap theory. However, when 

-2- 



I 

we construct a scattering amplitude satisfying crossing and two a&l three particle 

unitarity (two meson approximation), a bound state appears when the coupling is 

sufficiently strong . The bound s&e can only be a result of inelasticity because 

we have the elastic calculation for comparison. In addition, the development of 

a bound state indicates that inelasticity can affect the low energy properties of 

scattering amplitudes. Contrary to popular belief, inelastic effects are not 

limited to energies where three particle phase space is large. 

- 
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II. THE MODEL 

The model we study is the charged scalar static model. This model has a 

spin zero source which can exist in either positive (p) or neutral (n) charge states, 

and which emits charged niesons (?T’ and rTT-) in S-waves with conservation of charge. 

There are two elastic scattering amplitudes: A+.(w), which refers to 7r+p and r-n 

scattering, and A-(w), which refers to n-p and Ir+n scattering. w is the meson 

energy. We are principally interested in the amplitude A D 

We denote the one meson solutions for A, by M,. They satisfy crossing 
3 

and elastic unitarity, and were originally given by Castillejo, .Dalitz and Dyson. 

In the present paper we choose the one meson solutions which ha.ve no CDD poles: 

M-(W) = - 
2U-1 

1- ci (w) ’ 

2 
(1) 

M+(w) = M- (-0 -ic) . 

Here g is the meson-source couplin, 0‘ constant, /J is the meson mass, 

k = [w2 VP”] 1’2 is the meson momentum, and u2(w) is the cutoff function. 

For sufficiently large g, a(,!f) < -1, so that M+ has a bound state B. This is 

reasonable in view of the attractive character of n exchange in ?~+p scattering. 

On the other hand, M, never has a bound state, which is the conventional 

conclusion from the repulsive character of the direct n pole in ?r-p scattering. 

(The contribution of B* exchange to n-p scattering is attractive, but never 
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sufficiently so to overcome the repulsive direct n pole and produce a bound 

state in M-. ) 

At this point, we introduce the relation between M, and the one meson phase 

shifts 6,: 

!d@) M*(w) = e 
is*@-9 

4n sin 6*(w) a 

We can then define the Omnes functions A+ (2): 

(2) 

(3) 

It is possible to represent M in terms of these functions. ’ When the bound 

state I3 is present, the representation is 

M-(w) = - 
g2 %p+N 
/-w~+wg) 

A- (w + i e) A+ (- w) , (4) 

where w 
B 

is the energy of the bound state. By examining the residue of M 

at w = -w B’ we can determine the meson-source-bound state coupling constant 

gB: 

PUB 
- A+ tw,) A- (- wB) - 

P 15) 

Two meson solutions for A, have been given by the author. There are two 

versions of the solutions: first, for the case that the bound state B is absent in 



M+,4and second, when B is present. 
5 These solutions do not have free parameters 

analogous to CDD parameters in them, and therefore they are the two meson com- 

panions to M,. We denote the two meson approximations to A, by T,. T* 

satisfy the same crossing relations as M, [Eq. (l)] , and they satisfy two and 

three particle unitarity. By this we mean that production and six point amplitudes 

are calculated which satisfy appropriate dispersion relations, and the amplitudes fit 

together with T, to form an unitary two and three particle scattering matrix. The 

distinction between the two versions of T, lies in the fact that M, are used to 

describe final state interactions in three particle states. Consequently, in the 

state 7r+ 7~~ n , which is connected to p 7rTT- by a production amplitude, the r-n 

system can coalesce into a bound state B-. Therefore, the version of T for the 

case that B is present in M, includes an inelastic two particle cut coming from 

the Y?B- state. The new cut appears automatically when the weak coupling forms 

of T, are analytically continued in g, and the enlarged scattering matrix remains 

unitary when the new chamlel appears . In the following calculation we shall need 

the form of T- which holds when M+ has a bound state. 

T has the form 

T-@I)-- 
2w-1 

, 
[l + WC (-cd)] [l - WC (-kg1 --NW) 

0 (6) 

where co 
C(-cd) = 5 J 

d ml i?t (w,) 
wl(wl -w-i<) 

P+wg zcl 

d w1 I+ 

w1 (y + w> 
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The weight functions are 

gB w; K u2 (G) A! (-w) 1 A+) 1 2 2 

P_B (0) = 
27r w w2 AZ (- wB) 

, 

g4 W; A! (-0) W-P 

PT (4 = 
87r3 p2 w J 

dwl 1~~ kelu2twl) u2 P,) 

ct 

2 

X 
(w1 - l-4 

A+ Pll A- (w_,) 2 (8) 
G-W 1 -1 

g4 ww; (w+pj2 W-P 
P+(W) = _. 

167r3p2 (w + w~)~ 
A2,(_w) J dw1 k1k_p2 P,) u2Pw1) 

P 

X 
A-W,) A- tw-;I 2 

“1 w-l 
, 

where w.= w - w , wl= w - w 1 B’ w-l = w - w1’ ‘i; = [G2 - P~]]‘~ and 

k-1 = 1 
wfl - p 2j 1’2 . Note that when we set C = 0, the one meson solution is 

recovered. p B gives the contribution of 7r’ B - intermediate states to T-, p+ gives 

the contribution of r+n-n intermediate states, and p+ gives the contribution of r’n+n 

exchange. n-p intermediate states and 7r+p exchange contribute to CY, as in the one 

meson solution. 

