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Recently, two new derivations of the n-p mass difference have been given 192 

which attempt to include inelastic Compton effects by exhibiting a so-called 

feedback term with the effect of reversing the overall sign of earlier estimates. 

The purpose of this note is to give a simple, field theoretic example of how the 

feedback mechanism may be expected to operate. We consider the difference, 

AZ(w), of the nucleon self-energies obtained by iterating the difference, AX (0) (w), 

of the FS-type’ electromagnetic self-energies between an increasing number of ‘( 3 

virtual pions. This difference of sums over the subset of proper self-energy 

rainbow (or ladder) graphs, illustrated in Fig. 1, is supposed to approximate the 

n-p mass difference, and provide the mechanism for the reaction of inelastic, 

one photon plus many pion states back on the strong interaction determination of 

the nucleon masses. These graphs are chosen only because they can be generated 

by the iteration of a linear integral equation, which we do not attempt to solve. 
4 

Rather, we observe that, if a solution exists for which ImAZ is not pathological 

near threshold and vanishes rapidly for large o , then the feedback mechanism 

can be sufficient to reverse the sign of the initial AX (0) estimate. When evaluated 

with the aid of reasonable charge and moment form factors, the latter leads to 

the incorrect result for Am = mp-mn , of amount Am(‘) = - ZAX(‘)(m) N+ 4 MeV, 

where Z denotes the nucleon wave function renormalization-constant. 

We represent by 62 = xpGEp + ~~6% the sum of such self-energy graphs for 

the nucleon, obtained by the iteration of the simpler, electromagnetic 

tjz lo) = x &x(O) + x &Go) . 
PP nn 

Here, x 
pa 

denote isotopic projection operators for 

proton and neutron, respectively, while cSI: 
P,n 

and 6ZrJn are the corresponding 
, 

self-energy functions. do) is illustrated by the first term on the right side of 

Fig. 1; it is of order e2 and is understood to be given in terms of realistic 

charge and moment distributions of the electromagnetic vertex. The model may 
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thus be defined by the equation5 
--_ 

Sz(-iy.p) = Sk(O)(-iy. p) + -2 
3 

c/ 

d4k 1 ~ 

t2n)4 i=l 
k2+p2 '5' i m + iy * (p+k) 6Z (-i y. @+k)) 

1 (1) 
m+iy. (p+k) ?5’i 

where we neglect the variation of pion and nucleon masses in Eq. (1) because 62 

is already of order e2. Both e2 and g2 are taken as renormalized, with 
rI i 2 g /4n = 15. Inserting isotopic representations, one easily finds, for AX = SEp-6En , 

Ax{-irep) = &(O)(-iy.p) - -& J -dk-- 1 

m4 
k2,P2 ?5 m+iy*(p+k) AE( -iy= (p+k) ’ m+iy. (p+k) ‘5 ’ 

where AZ(‘) = 6E(po) - SE(‘) . n 
(2) 

It is useful to employ for AE(o) the form of the very general representations’ 

valid for E(w) , 

co 

AZ(w) = J dn 

m+p 
[ 

AP+W AP-(4 
-+- 

n-w n+w 1 (3) 

where Ap+ (n) = + (nT m)2 AT+(n) . Insertion of Eq. (3) into Eq. (2), followed 

by the computation of an elementary Feynman integral, produces 

co 

AZ(w) = AZ(‘)(~) + L J AP -@I 

8s2 
dn [ AP+W 

x f+(n, b-u.4 + n-tm f-h w-4 I, y ‘(4) 
m+P 

1 

f+tw.w) = /( do 
xm [m-(1-x)W] 

p2(1-x) +xm2 -x(1-x)w 
_ 1 [nT(l-x)wlen p2(1-x) +xn2 -x(1-x)w2 

2 2 (nTm) 
0 1 p2(1-x) -t-xm2 

I] 
-x(1-x)w2 
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which relations provide a linear equation for Ap+ , in terms of the absorptive 

part of AX(‘)(w) and the cuts of f +’ If a solution exists, we are interested in 

AWn), 

03 co 

+(n) - (n+m)AT- (n) 1 (n-m)AT +(n)f+(n, m, o) 

m 
: 

- (n+m)AT -(n)f-(n, m, 0). , 1 (6) 
:, ‘! 

where the Ap+ have been replaced by the AT+ and, for simplicity, all depen- 

dence on p has been dropped; this latter approximation does not lead to an in- 

frared logarithm in AX(m) , but introduces errors proportional only to &/m)2. 

Writing 

where 

f+tn,m, 0) = 1 - Q+(n) , (7) 
- 

Q+(n) = 2 +x pw] Qn (I+%), (8) 

0 

and defining the average value, Q , of Eq. (8)) 
co 

s[ dn (n-m)AT +(n)I+(n) - (n+m)A7 -(n)Q-(n) 1 Q 3 “, 
J[ 1 dn (n-m)AT+(n) - (n+m)AT -(n) 

m 

(9) . . 

we may use the definition Am = -ZAX(m) to obtain 

AX(m) = AX(O)(m) + -IL (1-Q) AW-0 , 
8x2 

or 

Am = Am(‘) (l-3 w,> -l. (10) 
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For negative Q , or for sufficiently small positive Q(Q <. 57), Eq. (10) 

exhibits the desired change in sign. The value of Q depends on the detailed 

solution to the model, but it is apparent that the effect depends upon reasonable 

threshold behavior together with strong damping, at higher energies, of AT+ .7 
- 

For example, if a solution exists with AT + M AT _ = AT , where AT increases 

from threshold in a smooth way, and is essentially cut-off for n > 2m, then we 

. may approximate AT by 

AT tn) -4 e(;-;)e(;-l) +(2-k) +-$I(;-;)) 

1 approximately valid in the region 2m > n > m , leads to the value Q = -2 , 

satisfying our criterion. The magnitude of Eq. (10) should not be, taken seriously; 

the model itself has only the virtue of providing a simple example of the feedback 

mechanism. 

It is a pleasure to acknowledge many relevant conversations with Prof. 

T. N. Truong; and to thank Prof. S. Drell for the hospitaliby extended by SLAC, 
‘ 

where this note was written. 
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More precisely, one should begin with the unrenormalized mo, go, and 
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convert go to g ; and then approximate the renormalized propagators by 

their respective pole terms, and each renormalized ps vertex by y57 i . 
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i. Similar damping is essential to the success of the feedback mechanisms of 

references 1 and 2. Even if a solution with these properties does not exist 

here, it might still be possible to find a sufficiently small Q; otherwise, a 

damping factor, corresponding, e.g. , to the use of more realistic ps 

vertex functions, must be included. 
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Fig. 1 
349-1-A 

Pictorial representation of an approximate integral equation for 62 , 

and its iterative solution. 