A bound state of T- occurs if the denominator of Eq. (6), 
l+ w c (-WI 

0 D(w) = 1 - WC (-w) -a(w), (9) 
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increases through zero between w = 0 and w = ,LL. (A zero of D between w = -/J 

and w = 0 is a bound stat.e in the T+ channel. We know that such a bound state 

exists, analogous to B in M,. ) in the one meson approximation, C = 0, D is 

always greater than one between w = 0 and w = 1-1, so M- has no bound state. 

However, if C is large, D developes a pole, and it can then increase through 

zero (see Fig. 1). The conditions for T to have a bound state are. 

CL c (34 > 1 3 (10) 

1 -I- jJ c (-#LLl 
1 - P c (-P) 

-a(p)>0 . 

These inequalities can be satisfied only if cl(p) < - 1, which is the condition that 

M, have a bound state B. Therefore, the bound state in T cannot develop until 

M+ has developed a bound state. A sufficient condition for T- to develop a bound 

state is that C(-+)~‘+Go . In the next section we shall show that this behavior 
Et -+co 

occurs. 

We point out that the pole of D (see Fig. 1) is a CDD pole, since it corresponds 

to a zero of T . It is induced by the coupling to the inelastic channels, and is an 

example of a dynamically determined CDD pole of the type noted by Bander; 

Coulter and Shaw. 6 
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III. THE BOUND STATE IN T- 

We have seen that T- has a bpund state if C t-1-1) 2 + 00. To establish 
g --(@a 

that this happens, we first examine the behavior of the p’s for finite w as 

g2 -ooq We observe from Fig. 2 that 6*(w) remain finite as g2 - co . 

Although 6 (co) changes from 0 to 
2 - 7r as g - 00, this affects only the 

asymptotic form of A (w), and at present we are studying finite o. We conclude 

that A*(w) approach finite limits as g2-+ co for finite o. Next, we observe 

that near w = 0, a(w) z -g2 w/3, with p > 0. Thus, for large g2, 

1 
WB E- 

g2P , 
. 

From Eq. 5, we observe that for large g2, 

2 
gB 

zg2 . 

B 
These remarks suffice to determine that for finite w and large g2, p- 

-2 decreases like g , and PT and p, are independent of g2. Therefore, 

(11) 

(12) 

c (-p) =’ c + ; + 
P+(y) 1 “1+/J ’ (13) 

0 

where w o is a large energy chosen so that we may use high energy forms of the 

quantities appearing in the integrand. C is a positive constant which is independent 

of g2 for large g2. Evidently, if C(-Jo) is to increase with g2, this increase is 

to be found in the high ener,T integral of Eq. (13). 

-9- 

. 



For large positive or negative o, 

2 
Re a(w)-, + v , y>o . (14) 

We assume that u2(w) z 77 wmn for large w, where n > 1 . Examination of 

Fig. 2 verifies that A+ (m) is a finite positive number when g2- CO, so from 
. 

Eq. (4) we have 

WP PM-P) 
A-(W) g2b@ 

g2+ + 
w- A (aI = 

1 - g2 (“w - iu2y; ’ (wj)] 

. (Ii) 

A+ (co) 

This form is valid for large g2 and w, and demonstrates that the asymptotic 

behavior of A-(w) changes as g2 -.+ 00 . 

We are now able to evaluate the remaining integral in Eq. (13). We first 

examine the p B B term, replacing all the terms in the definition of p- by their values 

at w = co, except A-(w), for which we use Eq. (15). We let x = wl/g2 be the variable of 

integration. 

CBEL 
O3 dWl Pf (w,) 

7r s 
W 

w1 tw1 - PI 
0 

(16) 
co 

.4 2 n-2 
z PP?7 

2 2n J 
2% g 

4 - 
A+ (co) wok2 [x + y12 [(x - ;’ x2” + 77 2/lf, T2g4n - “1 l 

For large g, the dominant contribution to the integral comes from the region 

-2 around x = y, and Cf vanishes like g . Thus, the contribution of the 7r’B- 
2 state vanishes for large g , and if T is to have a bound state, it is solely a 

three particle effect. 
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T We next. examine the contribution of p- . The integral in Eq. (8) may be 

bounded from below by a finite positive constant h when w and g2 are large. 

Thus, for large w and g2, ’ 

PTW > 

Using x as variable again, we have 

CT lL ca dWl PT P-q z- 71 s 
W 

“1 twl -P) 
0 

4 

Ss3A~(co) w 1-k J$ 
“[ 3 

2 l 
(17) 

> h 
87r3 A; (00) 

co s dx 
l (18) 

wok2 

x [x+ r]” 

This integral has a logarithmic singularity at the lower limit. Since the. 

contribution of p, is positive, we have for large g2 

c (-#LA) > co + Cl log g2; co, cl>o‘o (19) 

Therefore, T- has a bound state for large g2. 

It is worth mentioning that for large g2, the bound state B moves to the 

origin and nearly cancels the source pole there Eqs.. (11) and (12) 

is the way unitarity is maintained when g2 is large. However, it would be 

erroneous to conclude that the net effect of the direct n pole and exchanged 

B* pole is no longer repulsive when g2 is large. This is evident from the 

fact that M- never can have a bound state. Even in the limit g2-+co, the . 

bound state ,in T- must be interpreted as three particle effect which occurs 

despite repulsive Born terms. 
a 
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D Fig. 1 

The denominator function D(w) when T- has a bound state. wC(-(3) 

is amonotonically increasing function of w, so D has at most one pole, 
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Fig. 2 

The one meson phask shifts for finite and infinite g2. 


